[image: image1.png]OASIS

OASIS eXtensible Access Control Markup Language (XACML)

Working Draft 15, 12 July 2002

Document identifier: draft-xacml-specification-15.doc

Location: http://www.oasis-open.org/committees/xacml/docs/

Send comments to: xacml-comment@lists.oasis-open.org
Editors:

Simon Godik, Simon Godik (simon@godik.com)

Tim Moses, Entrust (tim.moses@entrust.com)

Contributors:

Anne Anderson, Sun Microsystems

Bill Parducci, Bill Parducci

Carlisle Adams, Entrust

Daniel Engovatov, Crosslogix

Don Flinn, Hitachi

Ernesto Damiani, University of Milan

James MacLean, Affinitex

Hal Lockhart, Entegrity

Ken Yagen, Crosslogix

Konstantin Besnozov, Hitachi

Michiharu Kudo, IBM, Japan

Pierangela Samarati, University of Milan

Polar Humenn, Syracuse University

Sekhar Vajjhala, Sun Microsystems

Gerald Brose, Xtradyne

Abstract:

This specification defines an XML schema for a common access-control policy language.

Status:

This version of the specification is a working draft of the committee. As such, it is expected to change prior to adoption as an OASIS standard.
If you are on the xacml@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the xacml-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to xacml-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of contents

71
Glossary (non-normative)

1.1
Preferred terms
7
1.2
Related terms
8
2
Introduction (non-normative)
8
2.1
Background
8
2.1.1
Rule combining
9
2.1.2
Policy combining
9
2.1.3
Combining algorithm
9
2.1.4
Decision indication
9
2.1.5
Names or attributes
10
2.1.6
Specifying actions
10
2.1.7
Expression of predicates
10
2.1.8
Abstraction layer
10
2.1.9
Policy attachment
10
2.2
References
10
2.3
Notation
10
2.4
Schema Organization and Namespaces
11
3
Example (non-normative)
11
3.1 Introduction to the example
11
3.2 Example medical record instance
12
3.3
Example authorization decision request
13
3.4
Example plain-language rules
14
3.5
Example XACML rule instances
15
3.5.1
Rule 1
15
3.5.2
Rule 2
15
3.5.3
Rule 3
17
3.5.4
Rule 4
18
4
Models (non-normative)
19
4.1
Data-flow model
19
4.2
XACML Context
20
4.3
Policy language model
21
4.3.1
Rule
22
4.3.2
Policy statement
24
4.3.3
Policy set statement
27
5
Policy syntax (normative, with the exception of the schema fragments)
28
5.1
Element <PolicySetStatement>
28
5.2
Element <PolicyStatement>
28
5.3
Element <Rule>
28
5.4
Complex type PolicySetStatementType
28
5.5
Complex type PolicyStatementType
29
5.6
Complex type RuleType
30
5.7
Complex type EffectType
30
5.8
Complex type TargetType
30
5.9
Complex type MatchType
31
5.10
Complex type ObligationsType
31
5.11
Complex type ObligationType
31
5.12
Element <Function>
31
5.13
Complex type ConditionType
31
5.14
Complex type FunctionType
32
5.15
Element <Attribute>
32
5.16
Complex type AttributeType
32
5.17
Element <AttributeDesignator>
33
5.18
Complex type AttributeDesignatorType
33
5.19
Complex type AttributeAssignmentType
33
5.20
Complex type PolicySetType
33
5.21
Complex type RuleSetType
34
5.22
Complex type RuleDesignatorType
34
6
Function names and legal type combinations
34
6.1
Functions
34
7
Context syntax (normative, with the exception of the schema fragments)
39
7.1
Element <Request>
39
7.2
Element <Response>
39
7.3
Complex type RequestType
39
7.4
Complex type ResponseType
40
7.5
Complex type ResultType
40
7.6
Complex type SubjectType
40
7.7
Complex type SubjectIdType
41
7.8
Complex type AuthenticationInfoType
41
7.9
Complex type AttributeType
41
7.10
Complex type ResourceType
42
7.11
Complex type ResourceSpecifierType
42
7.12
Complex type SpecifierScopeType
42
7.13
Complex type ResourceContentType
42
7.14
Complex type ActionType
43
7.15
Complex type DecisionType
43
7.16
Complex type EnvironmentType
43
7.17
Complex type AdviceType
43
8
XACML identifiers (normative)
44
8.1
Access Subject
44
8.2
Time of day
44
8.3
Attributes
44
8.3.1
Role
44
8.3.2
RFC822 Name
44
8.3.3
X.500 distinguished name
44
8.3.4
Unix file-system path
44
8.3.5
Uniform resource identifier
44
8.4
Authentication locality
45
8.5
Deny-overrides rule-combining algorithm
45
8.6
Deny-overrides policy-combining algorithm
45
8.7
Permit-overrides rule-combining algorithm
45
8.8
Permit-overrides policy-combining algorithm
45
9
Combining algorithms (normative)
45
9.1
Deny-overrides
45
9.2
Permit-overrides
46
10
Profiles (normative but not mandatory to implement)
48
10.1
XACML
48
10.2
SAML
48
10.3
XML Digital Signature
50
10.4
LDAP
50
10.4.1
Directory information tree (DIT)
50
10.4.2
Policy combination
51
10.4.3
Directory schema
51
10.4.4
Object Class Definitions
52
10.4.5
Attribute Definitions
52
10.4.6
Matching Rule Definitions
53
11
Operational Model (normative)
53
11.1
Policy Decision Point (PDP)
53
12
XACML extensibility points (non-normative)
54
12.1
URIs
54
13
Security and privacy (non-normative)
54
13.1
Authentication
54
13.2
Confidentiality
55
13.2.1
Communication Confidentiality
55
13.2.2
Statement Level Confidentiality
55
13.3
Policy Integrity
55
13.4
Elements included by reference
56
13.5
Trust Model
56
13.6
Privacy
56
14
Conformance (normative)
57
15
References
58
Appendix A. Acknowledgments
59
Appendix B. Revision History
60
Appendix C. Notices
61

1 Glossary (non-normative)
1.1 Preferred terms

Access - Performing an action
Access control - Controlling access in accordance with a policy
Action - An operation on a resource

Applicable policy - The complete set of rules that governs access for a specific decision request
Attribute - Characteristic of a subject, resource, action or environment that may be referenced in a predicate
Authorization decision - The result of evaluating an applicable policy. A function that evaluates to "permit, deny or indeterminate", and (optionally) a set of obligations
Condition - An expression of predicates. A function that evaluates to "true or false"
Context - The canonical representation of decision request and authorization decision
Decision request - The request by a PEP to a PDP to render an authorization decision
Effect - The intended consequence of a satisfied condition (either permit or deny)
Environment - The set of attributes that are independent of a particular subject, resource or action
Information request - The request by a PDP to a PIP for attributes

Obligation - An action specified in a policy or policy set that should be performed in conjunction with the issuance of an authorization decision

Policy - A set of rules and an identifier for the rule-combining algorithm

Policy administration point (PAP) - The system entity that creates a policy or policy set
Policy-combining algorithm - The procedure for combining the target, obligations and rules from multiple policies

Policy decision point (PDP) - The system entity that evaluates applicable policy and renders an authorization decision
Policy enforcement point (PEP) - The system entity that performs access control, by enforcing authorization decisions
Policy information point (PIP) - The system entity that acts as a source of attribute values

Policy retrieval point (PRP) - The system entity that locates and retrieves applicable policy for a particular decision request

Policy set - A set of policies and other policy sets and a policy-combining algorithm

Predicate - A statement about attributes whose truth can be evaluated
Resource - Data, service or system component

Rule - A target, an effect and a set of conditions
Rule-combining algorithm - The procedure for combining the target, effect and conditions from multiple rules

Subject - An actor whose attributes may be referenced by a predicate
Target - The set of decision requests, identified by definitions for resource, subject and action, that a rule, policy or policy set is intended to evaluate

Target mapping - The process of confirming that a rule, policy or policy set is applicable to an authorization decision request
1.2 Related terms

In the field of access control and authorization there are several closely related terms in common use. For purposes of precision and clarity, certain of these terms are not used in this specification.

For instance, the term attribute is used in place of the terms: group and role.

In place of the terms: privilege, permission, authorization, entitlement and right, we use the term rule.
The term object is also in common use, but we use the term resource in this specification.

Requestors and initiators are covered by the term subject.

2 Introduction (non-normative)

2.1 Background

The modern enterprise is pervaded by information systems and devices. Economies of scale have driven vendors to provide increasingly general-purpose solutions that must be configured to address the specific needs of each situation in which they are applied. This leads to constantly increasing complexity and configurability. Furthermore, the devices and systems may be distributed widely in a global enterprise. The task of analyzing and controlling system and device configuration in a consistent manner across an entire enterprise is an enormous challenge, compounded by the fact that, even when systems and devices support configuration by a remote console, there is no common interface standard. Consequently, it is becoming increasingly difficult for an enterprise to obtain a consolidated view of the policy in effect across its many and diverse systems and devices or to enforce a single policy that affects many of those devices and systems.

The objective of XACML is to address this need by defining a language capable of expressing policy statements for a wide variety of information systems and devices

The approach taken by XACML is to draw together long-established techniques for access-control and then to extend a platform-independent language (XML) with suitable syntax and semantics for expressing those techniques in the form of policy statements.

XACML exploits long-established techniques, such as:

· Combining independent rules to form a single policy.

· Combining independent policies, optionally from different policy-writers, to form a single policy set.

· The parameterization of the algorithm to be used for combining rules and policies.

· Attaching an indication of the set of decisions that a rule or policy is intended to render to the rule or policy.

· Defining the set of decisions that the rule or policy is intended to render in terms of the name or attributes of the subject, resource and action identified in the decision request.

· Specifying in a policy statement a set of actions that must be performed in conjunction with the rendering of a decision.

· Stating rule conditions as a logical expression of predicates of functions of attributes of the resource and/or subject.

· Providing an abstraction layer between the policy language and the environment to which it applies.

· The communication of policies, either attached to the resources they are intended to protect, or separately.

The following sections describe how to understand the rest of this specification.

2.1.1 Rule combining

Ref 5,

2.1.2 Policy combining

Ref 5, 8

2.1.3 Combining algorithm

Ref 7,

2.1.4 Decision indication

2.1.5 Names or attributes

Ref 2, 6

2.1.6 Specifying actions

Ref 1,

2.1.7 Expression of predicates

Ref 4,

2.1.8 Abstraction layer

2.1.9 Policy attachment

Ref 1, 3

2.2 References

1. Perritt; Knowbots, Headers & Contract Law; 1993.

2. Orange book

3. Trusted Network Interpretation

4. X.500 filter

5. J Moffett and M Sloman. Policy hierarchies for distributed system management. IEEE Journal on Selected areas in communications, pages 1404-1414, December 1993. Special Issue on network management.

6. R Sandhu, E Coyne, H Feinstein and C Youman. Role-based access control models. IEEE Computer, 9(2); 38-47, 1996.

7. S Jajodia, P Samarati, V S Subrahmanian and E Bertino. A unified framework for enforcing multiple access control policies. Proceedings of ACM SIGMOD, 1997

8. N Minsky, V Ungureanu. Unified support for heterogeneous distributed systems. 7th USENIX security symposium, San Antonio, Texas, January, 1998..

2.3 Notation

This specification contains schema conforming to W3C XML Schema and normative text to describe the syntax and semantics of XML-encoded policy statements.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in IETF RFC 2119 rfc2119:

"they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions)"

These keywords are thus capitalized when used to unambiguously specify requirements over protocol and application features and behavior that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-language sense.

Listings of XACML schemas appear like this.

Example code listings appear like this.

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

· The prefix saml: stands for the SAML assertion namespace.

· The prefix ds: stands for the W3C XML Signature namespace.

· The prefix xs: stands for the W3C XML Schema namespace.

This specification uses the following typographical conventions in text: <XACMLElement>, <ns:ForeignElement>, Attribute, Datatype, OtherCode.

2.4 Schema Organization and Namespaces

The XACML policy syntax is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:xacml:0.15i:policy

The XACML context syntax is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:xacml:0.15i:context

XACML functions have the following namespace prefix.

urn:oasis:names:tc:xacml:0.15i:function
Note: The XACML namespace names are temporary and may change when XACML 1.0 is finalized.

The SAML assertion schema is imported into the XACML schema. Also imported is the schema for XML Signature XMLSigXSD, which is associated with the following XML namespace:

http://www.w3.org/2000/09/xmldsig#

3 Example (non-normative)

This section contains an example use of XACML for illustrative purposes.

3.1 Introduction to the example

This section contains an example XML document, an example request context and example XACML rules. The XML document is a medical record. Four separate rules are defined.

3.2 Example medical record instance

Following is an instance of a medical record to which the example XACML rules can be applied. The <record> schema is defined in the registered namespace administered by "//medico.com".

<?xml version="1.0" encoding="UTF-8"?>

<record xmlns="medico.com/records.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="medico.com/records.xsd http://www.medico.com/schema/record.xsd">

<patient>

<patientName>

<first>Bartholomew</first>

<last>Simpson</last>

</patientName>

<patientContact>

<street>27 Shelbyville Road</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.4567</phone>

<fax/>

<email/>

</patientContact>

<patientDoB xsi:type="date">1992-03-21</patientDoB>

<patientGender xsi:type="string">male</patientGender>

<policyNumber xsi:type="string">555555</policyNumber>

</patient>

<parentGuardian>

<parentGuardianName>

<first>Homer</first>

<last>Simpson</last>

</parentGuardianName>

<parentGuardianContact>

<street>27 Shelbyville Road</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.4567</phone>

<fax/>

<email>homers@aol.com</email>

</parentGuardianContact>

</parentGuardian>

<primaryCarePhysician>

<physicianName>

<first>Julius</first>

<last>Hibbert</last>

</physicianName>

<physicianContact>

<street>1 First St</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.9012</phone>

<fax>555.123.9013</fax>

<email/>

</physicianContact>

<registrationID>ABC123</registrationID>

</primaryCarePhysician>

<insurer>

<name>Blue Cross</name>

<street>1234 Main St</street>

<city>Springfield</city>

<state>MA</state>

<zip>12345</zip>

<phone>555.123.5678</phone>

<fax>555.123.5679</fax>

<email/>

</insurer>

<medical>

<treatment>

<drug>

<name>methylphenidate hydrochloride</name>

<dailyDosage>30mgs</dailyDosage>

<startDate>1999-01-12</startDate>

</drug>

<comment>patient exhibits side-effects of skin coloration and carpal degeneration</comment>

</treatment>

<result>

<test>blood pressure</test>

<value>120/80</value>

<date>2001-06-09</date>

<performedBy>Nurse Betty</performedBy>

</result>

</medical>

</record>

3.1 Example authorization decision request

The following example illustrates a request context to which the example rules are intended to be applicable. It represents a request by the physician Julius Hibbert to read the patient date of birth in the record of Bartholomew Simpson. It includes an authentication assertion and an attribute assertion containing the role of the requestor.

<?xml version="1.0" encoding="UTF-8"?>

<Request xmlns="urn:oasis:names:tc:xacml:0.15i:context" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:identifier="urn:oasis:names:tc:xacml:identifier" xmlns:xacml="urn:oasis:names:tc:xacml:0.15i:policy" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.15i:context

http://www.oasis-open.org/tc/xacml/v15/draft-xacml-schema-context-15i.xsd">

<Subject>

<SubjectId Format="xs:string">Julius Hibbert</SubjectId>

</Subject>

<Resource>

<ResourceSpecifier Format="xs:anyURI" Scope="Descendants" ResourceId="//medico.com/record/patient[@patientName/first='Bartholomew'][@patientName/last='Simpson']/patientDoB"/>

</Resource>

<Action Namespace="">read</Action>

<Environment>

<EnvironmentAttribute AttributeId="urn:oasis:names:tc:SAML:1.0:Assertion" DataType="xs:string">

<saml:Assertion AssertionID="64578390" Issuer="medico.com" IssueInstant="2002-03-08T08:23:47-05:00" MajorVersion="0" MinorVersion="28" xmlns="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.oasis-open.org/committees/security/docs/cs-sstc-schema-assertion-01.xsd">

<saml:AuthenticationStatement AuthenticationInstant="2002-03-08T08:23:45-05:00" AuthenticationMethod="http://www.oasis-open.org/committees/security/docs/draft-sstc-core-28/password-sha1">

<saml:Subject>

<saml:NameIdentifier NameQualifier="\\medico.com">Julius Hibbert</saml:NameIdentifier>

<saml:SubjectConfirmation>

<saml:ConfirmationMethod>http://www.oasis-open.org/committees/security/docs/draft-sstc-core-24/artifact</saml:ConfirmationMethod>

</saml:SubjectConfirmation>

</saml:Subject>

<saml:SubjectLocality IPAddress="217.57.95.242"/>

</saml:AuthenticationStatement>

</saml:Assertion>

</EnvironmentAttribute>

<EnvironmentAttribute AttributeId="urn:oasis:names:tc:SAML:1.0:Assertion" DataType="xs:string">

<saml:Assertion MajorVersion="0" MinorVersion="28" AssertionID="68938960" Issuer="medico.com" IssueInstant="2000-06-15T15:02:39-05:00" xmlns="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.oasis-open.org/committees/security/docs/cs-sstc-schema-assertion-01.xsd">

<saml:AttributeStatement>

<saml:Subject>

<saml:NameIdentifier NameQualifier="\\medico.com">Julius Hibbert</saml:NameIdentifier>

</saml:Subject>

<saml:Attribute AttributeName="role" AttributeNamespace="//medico.com">

<saml:AttributeValue>physician</saml:AttributeValue>

</saml:Attribute>

</saml:AttributeStatement>

</saml:Assertion>

</EnvironmentAttribute>

</Environment>

</Request>

3.2 Example plain-language rules

The following plain-language rules are to be enforced:

1. A person may read any record for which he or she is the designated patient.

2. A person may read any record for which he or she is the designated parent or guardian, and for which the patient is under 16 years of age.

3. A physician may write any medical element for which he or she is the designated primary care physician, provided an email is sent to the patient,

4. An administrator shall not be permitted to read or write medical elements of a patient record.

These rules may be written by different PAPs, operating independently, or by a single PAP.

3.3 Example XACML rule instances

3.3.1 Rule 1

Rule 1 illustrates a simple rule with a single condition. The following XACML <Rule> instance expresses Rule 1.

<?xml version="1.0" encoding="UTF-8"?>

<Rule RuleId="//medico.com/rules/rule1" Effect="Permit" xmlns="urn:oasis:names:tc:xacml:0.15i:policy" xmlns:function="urn:oasis:names:tc:xacml:0.15i:function" xmlns:identifier="urn:oasis:names:tc:xacml:0.15i:identifier" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.15i:policy

http://www.oasis-open.org/tc/xacml/v15/draft-xacml-schema-policy-15i.xsd">

<Description>A person may read any record for which he or she is the designated patient</Description>

<Target>

<Subjects MatchId="function:rfc822Name-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:rfc822Name']" DataType="identifier:rfc822Name"/>

<Attribute DataType="identifier:rfc822Name">@</Attribute>

</Subjects>

<Resources MatchId="function:string-match" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>

<Attribute DataType="xs:anyURI">//medico.com/record.*</Attribute>

</Resources>

<Actions MatchId="function:subset" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>

<Attribute DataType="xs:string">read</Attribute>

</Actions>

</Target>

<Condition FunctionId="function:string-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/SubjectId" DataType="xs:string"/>

<AttributeDesignator Designator="//xacmlContext/Request/Resource/patientName" DataType="xs:string"/>

</Condition>

</Rule>

3.3.2 Rule 2

Rule 2 illustrates the use of a mathematical function, i.e. the <Minus> function to calculate age. It also illustrates the use of predicate expressions, with the <And> and <Not> elements.

<?xml version="1.0" encoding="UTF-8"?>

<Rule RuleId="//medico.com/rules/rule2" Effect="Permit" xmlns="urn:oasis:names:tc:xacml:0.15i:policy" xmlns:function="urn:oasis:names:tc:xacml:0.15i:function" xmlns:identifier="urn:oasis:names:tc:xacml:0.15i:identifier" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.15i:policy

http://www.oasis-open.org/tc/xacml/v15/draft-xacml-schema-policy-15i.xsd">

<Description>A person may read any record for which he or she is the designated parent or guardian, and for which the patient is under 16 years of age</Description>

<Target>

<Subjects MatchId="function:rfc822Name-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:rfc822Name']" DataType="identifier:rfc822Name"/>

<Attribute DataType="identifier:rfc822Name">@</Attribute>

</Subjects>

<Resources MatchId="function:string-match" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>

<Attribute DataType="xs:anyURI">//medico.com/record.*</Attribute>

</Resources>

<Actions MatchId="function:subset" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>

<Attribute DataType="xs:string">read</Attribute>

</Actions>

</Target>

<Condition FunctionId="function:and" DataType="xs:boolean">

<Function FunctionId="function:string-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/SubjectId" DataType="xs:string"/>

<AttributeDesignator Designator="//xacmlContext/Request/Resource/guardianName" DataType="xs:string"/>

</Function>

<Function FunctionId="function:dayTimeDuration-greater-than" DataType="xs:boolean">

<Function FunctionId="function:date-subtract" DataType="xs:dayTimeDuration">

<AttributeDesignator Designator="//xacmlContext/Other/OtherAttribute/Attribute[@DataType='identifier:today'sDate']" DataType="xs:date"/>

<AttributeDesignator Designator="//xacmlContext/Request/Resource/patient/patientDoB" DataType="xs:date"/>

</Function>

<Attribute DataType="xs:dayTimeDuration">16-0-0</Attribute>

</Function>

</Condition>

</Rule>

3.3.3 Rule 3

Rule 3 illustrates the use of an obligation. The XACML <Rule> element syntax does not include an element suitable for carrying an obligation, therefore Rule 3 has to be formatted as a <PolicyStatement> element, which is a type of SAML assertion.

<?xml version="1.0" encoding="UTF-8"?>

<saml:Assertion MajorVersion="0" MinorVersion="24" AssertionID="A7F34K90" Issuer="medico.com" IssueInstant="2002-03-22T08:23:47-05:00">

<PolicyStatement PolicyId="//medico.com/rules/policy3" RuleCombiningAlgId="//www.oasis-open.org/committees/xacml/docs/ruleCombiningAlgorithms/DenyOverrides" xmlns="urn:oasis:names:tc:xacml:0.15i:policy" xmlns:function="urn:oasis:names:tc:xacml:0.15i:function" xmlns:identifier="urn:oasis:names:tc:xacml:0.15i:identifier" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.15i:policy

http://www.oasis-open.org/tc/xacml/v15/draft-xacml-schema-policy-15i.xsd">

<Description>A physician may write any medical element for which he or she is the designated primary care physician, provided an email is sent to the patient</Description>

<Target>

<Subjects MatchId="function:string-match" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:role']" DataType="xs:string"/>

<Attribute DataType="xs:string">physician</Attribute>

</Subjects>

<Resources MatchId="function:string-match" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>

<Attribute DataType="xs:anyURI">//medico.com/record/medical.*</Attribute>

</Resources>

<Actions MatchId="function:subset" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>

<Attribute DataType="xs:string">write</Attribute>

</Actions>

</Target>

<RuleSet>

<Rule RuleId="//medico.com/rules/rule3" Effect="Permit">

<Description>A physician may write any medical element for which he or she is the designated primary care physician</Description>

<Condition FunctionId="function:and" DataType="xs:boolean">

<Function FunctionId="function:string-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/SubjectId" DataType="xs:string"/>

<AttributeDesignator Designator="//xacmlContext/Request/Resource/physicianName" DataType="xs:string"/>

</Function>

<Function FunctionId="function:present" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/patient/email" DataType="xs:string"/>

</Function>

</Condition>

</Rule>

</RuleSet>

<Obligations>

<Obligation ObligationId="//medico.com/emailer" FulfilOn="Permit">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/patient/email" DataType="xs:string"/>

<AttributeAssignment DataType="xs:string" AttributeId="//medico.com/text">Your medical record has been accessed by:</AttributeAssignment>

<AttributeDesignator Designator="//xacmlContext/Request/Subject/SubjectId" DataType="xs:string"/>

</Obligation>

</Obligations>

</PolicyStatement>

</saml:Assertion>

3.3.4 Rule 4

Rule 4 illustrates the use of the "Deny" effect value, and a rule with no <Condition> element.

<?xml version="1.0" encoding="UTF-8"?>

<Rule RuleId="//medico.com/rules/rule4" Effect="Deny" xmlns="urn:oasis:names:tc:xacml:0.15i:policy" xmlns:function="urn:oasis:names:tc:xacml:0.15i:function" xmlns:identifier="urn:oasis:names:tc:xacml:0.15i:identifier" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.15i:policy

http://www.oasis-open.org/tc/xacml/v15/draft-xacml-schema-policy-15i.xsd">

<Description>An administrator shall not be permitted to read or write medical elements of a patient record</Description>

<Target>

<Subjects MatchId="function:string-match" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:role']" DataType="xs:string"/>

<Attribute DataType="xs:string">adminstrator</Attribute>

</Subjects>

<Resources MatchId="function:anyURI-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>

<Attribute DataType="xs:anyURI">//medico.com/record/medical.*</Attribute>

</Resources>

<Actions MatchId="function:subset" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>

<Attribute DataType="xs:string">read write</Attribute>

</Actions>

</Target>

</Rule>

4 Models (non-normative)

The context and schema of XACML are described in two models. These models are: the data-flow model and the policy language model. They are described in the following sub-sections.

4.1 Data-flow model

The major actors in the XACML domain are shown in the data-flow diagram of Figure 1.

[image: image2.wmf]PEP

PDP

2. request

context

PRP

4. policy

PIP

5. attribute

query

8. response

context

3. target

7. attribute

environment

resource

subject

6a. attribute

6c. attribute

6b. attribute

PAP

1. policy

obligations

service

9. obligations

Figure 1 - Data-flow diagram
Note: some of the data-flows shown in the diagram may be facilitated by a repository. For instance, the communications between the PDP and the PIP or the communications between the PDP and the PRP or the communication between the PAP and the PRP may be facilitated by a repository. The XACML specification is not intended to place restrictions on the location of any such repository, or indeed to prescribe a particular communication protocol for any of the data-flows.

The model operates by the following steps.

1. PAPs write policies and make them available to the PRP. From the point of view of an individual PAP, its policies represent the complete policy for a particular target. However, the PDP may be aware of other PAPs that it considers authoritative for the same target. In which case, it is the PDP's job to obtain all the policies and combine them in accordance with a policy-combining algorithm. The result should be a self-consistent policy set.

2. The PEP sends request ciontext to the PDP, perhaps in the form of a SAML [SAML] request. The request context contains some or all of the attributes required by the PDP to render an authorization decision, in accordance with applicable policy. The decision request and all attributes relevant to that request are converted to an XACML input context (“xacmlContext:request”) by the PDP or by another entity that it trusts to do this conversion.

3. The PDP locates and retrieves the policy applicable to the request context from the PRP.

4. The PRP returns the applicable policy to the PDP in the form of an XACML <PolicyStatement> or <PolicySetStatement>. The PDP ensures that the input context is in the scope of the <PolicyStatement> or <PolicySetStatement>.

5. The PDP examines the authorization input context and the policy to ascertain whether it has all the attribute values required to render an authorization decision. If it does not, then it requests attributes from suitable PIPs, perhaps in the form of SAML requests of the attribute query type [SAML].

6. The PIP (which may be a SAML attribute authority) locates and retrieves the requested attributes from other systems by a means, and in a form, that is out of scope for this specification.

7. The PIP returns the requested attributes to the PDP, perhaps in the form of SAML responses containing SAML attribute assertions. The PDP (or another trusted entity) incorporates these attribute values into the input context and evaluates the policy with respect to this input context. The result of this evaluation is a decision encoded in an output context (“xacmlContext:response”) document. The response context is converted to an authorization decision protocol message by the PDP or by another entity trusted to do that conversion.

8. If the policy were to evaluate to TRUE, then the PDP returns a response context, perhaps in the form of a SAML response, to the PEP containing the "Permit" saml:Decision attribute and (optional) obligations.

9. The PEP fulfills the obligations.

The input context and output contexts are the environment-agnostic inputs/outputs for an XACML-conformant PDP. For any specific environment (e.g., SAML, J2SE, CORBA) conversion processes will be needed to transform from the environment-specific inputs to the xacmlContext:request, and from the xacmlContext:response to the environment-specific outputs. These conversions may be done by the PDP or by another entity. Having them done by another entity ensures that a given PDP implementation may be deployed in any environment without modification.

4.2 XACML Context

XACML is designed to be applicable to a variety of application environments. The core language is insulated from the application environment by the XACML context. The XACML context is an XML schema describing a canonical representation for the inputs and outputs of the PDP. Attributes referenced by an instance of XACML SHALL be in the form of XPath expressions on the context. Implementations must convert between the attribute representations in the application environment (e.g., SAML, J2SE, CORBA, and so on) and the attribute representations in the XACML context. How this is achieved is outside the scope of the XACML specification. In some cases, such as SAML, this conversion may be accomplished in an automated way through the use of an XSLT transformation.

[image: image3.wmf]domain-specific

inputs

domain-specific

outputs

xacmlContext/

request.xml

xacmlContext/

response.xml

PDP

xacml.xml

Figure 2 - Context

4.3 Policy language model

The policy language model is shown in Figure 3. The main components of the model are:

· Rule;

· Policy statement; and

· Policy set statement.

These are described in the following sub-sections.

[image: image4.wmf]1

*

1

*

1

*

condition

action

resource

subject

1

*

target

1

1

function

1

*

rule

1

1

effect

1

1

1

*

1

*

policy statement

1

*

attribute

1

*

policy set statement

obligations

1

1

1

1

1

1

1

1

1

*

1

*

Figure 3 - Policy language model
4.3.1 Rule

The main components of a rule are:

· a target;

· an effect; and

· a condition.

These are discussed in the following sub-sections.

4.3.1.1 Target

The target defines the set of:

· resources;

· subjects; and

· actions
to which the rule is intended to apply. If the rule is intended to apply to all entities of a particular type, then the target definition is the root of the applicable name space. An XACML PDP verifies that the resources, subjects and actions identified in the request context are each included in the target of the rules that it uses to evaluate the decision request. Target definitions are discrete, in order that they may be indexed by the PDP.

4.3.1.2 Effect

The effect indicates the rule-writer's intended consequence of a true evaluation for the rule. Two values are allowed: permit and deny.

4.3.1.3 Condition

Condition is a general expression of predicates of attributes. It should not duplicate the exact predicates implied by the target. Therefore, it may be null.

4.3.1.4 Rule evaluation

A rule has a value that can be calculated by evaluating its contents. Rule evaluation involves separate evaluation of the rule's target and condition. The rule truth table is shown in Table 1.

Target
Condition
 Rule

Match
True
Effect

Match
False
Not applicable

Match
Indeterminate
Indeterminate

No-match
True
Not applicable

No-match
False
Not applicable

No-match
Indeterminate
Not applicable

Table 1 - Rule truth table
The target value is Match if the resource, subject and action specified in the request context are each in the target defined in the rule. Otherwise, its value is No-match.

The condition value is True if the <Condition> element is null, or if it evaluates True for the attribute values supplied in, or referenced by, the request context. Its value is False if the <Condition> element evaluates False for the attribute values supplied in, or referenced by, the request context. If any attribute value referenced in the condition cannot be obtained, then the condition evaluates Indeterminate.

4.3.2 Policy statement

From the data-flow model one can see that rules are not exchanged amongst system entities. Therefore, a PAP combines rules in a policy. A policy comprises four main components:

· a target;

· a rule-combining algorithm-identifier;

· a set of rules; and

· obligations.

4.3.2.1 Target

The target of a policy must include all the decision requests that it is intended to evaluate. The target may be declared by the writer of the policy, or computed from the targets of its component rules.

If the target of the policy statement is computed from the targets of the component rules, two approaches are permitted:

· the target of the policy may be the union of the target definitions for resource, subject and action that are contained in the component rules; or

· the target of the policy may be the intersection of the target definitions for resource, subject and action that are contained in the component rules.

In the former case, the target may be omitted from the individual rules, and the targets from the component rules must be included in the form of conditions in their respective rules. As an example, the following rule target and condition may be merged in a single condition.

<Target>

<Subjects MatchId="function:rfc822Name-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:rfc822Name']" DataType="identifier:rfc822Name"/>

<Attribute DataType="identifier:rfc822Name">@</Attribute>

</Subjects>

<Resources MatchId="function:string-match" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>

<Attribute DataType="xs:anyURI">//medico.com/record.*</Attribute>

</Resources>

<Actions MatchId="function:subset" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>

<Attribute DataType="xs:string">read</Attribute>

</Actions>

</Target>

<Condition FunctionId="function:string-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:patientName']" DataType="xs:string"/>

<AttributeDesignator Designator="//xacmlContext/Request/Resource/patientName" DataType="xs:string"/>

</Condition>

Following is the merged condition.

<Condition FunctionId="function:and" DataType="xs:boolean">

<Function FunctionId="function:string-match" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>

<Attribute DataType="xs:anyURI">//medico.com/record.*</Attribute>

</Function>

<Function FunctionId="function:subset" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>

<Attribute DataType="xs:string">read</Attribute>

</Function>

<Function FunctionId="function:string-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:patientName']" DataType="xs:string"/>

<AttributeDesignator Designator="//xacmlContext/Request/Resource/patientName" DataType="xs:string"/>

</Function>

</Condition>

In the case where the policy target is computed as the intersection of the targets of the individual rules, the targets may be omitted from the individual rules.

In the case that a rule target is present, the rule is evaluated according to the truth table of Table 1.

4.3.2.2 Rule-combining algorithm

The rule-combining algorithm specifies the algorithm by which the results of evaluating the component rules are combined, when evaluating the policy.

The result of evaluating the policy is defined by the rule-combining algorithm. In the case that the PDP uses a policy to determine its response to a decision request, the saml:Decision value is the value of the policy, as defined by the rule-combining algorithm.

See Section 8.5 for an example of a rule-combining algorithm.

4.3.2.3 Obligations

The XACML <Rule> syntax does not contain an element suitable for carrying obligations, therefore, if required in a policy, obligations must be added by the writer of the policy.

When a PDP evaluates a policy containing obligations, it returns certain of those obligations to the PEP in its response context. The obligations that it returns to the PEP are those whose xacml:FulfilOn attributes have the same value as the result of evaluating the policy.

4.3.2.4 Example policy statement

This section uses the example of Section 3 to illustrate the process of combining rules. The policy governing read access to medical elements of a record is formed from each of the four rules. In plain language, the combined rule is:

· Either the requestor is the patient; or

· the requestor is the parent or guardian and the patient is under 16; or

· the requestor is the primary care physician and a notification is sent to the patient; and

· the requestor is not an administrator.

The following XACML <PolicyStatement> illustrates the combined rules. Rules 1 and 4 are included by reference, rule 2 is included as a digest, and rule 3 is explicitly included.

<?xml version="1.0" encoding="UTF-8"?>

<saml:Assertion MajorVersion="0" MinorVersion="28" AssertionID="A7F34K90" Issuer="medico.com" IssueInstant="2002-03-22T08:23:47-05:00">

<PolicyStatement PolicyId="//medico.com/rules/policy5" RuleCombiningAlgId="urn:oasis:names:tc:XACML:identifier:ruleCombiningAlgorithms:denyOverrides" xmlns="urn:oasis:names:tc:xacml:0.15i:policy" xmlns:function="urn:oasis:names:tc:xacml:0.15i:function" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:0.15i:policy

D:\MYDOCU~1\Standards\XACML\v15\draft-xacml-schema-policy-15i.xsd">

<Target>

<Subjects MatchId="function:superset" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/Attribute[@DataType='identifier:role']" DataType="xs:string"/>

<Attribute DataType="xs:string"></Attribute>

</Subjects>

<Resources MatchId="function:anyURI-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/@ResourceURI" DataType="xs:anyURI"/>

<Attribute DataType="xs:anyURI">//medico.com/record/medical.*</Attribute>

</Resources>

<Actions MatchId="function:subset" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Action[@Namespace=]" DataType="xs:string"/>

<Attribute DataType="xs:string">read</Attribute>

</Actions>

</Target>

<RuleSet>

<RuleDesignator>

<RuleId>//medico.com/rules/rule1</RuleId>

</RuleDesignator>

<RuleDesignator>

<RuleDigest Base64Digest="H7jiE0+jwkn63k/JhB3+D9aI4V3J9z/o0"/>

</RuleDesignator>

<Rule RuleId="//medico.com/rules/rule3" Effect="Permit">

<Description>A physician may write any medical element for which he or she is the designated primary care physician</Description>

<Condition FunctionId="function:and" DataType="xs:boolean">

<Function FunctionId="function:string-equal" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Subject/SubjectId" DataType="xs:string"/>

<AttributeDesignator Designator="//xacmlContext/Request/Resource/physicianName" DataType="xs:string"/>

</Function>

<Function FunctionId="function:present" DataType="xs:boolean">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/patient/email" DataType="xs:string"/>

</Function>

</Condition>

</Rule>

<RuleDesignator>

<RuleId>//medico.com/rules/rule4</RuleId>

</RuleDesignator>

</RuleSet>

<Obligations>

<Obligation ObligationId="//medico.com/emailer" FulfilOn="Permit">

<AttributeDesignator Designator="//xacmlContext/Request/Resource/patient/email" DataType="xs:string"/>

<AttributeAssignment DataType="xs:string" AttributeId="//medico.com/text">Your medical record has been accessed by:</AttributeAssignment>

<AttributeDesignator Designator="//xacmlContext/Request/Subject/SubjectId" DataType="xs:string"/>

</Obligation>

</Obligations>

</PolicyStatement>

</saml:Assertion>

4.3.3 Policy set statement

A policy set comprises four main components:

· a target;

· a set of policy statements;

· obligations; and

· a policy-combining algorithm-identifier.

The target and policy statement components are to be interpreted as described above.

4.3.3.1 Obligations

The writer of a policy set statement MAY add obligations to the policy set, in addition to those contained in the component policies and policy sets.

4.3.3.2 Policy-combining algorithm

The policy-combining algorithm is the algorithm by which the results of evaluating the component policies are combined to form the value of the policy set. In the case that the PDP uses a policy set to determine its response to a decision request, the saml:Decision value is the result of evaluating the policy set.

When a PDP evaluates a policy set containing obligations, it returns certain of those obligations to the PEP in its response context. The XACML <obligation> elements that are returned to the PEP are those whose xacml:FulfilOn attributes have the same value as the result of evaluating the policy set.

As a consequence of this procedure, no obligations are returned to the PEP if the policies from which they are drawn are not evaluated or their evaluated result is Indeterminate or Not applicable.

See Section 8.8 for an example of a policy-combining algorithm.

5 Policy syntax (normative, with the exception of the schema fragments)

5.1 Element <PolicySetStatement>

The <PolicySetStatement> element is a top-level element in the XACML schema.

<xs:element name="PolicySetStatement" type="xacml:PolicySetStatementType"/>

5.2 Element <PolicyStatement>

The <PolicyStatement> element is a top-level element in the XACML schema.

<xs:element name="PolicyStatement" type="xacml:PolicyStatementType"/>

5.3 Element <Rule>

The <Rule> element is a top-level element in the XACML schema.

<xs:element name="Rule" type="xacml:RuleType"/>

5.4 Complex type PolicySetStatementType

Elements of type PolicySetStatementType extend the saml:StatementAbstractType so that they MAY be included in a <saml:Assertion> element. The <saml:Assertion> element contains some policy meta-data, such as the identity of the PAP that issued the policy set statement and the date and time at which it was issued.

The main elements of this type definition are the <Target>, <PolicySet> and <Obligations> elements and the policyCombiningAlgId attribute. The <PolicySet> element SHALL contain references to the set of policies that are to be combined in the policy set. The <Target> element MAY be declared by the creator of elements of this type, or it MAY be computed from the <Target> elements of the referenced <PolicyStatement> elements, either as an intersection or as a union. The <Obligations> element SHALL contain the set of <Obligation> elements that MUST be discharged by the PEP. The PolicyCombiningAlgId attribute SHALL contain a identifier of the policy-combining algorithm by which the referenced <PolicyStatement> elements MUST be combined.

An instance of this type MAY be referenced by its PolicySetId attribute value.

<xs:complexType name="PolicySetStatementType">

<xs:complexContent>

<xs:extension base="saml:StatementAbstractType">

<xs:sequence>

<xs:element name="Description" type="xs:string" minOccurs="0"/>

<xs:element name="Target" type="xacml:TargetType"/>

<xs:element name="PolicySet" type="xacml:PolicySetType" maxOccurs="unbounded"/>

<xs:element name="Obligations" type="xacml:ObligationsType" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="PolicySetId" type="xs:anyURI" use="required"/>

<xs:attribute name="PolicyCombiningAlgId" type="xs:anyURI" use="required"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

5.5 Complex type PolicyStatementType

Elements of type PolicyStatementType extend the saml:StatementAbstractType so that they MAY be included in a <saml:Assertion> element. The <saml:Assertion> element contains some policy meta-data, such as the identity of the PAP that issued the policy statement and the date and time at which it was issued.

The main elements of this type definition are the <Target>, <RuleSet> and <Obligations> elements and the RuleCombiningAlgId attribute. The <RuleSet> element SHALL contain references to the <Rule> elements that are to be combined in a policy. The <Target> element MAY be declared by the creator of elements of this type, or it MAY be computed from the <Target> elements of the referenced <Rule> elements, either as an intersection or as a union. The <Obligations> element SHALL contain the set of <Obligation> elements that MUST be discharged by the PEP. The RuleCombiningAlgId attribute SHALL contain a reference to the rule-combining algorithm by which the <Rule> elements MUST be combined.

An instance of this type MAY be referenced by its PolicyId attribute value.

<xs:complexType name="PolicyStatementType">

<xs:complexContent>

<xs:extension base="saml:StatementAbstractType">

<xs:sequence>

<xs:element name="Description" type="xs:string" minOccurs="0"/>

<xs:element name="Target" type="xacml:TargetType"/>

<xs:element name="RuleSet" type="xacml:RuleSetType" maxOccurs="unbounded"/>

<xs:element name="Obligations" type="xacml:ObligationsType" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="PolicyId" type="xs:anyURI" use="required"/>

<xs:attribute name="RuleCombiningAlgId" type="xs:anyURI" use="required"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

5.6 Complex type RuleType

The main elements of this type definition are the <Target> and <Condition> elements, and the Effect attribute.

An instance of this type MAY be referenced by its RuleId attribute value.

<xs:complexType name="RuleType">

<xs:sequence>

<xs:element name="Description" type="xs:string" minOccurs="0"/>

<xs:element name="Target" type="xacml:TargetType" minOccurs="0"/>

<xs:element name="Condition" type="xacml:ConditionType" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="RuleId" type="xs:anyURI" use="required"/>

<xs:attribute name="Effect" type="xacml:EffectType" use="required"/>

</xs:complexType>

5.7 Complex type EffectType

This type definition defines the values allowed for the effect of a rule and the circumstances under which an obligation must be performed.

<xs:simpleType name="EffectType">

<xs:restriction base="xacmlContext:DecisionType">

<xs:enumeration value="Permit"/>

<xs:enumeration value="Deny"/>

</xs:restriction>

</xs:simpleType>

5.8 Complex type TargetType

Elements of this type identify the set of decision requests of type xacmlContext:RequestTYpe that the parent element is intended to evaluate. It contains definition for subjects, resources and actions. If the subject, resource and action identified in the request context match the definitions in this element, then the policy MAY be used to evaluate the request. All matches MUST be satisfied. If one or more element in the context satisfies each match, then the match is satisfied.

<xs:complexType name="TargetType">

<xs:sequence>

<xs:element name="Subjects" type="xacml:MatchType" maxOccurs="unbounded"/>

<xs:element name="Resources" type="xacml:MatchType" maxOccurs="unbounded"/>

<xs:element name="Actions" type="xacml:MatchType" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

5.9 Complex type MatchType

Elements of type MatchType identify a set of entities by matching values in the context with values embedded in the policy. The <xacml:AttributeDesignator> element identifies one or more values in the <xacmlContext:Request> element. It MUST contain a URI that is a legal XPath expression over the <xacmlContext:Request>. The <xacml:Attribute> MUST contain a literal value. The types of the two attributes MUST be compatible with the function identified by the MatchId attribute.

<xs:complexType name="MatchType">

<xs:sequence>

<xs:element ref="xacml:AttributeDesignator"/>

<xs:element ref="xacml:Attribute"/>

</xs:sequence>

<xs:attribute name="MatchId" type="xacml:MatchIdType"/>

<xs:attribute name="DataType" type="xs:anyURI" fixed="xs:boolean"/>

</xs:complexType>

5.10 Complex type ObligationsType

Elements of type ObligationsType contain a set of <xacml:Obligation> elements.

<xs:complexType name="ObligationsType">

<xs:sequence>

<xs:element name="Obligation" type="xacml:ObligationType" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

5.11 Complex type ObligationType

Elements of type ObligationType contain an identifier for the obligation and a set of attributes that form arguments of the action defined by the obligation. The FulfilOn attribute indicates the decision value for which this obligation must be fulfilled.

<xs:complexType name="ObligationType">

<xs:choice maxOccurs="unbounded">

<xs:element ref="xacml:AttributeDesignator"/>

<xs:element name="AttributeAssignment" type="xacml:AttributeAssignmentType"/>

</xs:choice>

<xs:attribute name="ObligationId" type="xs:anyURI" use="required"/>

<xs:attribute name="FulfilOn" type="xacml:EffectType" use="required"/>

</xs:complexType>

5.12 Element <Function>

<Function> elements reference a function of type FunctionType.

<xs:element name="Function" type="xacml:FunctionType"/>

5.13 Complex type ConditionType

Elements of type ConditionType are functions whose return type is boolean.

<xs:complexType name="ConditionType">

<xs:complexContent>

<xs:restriction base="xacml:FunctionType">

<xs:choice maxOccurs="unbounded">

<xs:element ref="xacml:Function"/>

<xs:element ref="xacml:Attribute"/>

<xs:element ref="xacml:AttributeDesignator"/>

</xs:choice>

<xs:attribute name="ConditionId" type="xacml:ConditionIdType" use="required"/>

<xs:attribute name="DataType" type="xs:anyURI" fixed="xs:boolean"/>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

5.14 Complex type FunctionType

Elements of type FunctionType define a function. Xacml-defined functions are described in the accompanying table. Function definitions may take any combination of <Function>, <Attribute> and <AttributeDesignator> as arguments. In addition, the function's return type MUST be included in the DataType attribute.

<xs:complexType name="FunctionType">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="xacml:Function"/>

<xs:element ref="xacml:Attribute"/>

<xs:element ref="xacml:AttributeDesignator"/>

</xs:choice>

<xs:attribute name="FunctionId" type="xs:anyURI" use="required"/>

<xs:attribute name="DataType" type="xs:anyURI" use="required"/>

<!-- Legal types for the first and subsequent operands are defined in the accompanying table -->

</xs:complexType>

5.15 Element <Attribute>

<Attribute> elements contain a literal attribute value.

<xs:element name="Attribute" type="xacml:AttributeType"/>

5.16 Complex type AttributeType

Elements of type AttributeType contain a literal attribute value. The type of the value MUST be contained in the DataType attribute. The attribute MAY be of one of the xml:schema embedded types. Alternatively, it MAY be of a structured type defined in some other namespace.

<xs:complexType name="AttributeType">

<xs:complexContent>

<xs:extension base="xs:anyType">

<xs:attribute name="DataType" type="xs:anyURI" use="required"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

5.17 Element <AttributeDesignator>

<AttributeDesignator> elements reference an attribute value in <xacmlContext:Request> by means of an XPath expression. The expected type of the attribute MUST be included in the attributeDesignator.

<xs:element name="AttributeDesignator" type="xacml:AttributeDesignatorType"/>
5.18 Complex type AttributeDesignatorType

Elements of type AttributeDesignatorType reference an attribute value in <xacmlContext:Request>.

<xs:complexType name="AttributeDesignatorType">

<xs:attribute name="Designator" type="xs:anyURI"/>

<xs:attribute name="DataType" type="xs:anyURI" use="required"/>

<!-- Designator must be a legal XPath expression over xacmlContext:Request -->

</xs:complexType>

5.19 Complex type AttributeAssignmentType

Elements of type AttributeAssignmentType contain attribute contents and an AttributeId. The AttributeId is part of attribute meta-data, and is used when an attribute cannot be referenced by its location in <xacmlContext:Request>. This situation may arise in <Obligation>.

<xs:complexType name="AttributeAssignmentType">

<xs:complexContent>

<xs:extension base="xacml:AttributeType">

<xs:attribute name="AttributeId" type="xs:anyURI"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

5.20 Complex type PolicySetType

Elements of type PolicySetType identify a set of policies. Members of the set MAY be identified by any of the following: reference to a <PolicySetStatement> by its PolicySetId attribute, reference to a <PolicyStatement> by its PolicyId attribute, inclusion of a <PolicySetStatement>, inclusion of a <PolicyStatement>, inclusion of a <saml:Assertion> containing a <PolicySetStatement> or inclusion of a <saml:Assertion> containing a <PolicyStatement>. The referenced policies MUST be combined as defined by the policy-combining algorithm identified by the PolicyCombiningAlgId attribute in the parent <PolicySetStatement>.

<xs:complexType name="PolicySetType">

<xs:choice maxOccurs="unbounded">

<xs:element name="PolicySetId" type="xs:anyURI"/>

<xs:element name="PolicyId" type="xs:anyURI"/>

<xs:element ref="xacml:PolicySetStatement"/>

<xs:element ref="xacml:PolicyStatement"/>

<xs:element name="PolicySetAssertion" type="saml:AssertionType"/>

<xs:element name="PolicyAssertion" type="saml:AssertionType"/>

</xs:choice>

</xs:complexType>

5.21 Complex type RuleSetType

Elements of type RuleSetType SHALL contain a set of <Rule> or <RuleDesignator> elements.

<xs:complexType name="RuleSetType">

<xs:choice maxOccurs="unbounded">

<xs:element ref="xacml:Rule"/>

<xs:element name="RuleDesignator" type="xacml:RuleDesignatorType"/>

</xs:choice>

</xs:complexType>

5.22 Complex type RuleDesignatorType

Elements of type RuleDesignatorType SHALL designate a rule by identifier or by digest.

<xs:complexType name="RuleDesignatorType">

<xs:sequence>

<xs:element name="RuleId" type="xs:anyURI" minOccurs="0"/>

<xs:element name="RuleDigest" minOccurs="0">

<xs:complexType>

<xs:attribute name="DigestAlgId" type="xs:string" default="SHA-1"/>

<xs:attribute name="Base64Digest" type="xs:string"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

6 Function names and legal type combinations

6.1 Functions

The table in this section lists the combinations of datatypes for which the various functions. For each function name, the table indicates the valid combination of datatypes and the datatype of the result.

Function Name
Function DataType
First operand DataType
Remaining operands DataType
Operation

function:integer-add
xs:integer
xs:integer
xs:integer
PRIVATE
A + B

function:decimal-add
xs:decimal
xs:decimal
xs:decimal
PRIVATE
A + B

function:add-yearMonthDuration-to-date
xs:date
xs:date
xs:yearMonthDuration
A + B

function:add-yearMonthDuration-to-date
xs:date
xs:date
xs:dayTimeDuration
A + B

function:add-dayTimeDuration-to-time
xs:time
xs:time
xs:dayTimeDuration
A + B

function:add-yearMonthDuration-to-dateTime
xs:dateTime
xs:datetime
xs:yearMonthDuration
A + B

function:add-dayTimeDuration-to-dateTime
xs:dateTime
xs:datetime
xs:dayTimeDuration
A + B

function:add-yearMonthDurations
xs:yearMonthDuration
xs:yearMonthDuration
xs:yearMonthDuration
A + B

function:add-dayTimeDurations
xs:dayTimeDuration
xs:dayTimeDuration
xs:dayTimeDuration
A + B

function:integer-subtract
xs:integer
xs:integer
xs:integer
A - B

function:decimal-subtract
xs:decimal
xs:decimal
xs:decimal
A - B

function:date-subtract
xs:dayTimeDuration
xs:date
xs:date
A - B (only two operands allowed)

function:subtract-yearMonthDuration-from-date
xs:date
xs:date
xs:yearMonthDuration
A - B

function:subtract-dayTimeDuration-from-date
xs:date
xs:date
xs:dayTimeDuration
A - B

function:time-subtract
xs:dayTimeDuration
xs:time
xs:time
A - B (only two operands allowed)

function:subtract-dayTimeDuration-from-time
xs:time
xs:time
xs:dayTimeDuration
A - B

function:datetime-subtract
xs:dayTimeDuration
xs:datetime
xs:datetime
A - B (only two operands allowed)

function:subtract-yearMonthDuration-from-dateTime
xs:dateTime
xs:datetime
xs:yearMonthDuration
A - B

function:subtract-dayTimeDuration-from-dateTime
xs:dateTime
xs:datetime
xs:dayTimeDuration
A - B

function:subtract-yearMonthDurations
xs:yearMonthDuration
xs:yearMonthDuration
xs:yearMonthDuration
A - B

function:subtract-dayTimeDurations
xs:dayTimeDuration
xs:dayTimeDuration
xs:dayTimeDuration
A - B

function:integer-multiply
xs:integer
xs:integer
xs:integer
A * B

function:decimal-multiply
xs:decimal
xs:decimal
xs:decimal
A * B

function:multiply-yearMonthDurations
xs:yearMonthDuration
xs:yearMonthDuration
xs:decimal
A * B

function:multiply-dayTimeDurations
xs:dayTimeDuration
xs:dayTimeDuration
xs:decimal
A * B

function:integer-divide
xs:integer
xs:integer
xs:integer
A div B

function:decimal-divide
xs:decimal
xs:decimal
xs:decimal
A div B

function:divide-yearMonthDurations
xs:yearMonthDuration
xs:yearMonthDuration
xs:decimal
A div B

function:divide-dayTimeDurations
xs:dayTimeDuration
xs:dayTimeDuration
xs:decimal
A div B

function:integer-mod
xs:integer
xs:integer
xs:integer
A mod B

function:decimal-mod
xs:decimal
xs:decimal
xs:decimal
A mod B

function:round
xs:integer
xs:decimal

function:integer
xs:integer
xs:decimal

function:decimal
xs:decimal
xs:integer

function:integer-equal
xs:boolean
xs:integer
xs:integer
A eq B

function:decimal-equal
xs:boolean
xs:decimal
xs:decimal
A eq B

function:boolean-equal
xs:boolean
xs:boolean
xs:boolean
A eq B

function:string-equal
xs:boolean
xs:string
xs:string
A eq B

function:rfc822Name-equal
xs:boolean
Identifier:rfc822Name
Identifier:rfc822Name
A eq B

function:x500Name-equal
xs:boolean
Identifier:x500Name
Identifier:x500Name
A eq B

function:date-equal
xs:boolean
xs:date
xs:date
A eq B

function:time-equal
xs:boolean
xs:time
xs:time
A eq B

function:datetime-equal
xs:boolean
xs:dateTime
xs:dateTime
A eq B

function:yearMonthDuration-equal
xs:boolean
xs:yearMonthDuration
xs:yearMonthDuration
A eq B

function:dayTimeDuration-equal
xs:boolean
xs:dayTimeDuration
xs:dayTimeDuration
A eq B

function:gregorian-equal
xs:boolean
Gregorian
Gregorian
A eq B

function:hex-binary-equal
xs:boolean
xs:hexBinary
xs:hexBinary
A eq B

function:base64-binary-equal
xs:boolean
xs:base64Binary
xs:base64Binary
A eq B

function:anyURI-equal
xs:boolean
xs:anyURI
xs:anyURI
A eq B

function:QName-equal
xs:boolean
xs:QName
xs:QName
A eq B

function:NOTATION-equal
xs:boolean
xs:NOTATION
xs:NOTATION
A eq B

function:numeric-not-equal
xs:boolean
numeric
numeric
A ne B

function:boolean-not-equal
xs:boolean
xs:boolean
xs:boolean
A ne B

function:string-not-equal
xs:boolean
xs:string
xs:string
A ne B

function:date-not-equal
xs:boolean
xs:date
xs:date
A ne B

function:time-not-equal
xs:boolean
xs:time
xs:time
A ne B

function:datetime-not-equal
xs:boolean
xs:dateTime
xs:dateTime
A ne B

function:yearMonthDuration-not-equal
xs:boolean
xs:yearMonthDuration
xs:yearMonthDuration
A ne B

function:dayTimeDuration-not-equal
xs:boolean
xs:dayTimeDuration
xs:dayTimeDuration
A ne B

function:gregorian-not-equal
xs:boolean
Gregorian
Gregorian
A ne B

function:hex-binary-not-equal
xs:boolean
xs:hexBinary
xs:hexBinary
A ne B

function:base64-binary-not-equal
xs:boolean
xs:base64Binary
xs:base64Binary
A ne B

function:anyURI-not-equal
xs:boolean
xs:anyURI
xs:anyURI
A ne B

function:QName-not-equal
xs:boolean
xs:QName
xs:QName
A ne B

function:NOTATION-not-equal
xs:boolean
xs:NOTATION
xs:NOTATION
A ne B

function:integer-greater-than
xs:boolean
xs:integer
xs:integer
A gt B

function:decimal-greater-than
xs:boolean
xs:decimal
xs:decimal
A gt B

function:boolean-greater-than
xs:boolean
xs:boolean
xs:boolean
A gt B

function:string-greater-than
xs:boolean
xs:string
xs:string
A gt B

function:date-greater-than
xs:boolean
xs:date
xs:date
A gt B

function:time-greater-than
xs:boolean
xs:time
xs:time
A gt B

function:datetime-greater-than
xs:boolean
xs:dateTime
xs:dateTime
A gt B

function:yearMonthDuration-greater-than
xs:boolean
xs:yearMonthDuration
xs:yearMonthDuration
A gt B

function:dayTimeDuration-greater-than
xs:boolean
xs:dayTimeDuration
xs:dayTimeDuration
A gt B

function:integer-less-than
xs:boolean
xs:integer
xs:integer
A lt B

function:decimal-less-than
xs:boolean
xs:decimal
xs:decimal
A lt B

function:boolean-less-than
xs:boolean
xs:boolean
xs:boolean
A lt B

function:string-less-than
xs:boolean
xs:string
xs:string
A lt B

function:date-less-than
xs:boolean
xs:date
xs:date
A lt B

function:time-less-than
xs:boolean
xs:time
xs:time
A lt B

function:datetime-less-than
xs:boolean
xs:dateTime
xs:dateTime
A lt B

function:yearMonthDuration-less-than
xs:boolean
xs:yearMonthDuration
xs:yearMonthDuration
A lt B

function:dayTimeDuration-less-than
xs:boolean
xs:dayTimeDuration
xs:dayTimeDuration
A lt B

function:integer-greater-than-or-equal
xs:boolean
xs:integer
xs:integer
A ge B

function:decimal-greater-than-or-equal
xs:boolean
xs:decimal
xs:decimal
A ge B

function:string-greater-than-or-equal
xs:boolean
xs:string
xs:string
A ge B

function:date-greater-than-or-equal
xs:boolean
xs:date
xs:date
A ge B

function:time-greater-than-or-equal
xs:boolean
xs:time
xs:time
A ge B

function:datetime-greater-than-or-equal
xs:boolean
xs:dateTime
xs:dateTime
A ge B

function:yearMonthDuration-greater-than-or-equal
xs:boolean
xs:yearMonthDuration
xs:yearMonthDuration
A ge B

function:dayTimeDuration-greater-than-or-equal
xs:boolean
xs:dayTimeDuration
xs:dayTimeDuration
A ge B

function:integer-less-than-or-equal
xs:boolean
xs:integer
xs:integer
A le B

function:decimal-less-than-or-equal
xs:boolean
xs:decimal
xs:decimal
A le B

function:numeric-less-than-or-equal
xs:boolean
xs:string
xs:string
A le B

function:date-less-than-or-equal
xs:boolean
xs:date
xs:date
A le B

function:time-less-than-or-equal
xs:boolean
xs:time
xs:time
A le B

function:datetime-less-than-or-equal
xs:boolean
xs:dateTime
xs:dateTime
A le B

function:yearMonthDuration-less-than-or-equal
xs:boolean
xs:yearMonthDuration
xs:yearMonthDuration
A le B

function:dayTimeDuration-less-than-or-equal
xs:boolean
xs:dayTimeDuration
xs:dayTimeDuration
A le B

function:string-match
xs:boolean
xs:string
xs:string

function:and
xs:boolean
xs:boolean
xs:boolean
A & B

function:or
xs:boolean
xs:boolean
xs:boolean
A | B

function:ordered-or
xs:boolean
xs:boolean
xs:boolean
A | B

function:n-of
xs:boolean
numeric
xs:boolean

function:not
xs:boolean
xs:boolean

(only one operand allowed)

function:present
xs:boolean
xs:anyURI

function:subset
xs:boolean
xs:list
xs:list

function:superset
xs:boolean
xs:list
xs:list

function:non-null-set-intersection
xs:boolean
xs:list
xs:list

7 Context syntax (normative, with the exception of the schema fragments)

7.1 Element <Request>

The <Request> element is a top-level element in the XACML context schema.

<xs:element name="Request" type="xacmlContext:RequestType"/>

7.2 Element <Response>

The <Resonse> element is a top-level element in the XACML context schema.

<xs:element name="Response" type="xacmlContext:ResponseType"/>

7.3 Complex type RequestType

Elements of type RequestType contain the data required by the PDP in order to render a decision. This includes information about the subjects, resource and actions, as well as environmental information that pertains to none of these.

<xs:complexType name="RequestType">

<xs:sequence>

<xs:element name="Subject" type="xacmlContext:SubjectType" maxOccurs="unbounded"/>

<xs:element name="Resource" type="xacmlContext:ResourceType"/>

<xs:element name="Action" type="xacmlContext:ActionType" maxOccurs="unbounded"/>

<xs:element name="Environment" type="xacmlContext:EnvironmentType" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

7.4 Complex type ResponseType

Elements of type ResponseType contain one or more results of a policy evlaution.

<xs:complexType name="ResponseType">

<xs:sequence>

<xs:element name="Result" type="xacmlContext:ResultType" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

7.5 Complex type ResultType

Elements of type ResultType contain information related to a single decision, including the value of the decision, the resource to which it relates, and any obligations and advice associated with the decision.

<xs:complexType name="ResultType">

<xs:sequence>

<xs:element name="Decision" type="xacmlContext:DecisionType"/>

<xs:element name="ResourceId" type="xs:string" minOccurs="0"/>

<xs:element name="Obligations" type="xacml:ObligationsType" minOccurs="0"/>

<xs:element name="Advice" type="xacmlContext:AdviceType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

7.6 Complex type SubjectType

Elements of type SubjectType identify a subject of a request context by means of an identifier or a key. Optionally, attributes of the subject MAY be provided and information relating to the PEP's authentication of the subject MAY be supplied.

<xs:complexType name="SubjectType">

<xs:sequence>

<xs:choice minOccurs="0">

<xs:element name="SubjectId" type="xacmlContext:SubjectIdType"/>

<xs:element ref="ds:KeyInfo"/>

</xs:choice>

<xs:element name="SubjectAttribute" type="xacmlContext:AttributeType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="AuthenticationInfo" type="xacmlContext:AuthenticationInfoType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="SubjectCategory" type="xs:anyURI" default="identifier:AccessSubject"/>

</xs:complexType>

7.7 Complex type SubjectIdType

Elements of type SubjectIdType contain information that identifies a subject. The identifier itself is a string. However, Format and Qualifier attributes are included to assist with the interpretation of the string. The Format attribute indicates the name-form of the identifier and hence the function by which it MUST be matched. (Note: why not call this "DataType", to be consistent throughout?) The qualifier indicates the security or administrative domain that qualifies the name of the subject. It provides a means to federate names from disparate user stores without collision. (Note: Why isn't this a name, with an accompanying DataType? Why isn't it a list of names?).

<xs:complexType name="SubjectIdType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="Format" type="xs:anyURI" use="optional"/>

<xs:attribute name="Qualifier" type="xs:string" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

7.8 Complex type AuthenticationInfoType

Elements of this type contain information related to the PEP's authentication of the subject.

<xs:complexType name="AuthenticationInfoType">

<xs:attribute name="Method" type="xs:anyURI" use="optional"/>

<xs:attribute name="Instant" type="xs:dateTime" use="optional"/>

</xs:complexType>

7.9 Complex type AttributeType

Elements of this type contain an attribute and attribute meta-data. It extends the xacml definition of attribute with an AttributeId, and Issuer identity and an IssueInstant.

<xs:complexType name="AttributeType">

<xs:complexContent>

<xs:extension base="xacml:AttributeType">

<xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>

<xs:attribute name="Issuer" type="xs:anyURI" use="optional"/>

<xs:attribute name="IssueInstant" type="xs:dateTime" use="optional"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

7.10 Complex type ResourceType

Elements of this type contain information about the resource for which access is being requested. It MAY contain any combination of <ResourceSpecifier>, <ResourceContent> and <ResourceAttribute> elements. If present, the <ResourceAttribute> elements contain a an attribute of the resource.

<xs:complexType name="ResourceType">

<xs:sequence>

<xs:element name="ResourceSpecifier" type="xacmlContext:ResourceSpecifierType" minOccurs="0"/>

<xs:element name="ResourceContent" type="xacmlContext:ResourceContentType" minOccurs="0"/>

<xs:element name="ResourceAttribute" type="xacmlContext:AttributeType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

7.11 Complex type ResourceSpecifierType

Elements of this type SHALL contain a ResourceId. This is in the form of a string. Interpretation of the string depends upon the value of the Format attribute. (Note: Perhaps the format attribute should be required). The scope attribute is used in the case where the resource is structured as a hierarchy. It indicates which part of the resource the decision request applies to.

<xs:complexType name="ResourceSpecifierType">

<xs:attribute name="Format" type="xs:anyURI" use="optional"/>

<xs:attribute name="Scope" type="xacmlContext:SpecifierScopeType" use="optional"/>

<xs:attribute name="ResourceId" type="xs:string" use="required"/>

</xs:complexType>

7.12 Complex type SpecifierScopeType

Elements of this type indicate which part of a resource a decision request applies to. The value Immediate indicates the request applies just to the node of the resource identified by the ResourceId in the parent element. The Children value indicates that the request applies to the node identified in the parent element and its immediate children. The Descendants value indicates that the request applies to the node identified in the parent element and all its descendants.

<xs:simpleType name="SpecifierScopeType">

<xs:restriction base="xs:string">

<xs:enumeration value="Immediate"/>

<xs:enumeration value="Children"/>

<xs:enumeration value="Descendants"/>

</xs:restriction>

</xs:simpleType>

7.13 Complex type ResourceContentType

Elements of this type contain the resource to which access is requested.

<xs:complexType name="ResourceContentType">

<xs:sequence>

<xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:anyAttribute namespace="##any" processContents="lax"/>

</xs:complexType>

7.14 Complex type ActionType

Elements of type ActionType contain a specification of the requested actions (Note: should this be of type xs:list? It would mean that an individual action could not contain whitespace).

<xs:complexType name="ActionType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="Namespace" type="xs:anyURI"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

7.15 Complex type DecisionType

Elements of type DecisionType contain the result of policy evaluation.

<xs:simpleType name="DecisionType">

<xs:restriction base="xs:string">

<xs:enumeration value="Permit"/>

<xs:enumeration value="Deny"/>

<xs:enumeration value="Indeterminate"/>

</xs:restriction>

</xs:simpleType>

7.16 Complex type EnvironmentType

Elements of type EnvironmentType contain a set of attributes of the environment. These attributes MAY form part of policy evaluation.

<xs:complexType name="EnvironmentType">

<xs:sequence>

<xs:element name="EnvironmentAttribute" type="xacmlContext:AttributeType" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

7.17 Complex type AdviceType

Elements of type AdviceType contain information that MAY be used by the PEP. (Note: if we don't have a specific use for this, why don't we leave it out in this version? Users of the specification will still be able to extend the response schema to include advice, if they have a definite need for it).

<xs:complexType name="AdviceType">

<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="AdviceId" type="xs:anyURI"/>

</xs:complexType>

</xs:schema>

8 XACML identifiers (normative)

This section defines standard identifiers for commonly-used entities. All XACML-defined identifiers have the common base:

urn:oasis:names:tc:XACML:identifier

8.1 Access Subject

The identifier for the system entity that is requesting access.

urn:oasis:names:tc:xacml:identifier:AccessSubject

8.2 Time of day

8.3 Attributes

XACML-defined attributes are represented by an element of type <saml:AttributeDesignatorType>. It has two attributes: AttributeNamespace and AttributeName. All XACML-defined attributes have the following value for AttributeNamespace:

urn:oasis:names:tc:XACML:identifier:attributes/

8.3.1 Role

urn:oasis:names:tc:XACML:identifier:attributes/role

8.3.2 RFC822 Name

RFC822 name attributes have the following value of AttributeName:

urn:oasis:names:tc:XACML:identifier:rfc822Name

8.3.3 X.500 distinguished name

X.500 distinguished name attributes have the following value of AttributeName:

urn:oasis:names:tc:XACML:identifier:x500Name

8.3.4 Unix file-system path

UNIX file-system path attributes have the following value of AttributeName:

urn:oasis:names:tc:XACML:identifier:attribute:UFS

8.3.5 Uniform resource identifier

Uniform resource identifier attributes have the following value of AttributeName:

urn:oasis:names:tc:XACML:identifier:attribute:URI

8.4 Authentication locality

8.5 Deny-overrides rule-combining algorithm

The deny-overrides rule-combining algorithm has the following value for ruleCombiningAlgId:

urn:oasis:names:tc:XACML:identifier:ruleCombiningAlgorithms:denyOverrides

8.6 Deny-overrides policy-combining algorithm

The deny-overrides policy-combining algorithm has the following value for policyCombiningAlgId:

urn:oasis:names:tc:XACML:identifier:policyCombiningAlgorithms:denyOverrides

8.7 Permit-overrides rule-combining algorithm

The permit-overrides rule-combining algorithm has the following value for ruleCombiningAlgId:

urn:oasis:names:tc:XACML:identifier:ruleCombiningAlgorithms:permitOverrides

8.8 Permit-overrides policy-combining algorithm

The permit-overrides policy-combining algorithm has the following value for policyCombiningAlgId:

urn:oasis:names:tc:XACML:identifier:policyCombiningAlgorithms:permitOverrides

9 Combining algorithms (normative)

This section contains a description of the rule-combining and policy-combining algorithms specified by XACML.

9.1 Deny-overrides

The following is a specification for the "deny-overrides" rule-combining algorithm. The identifier for this algorithm is given in Section 8.5.

In the entire set of rules to be evaluated, if any of the rules evaluates to “deny”, then the rule combination is defined to evaluate to “deny” (that is, “deny” takes precedence, regardless of how many rules evaluate to “permit”, and causes the whole combination to return “deny”). Any rule that evaluates to “indeterminate” (that is, its return status cannot be determined for any reason) has the same effect as a “deny” in that it causes the combination to return “deny”. Finally, if none of the rules are found to be applicable to the request, the rule combination returns “notApplicable”.

What follows is a pseudocode representation of how the above specification MAY be implemented. This is provided for illustrative and explanatory purposes.

effect policy(rule[]){

atLeastOnePermit = false;

for(i=0; i<=noOfRules; i++){

if(rule[i] == deny){

return(deny);

}

if(rule[i] == indeterminate){

return(deny);

}

if(rule[i] == permit){

atLeastOnePermit = true;

}

}

if atLeastOnePermit {

return(permit);

}

else{

return(notApplicable);

}

}

The following is a specification for the "deny-overrides" policy-combining algorithm. The identifier for this algorithm is given in Section 7.6.

In the entire set of policies to be evaluated, if any of the policies evaluates to “deny”, then the policy combination is defined to evaluate to “deny” (that is, “deny” takes precedence, regardless of how many policies evaluate to “permit”, and causes the whole combination to return “deny”). Any policy that evaluates to “indeterminate” (that is, its return status cannot be determined for any reason) has the same effect as a “deny” in that it causes the combination to return “deny”. Finally, if none of the policies are found to be applicable to the request, the policy combination returns “notApplicable”.

What follows is a pseudocode representation of how the above specification MAY be implemented. This is provided for illustrative and explanatory purposes.

effect policySet(policy[]){

atLeastOnePermit = false;

for(i=0; i<=noOfPolicies; i++){

if(policy[i] == deny){

return(deny);

}

if(policy[i] == indeterminate){

return(deny);

}

if(policy[i] == permit){

atLeastOnePermit = true;

}

}

if atLeastOnePermit {

return(permit);

else{

return(notApplicable);

}

}

Obligations of the individual policies SHALL be combined as described in Section 4.3.2.3.

9.2 Permit-overrides

The following is a specification for the "permit-overrides" rule-combining algorithm. The identifier for this algorithm is given in Section 8.7.

In the entire set of rules to be evaluated, if any of the rules evaluates to "permit", then the rule combination is defined to evaluate to "permit" (that is, "permit" takes precedence, regardless of how many rules evaluate to "deny" or "indeterminate", and causes the whole combination to return "permit"). If all of the rules found to be applicable to the request evaluate to "deny" or "indeterminate", then the rule combination is defined to evaluate to "deny". If none of the rules is found to be applicable to the request, the rule combination returns "notApplicable".

What follows is a pseudocode representation of how the above specification MAY be implemented. This is provided for illustrative and explanatory purposes.

 effect policy(rule[]) {

 atLeastOneDenyOrIndeterminate = false;

 for(i=0; i<=noOfRules; i++) {

 if (rule[i] == permit) {

 return(permit);

 }

 if (rule[i] == indeterminate) {

 atLeastOneDenyOrIndeterminate = true;

 }

 if (rule[i] == deny) {

 atLeastOneDenyOrIndeterminate = true;

 }

 }

 if atLeastOneDenyOrIndeterminate {

 return(deny);

 } else {

 return(notApplicable);

 }

 }

The following is a specification for the "permit-overrides" policy-combining algorithm. The identifier for this algorithm is given in Section 8.8.

In the entire set of policies to be evaluated, if any of the policies evaluates to "permit", then the policy combination is defined to evaluate to "permit" (that is, "permit" takes precedence, regardless of how many policies evaluate to "deny" or "indeterminate", and causes the whole combination to return "permit"). If all of the policies found to be applicable to the request evaluate to "deny" or "indeterminate", then the policy combination is defined to evaluate to "deny". If none of the policies is found to be applicable to the request, the policy combination returns "notApplicable".

What follows is a pseudocode representation of how the above specification MAY be implemented. This is provided for illustrative and explanatory purposes.
 effect policySet(policy[]) {

 atLeastOneDenyOrIndeterminate = false;

 for(i=0; i<=noOfPolicies; i++) {

 if (policy[i] == permit) {

 return(permit);

 }

 if (policy[i] == indeterminate) {

 atLeastOneDenyOrIndeterminate = true;

 }

 if (policy[i] == deny) {

 atLeastOneDenyOrIndeterminate = true;

 }

 }

 if atLeastOneDenyOrIndeterminate {

 return(deny);

 } else {

 return(notApplicable);

 }

 }

Obligations of the individual policies SHALL be combined as described in Section 4.3.2.3.

10 Profiles (normative but not mandatory to implement)

10.1 XACML

Describes subsets of XACML appropriate to general classes of problem

10.2 SAML

Describes the subset of SAML that is relevant to XACML

We need to specify SAML status codes for situations specific to XACML, such as:

· PDP has no policy for the requested target

· PDP cannot retrieve the required attributes

A compliant SAML-based PDP MUST reply to a SAML Authorization Decision Request with a SAML Authorization Decision in accordance with operational semantics of the PDP stated in Section 10.1.

The following XSLT defines the transformation from a saml:AuthorizationDecision request to the xacml request context. (Note: This has not been updated in accordance with the latest context schema.)

<xsl:stylesheet version = '1.0' xmlns:xsl='http://www.w3.org/1999/XSL/Transform' xmlns:saml='http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-28.xsd' xmlns:samlp="http://www.oasis-open.org/committees/security/docs/draft-sstc-schema-protocol-28.xsd">

<xsl:template match="samlp:Request">

 <Request>

 <xsl:apply-templates select="samlp:AuthorizationDecisionQuery/saml:Subject"/>

 <xsl:apply-templates select="samlp:AuthorizationDecisionQuery/saml:Action"/>

 <xsl:apply-templates select="samlp:AuthorizationDecisionQuery" mode="Resource"/>

 </Request>

</xsl:template>

<xsl:template match="saml:NameIdentifier">

 <xsl:element name="Subject">

 <xsl:attribute name="SubjectCategory">

 <xsl:text>urn:oasis:names:tc:xacml:identifiers:AccessSubject</xsl:text>

 </xsl:attribute>

 <xsl:element name="SubjectId">

 <xsl:if test="@NameQualifier">

 <xsl:attribute name="NameQualifier">

 <xsl:value-of select="@NameQualifier"/>

 </xsl:attribute>

 </xsl:if>

 <xsl:if test="@Format">

 <xsl:attribute name="Format">

 <xsl:value-of select="@Format"/>

 </xsl:attribute>

 </xsl:if>

 <xsl:value-of select="."/>

 </xsl:element>

 <xsl:apply-templates select="//saml:Evidence" mode="Evidence"/>

 </xsl:element>

</xsl:template>

<xsl:template match="saml:SubjectConfirmation">

 <xsl:element name="SubjectAttribute">

 <xsl:element name="SubjectMetaData">

 <xsl:attribute name="Name">

 <xsl:text>SubjectConfirmation</xsl:text>

 </xsl:attribute>

 </xsl:element>

 <xsl:element name="AttributeValue">

 <xsl:copy-of select="."/>

 </xsl:element>

 </xsl:element>

</xsl:template>

<xsl:template match="saml:Evidence" mode="Evidence">

 <xsl:element name="SubjectAttribute">

 <xsl:element name="SubjectMetaData">

 <xsl:attribute name="Name">

 <xsl:text>Evidence</xsl:text>

 </xsl:attribute>

 </xsl:element>

 <xsl:element name="AttributeValue">

 <xsl:copy-of select="."/>

 </xsl:element>

 </xsl:element>

</xsl:template>

<xsl:template match="samlp:AuthorizationDecisionQuery" mode="Resource">

 <xsl:element name="Resource">

 <xsl:element name="ResourceSpecifier">

 <xsl:attribute name="ResourceURI">

 <xsl:value-of select="@Resource"/>

 </xsl:attribute>

 </xsl:element>

 </xsl:element>

</xsl:template>

<xsl:template match="saml:Action">

 <Action>

 <xsl:if test="@Namespace">

 <xsl:value-of select='@Namespace'/>

 <xsl:text>/</xsl:text>

 </xsl:if>

 <xsl:value-of select="."/>

 </Action>

</xsl:template>

</xsl:stylesheet>

10.3 XML Digital Signature

Describes how XACML instances shall be integrity-protected in the case where XML DSig is used. PAPs MAY sign XACML <policyStatement> elements. When a PAP combines <policyStatement> elements, it MAY sign the resulting <policySetStatement> element.

10.4 LDAP

The <policyStatement> and <policySetStatement> elements MAY be distributed from the PAP to the PDP by means of an LDAP repository. In this case, conformant implementations SHALL behave as described in this section.

10.4.1 Directory information tree (DIT)

The <xacml:target> element conforms to a data model. XACML does not specify the target data model, but it MUST be agreed between the PAP and the PDP. The data model MUST be semi-hierarchical. That is, it MUST have one or more disjoint trees for resources and/or subjects. Actions are leaf nodes of the resource node to which they apply (see Figure 4). Each level in the tree is identified with an attribute name. A "path" in the tree is a list of attribute-name/value pairs linking a node to the root. The form of a target is a set of paths, one or more for each tree in the data model.

[image: image5.wmf]Medico resources

category

employees

customers

document

record

action

account

partners

write

read

Figure 4 - Medico Inc "resource" tree

Figure 4 gives an example of a resource tree. One path in this tree is defined by the following list of attribute-name/value pairs:

Root = Medico resources: category = customer: document = record: action = read

The Directory Information Tree of the repository SHALL be congruent with that of the target data model. A <policyStatement> element shall be an LDAP attribute of the entry at the lowest node of every path in the DIT. In our example, the policy for reading a customer record SHALL be an attribute of the entry defined by the above path. In practice, the policy statements may be referenced from these entries rather than stored at them.

A node MAY have more than one target associated with it.

An authorization decision request also specifies a set of paths by (directly or indirectly) providing resource, subject and action attribute values.

A policy statement is said to be applicable to a decision request if and only if every path in the policy statement's <target> element is part of a path in the input context’s <Request> element.

For instance, a policy statement whose target is:

Root = Medico resources: category = customer

is attached to that entry in the DIT and is applicable to an input context whose <Request> element identifies the following resource/action:

Root = Medico resources: category = customer: document = record: action = read

10.4.2 Policy combination

When policy statements are combined in a policy set statement, the policy set statement target MUST be computed, and the repository must be updated. Policy statements that conform to different target data models MUST NOT be combined.

The policy set statement target SHALL be computed by separately combining trees of the same type from each of the original policy statement targets. The combination may be in the form of a union or an intersection.

A union combination retains all of the original paths. If, as the result, all possible paths containing a particular DIT node are retained, then the path may be truncated at that node.

An intersection combination retains a path from one target if and only if it includes a path from the other target.

The policy set statement SHOULD be stored at the lowest node of every retained path.

Some attribute values may (themselves) have an internal tree structure (e.g. DNS names). Sub-trees of such structures SHALL be represented by a regular expression (ref). When such an attribute defines a level in a target tree, the sub-tree defined by each node at that level SHALL be attached at that node.

10.4.3 Directory schema

This directory schema defines an auxiliary object class (xacmlPolicyInfo) for adding XACML policy data to entries, as well as a directory attribute (xacmlPolicyData) to contain the policies or references to entries containing policies.

Alternatively, XACML policies may be stored in policy-specific entries and referenced from the resource, action and/or subject entries to which they relate. This schema defines a structural object class (xacmlPolicyObject) for defining such entries, as well as a directory attribute (xacmlPolicyRDN) to contain the string used to name the policy-specific entry in the directory. The xacmlPolicyData directory attribute is also used in these entries to contain the policies themselves.

A PDP uses an LDAP Directory User Agent (DUA) to search the resource/subject trees in the directory to find the resource, action or subject of interest and retrieve the xacmlPolicyData directory attribute from that entry. That attribute may contain the XACML policy or a pointer to another directory entry that contains the XACML policy. If it contains only a pointer, the PDP must query the directory again to retrieve the xacmlPolicyData directory attribute from the entry related to the pointer. The content of the pointer is the value of the xacmlPolicyRDN directory attribute that is the final Relative Distinguished Name (RDN) for the policy entry in the directory.

It is the PDP's responsibility to confirm that the retrieved policy is applicable to the decision request (i.e., the input context) that it is processing.

10.4.4 Object Class Definitions

The following object classes are defined for the LDAP profile for XACML.

10.4.4.1 XACML Policy Info

The xacmlPolicyInfo object class is used in defining entries for objects that hold XACML policy information in addition to other data (e.g., as part of a resource, action, or subject entry).

xacmlPolicyInfo
OBJECT-CLASS ::= {

SUBCLASS OF
{top}

KIND

auxiliary

MAY CONTAIN
{xacmlPolicyData}

ID

id-???-oc-xacmlPolicyInfo }

10.4.4.2 XACML Policy Object

The xacmlPolicyObject object class is used in defining entries for objects that hold only XACML policy information.

xacmlPolicyObject
OBJECT-CLASS ::= {

SUBCLASS OF
{top}

KIND

structural

MUST CONTAIN
{xacmlPolicyRDN}

MAY CONTAIN
{xacmlPolicyData}

ID

id-???-oc-xacmlPolicyObject }

The xacmlPolicyRDN directory attribute is used to name the entry and position it in a policy subtree.

10.4.5 Attribute Definitions

The following directory attributes are defined for the LDAP profile for XACML.

10.4.5.1 XACML Policy Data

The xacmlPolicyData directory attribute is used to store XACML policy information.

xacmlPolicyData
ATTRIBUTE ::= {

WITH SYNTAX
XacmlPolicySyntax

ID

id-???-at-xacmlPolicyData }

XacmlPolicySyntax
::= SEQUENCE {

policyPointer
[0]
UTF8String OPTIONAL,

policyData
[1]
UTF8String OPTIONAL

-- at least one of the optional elements must be present-- }

If policyPointer is present, it indicates the value of the xacmlPolicyRDN directory attribute that is used to form the final Relative Distinguished Name (RDN) of the entry that contains the actual policy information.

If policyData is present, it contains the XACML <policyStatement> or <policySetStatement>.

10.4.5.2 XACML Policy RDN

The xacmlPolicyRDN directory attribute is used to store the name of an xacmlPolicyObject entry relative to its position in the directory hierarchy.

xacmlPolicyRDN
ATTRIBUTE ::= {

WITH SYNTAX
UTF8String

EQUALITY MATCHING RULE
xacmlPolicyRDNMatch

ID

id-???-at-xacmlPolicyRDN }

10.4.6 Matching Rule Definitions

The xacmlPolicyRDNMatch matching rule compares for equality a presented value with an attribute value of type xacmlPolicyRDN.

xacmlPolicyRDNMatch
MATCHING-RULE ::= {

SYNTAX
UTF8String

ID

id-???-at-policyNameMatch }

This rule returns TRUE if the presented value is equal to the stored value of the xacmlPolicyRDN directory attribute.

11 Operational Model (normative)

This section describes the operational model for an XACML-based environment.

11.1 Policy Decision Point (PDP)

Given a valid XACML "policy statement" or a "policy set statement", a compliant XACML PDP MUST evaluate that statement in accordance to the semantics specified in Sections 5, 6, and 7 when applied to a specific input context. The PDP MUST return an output context, with one value of "permit", "deny", or "indeterminate". The PDP MAY return decision of "indeterminate" with an error code of "insufficient information", signifying that more information is needed. In this case, the decision MAY list the names of any attributes of the subject and the resource that are needed by the PDP to refine its decision.

Decision Convergence

A PEP MAY resubmit a refined request context in response to a decision of "indeterminate" with an error code of "insufficient information" by adding attribute values for the attribute names that are listed in the response.

When the PDP returns an decision of "indeterminate" with an error code of "insufficient information", a PDP MUST NOT list the names of any attribute of the subject or the resource of the request for which values were already supplied in the request. Note, this requirement forces the PDP to eventually return a decision of "permit", "deny", or "indeterminate" with some other reason, in response to successively-refined requests.
12 XACML extensibility points (non-normative)

Describes the points within the XACML model and schema where extensions can be added

12.1 URIs

The following XML attributes are URIs.

· Function,

· ruleCombiningAlgId,

· policyCombiningAlgId,

· saml:AttributeNameSpace and

· saml:AttributeName.

13 Security and privacy (non-normative)

This section identifies possible security and privacy vulnerabilities that should be considered when implementing an XACML-based system. This section is strictly informative. It has been left to the implementers to assess whether these vulnerabilities apply to their environment and to select the appropriate safeguards.

13.1 Authentication

Authentication here means the ability of one party in a transaction to determine the identity of the other party in the transaction. Authentication may be in one direction, or it may be bilateral1.

Given the sensitive nature of access-control systems, it is important for a PEP to authenticate the identity of the PDP to which it sends decision requests. Otherwise, there is a risk that another process could provide false or invalid authorization decisions and compromise security of the access-control system.

It is equally important for a PDP to authenticate the identity of its clients and assess the level of trust to determine what, if any, sensitive data should be passed. One should keep in mind that even simple permit or deny responses could be exploited if someone was allowed to make unlimited requests to a PDP.

Many different techniques may be used to provide this authentication, such as co-located code, a private network, a VPN, or digital signatures. Authentication may also be done as part of the communication protocol used to exchange the contexts. In this case, the authentication may be performed at the message level or at the session level.

13.2 Confidentiality

Confidentiality means that the contents of a message can be read only by the desired recipients and not by anyone else who encounters the message while it is in transit2. There are two areas in which confidentiality should be considered: one is confidentiality during transmission; the other is confidentiality within a <policyStatement>.

13.2.1 Communication Confidentiality

All data within an access-control system should be treated as confidential. This includes the <policyStatement>, the XACML requests and responses, and any external data that may be referenced as part of the decision-making process. If someone is able to eavesdrop on the communication they may be able to understand under what circumstances access will be granted, which may allow them to impersonate a valid request.

Any security concerns or requirements related to transmitting or exchanging XACML <policyStatement> elements are outside the scope of the XACML standard. While it is often important to ensure that the integrity and confidentiality of <policyStatement> elements is maintained when they are exchanged between two parties, it is left to the implementers to determine the appropriate mechanisms for their environment.

13.2.2 Statement Level Confidentiality

In some cases, an implementation may want to encrypt only parts of an XACML policy. For instance, a PRP only needs access to the target elements in order to find the appropriate rules. The other elements could be encrypted while they are stored in a repository.

The XML Encryption Syntax and Processing standard from W3C can be used to encrypt all or parts of an XML document. This standard is recommend for use with XACML.

It should go without saying that if a repository is used to facilitate the communication of cleartext (i.e., unencrypted) policy between the PAP and the PRP or between the PDP and the PIP, then a secure repository should be used to store this sensitive data.

13.3 Policy Integrity

The XACML policy, used by the PDP to evaluate the request contexts, is the heart of the system. There are two aspects in maintaining the integrity of the policy. One is to ensure that <policyStatement> elements have not been altered since they were originally written or generated by the PAP. The other is to ensure that <policyStatement> elements have not been inserted or deleted from the set of policies.

In the many cases, this can be achieved by ensuring the integrity of the systems and implementing session-level techniques to secure the communication between parties. The selection of the appropriate techniques has been left to the implementers.

However, when policy is distributed between organizations to be acted on at a later time, or when the policy travels with data, it would be useful to have a digital signature of the policy included with the policy statements. In these cases, the XML Signature Syntax and Processing standard from W3C is recommended to be used with this standard. See section 8.3 [???] for examples of using XML digital signatures with XACML.

Digital signatures SHOULD only be used to ensure the integrity of the statements. Digital signatures SHOULD NOT be use as a method of selecting or evaluating policy. The PDP SHOULD NOT request a rule based on who signed the rule or whether or not it had been signed (as such a basis for selection would, itself, be a matter of policy).

13.4 Elements included by reference

There is a risk that references and extensions contained within a <policystatement> may have been altered since the policy was originally created, thereby changing the intent of the <policystatement>. For instance, if a <policyStatement> were to include a rule by reference, then there is no guarantee that the rule has not been changed between the time that the policy was written and the time that it is being evaluated.

A <ruleDigest> element can be used to uniquely identify a rule. The <ruleDigest> element contains a digest of the original rule. If the rule changed, then the rule digest would also change. Therefore, if the <policyStatement> is signed or integrity-protected in some other way (so that the <ruleDigest> cannot be altered without detection), the PDP can be certain that the referenced rules have not changed since the policy was created.

Alternatively, a digital signature of the source item could be included with the reference. [I don’t see this in the schema. Can we do this?] This technique will also allow the PDP to ensure that a rule or extension has not been altered (although integrity protection is still required on the policy itself; otherwise, the included signatures may be removed or replaced).

13.5 Trust Model

Discussions of authentication, integrity, and confidentiality mechanisms necessarily assume an underlying trust model: how can one entity come to believe that a given key is uniquely associated with a specific, identified entity so that the key can be used to encrypt data for that entity or verify signatures (or other integrity structures) from that entity? Many different types of trust model exist, including strict hierarchies, distributed authorities, the Web, the bridge, and so on.

All considerations with respect to choosing and establishing a suitable trust model for a given environment are outside the scope of XACML. Suffice it to say, however, that a trust model MUST be in place in order for any of the security mechanisms described in this section to be applied. Secure access control is not possible in any environment until a trust model appropriate for that environment has been established and implemented.

13.6 Privacy

It is important to be aware that any transactions that occur with respect to access control may reveal private information about the participants. For example, if an XACML policy states that certain data may only be read by individuals with “Gold Card Member” status, then any transaction in which an entity is given access to that data leaks information to external observers about that entity’s status. Privacy considerations may therefore lead to encryption or access control policies surrounding XACML policy instances themselves, confidentiality-protected channels for the request/response protocol messages, protection of user attributes in storage and in transit, and so on.

Selection and use of privacy mechanisms appropriate for a given environment are outside the scope of XACML. The decision regarding whether, how, and when to deploy such mechanisms is left to the implementers associated with the environment.

Footnotes

1 - Security and Privacy Considerations for the OASIS Security Assertion Markup Language (SAML) section 4.1

2 - Security and Privacy Considerations for the OASIS Security Assertion Markup Language (SAML) section 4.2

14 Conformance (normative)

Conformance claims MAY be made by either one of two components in the XACML model:

1. An implementation of a policy administration points that produces policy statements that conform with the XACML schema; and

2. An implementation of a policy decision point that produces decisions in response to a request context on the basis of XACML policy statements that conform with the XACML schema.

In the current version of the specification, implementations of a policy retrieval point that produce policy statements that conform with the XACML schema by combining XACML applicable policies are treated in the same way as policy administration points, from the point of view of conformance.

Policy administration points MAY claim conformance with the XACML specification provided merely that they produce schema-compliant policy statements.

Policy decision points MAY claim conformance with the XACML specification provided that they correctly execute the XACML conformance test suite provided at

http://www.oasis-open.org/ …

XACML Test Suite

The test suite comprises three directories:

· Request context

· Policy

· Response context

The input context directory contains a set of text/xml/ xacmlContext:RequestType files that are valid XACML input contexts.

The policy directory contains precisely one XACML policy file whose target is appropriate for each of the input contexts.

The output context directory contains a set of text/xml/ xacmlContext:ResponseType files containing the output contexts that correspond to the input contexts in the input context directory.

A conformant XACML PDP implementation shall create an output context in response to each and every input context. The output contexts are linked to the corresponding input contexts by the request context ID attribute. [There’s no such thing at the moment.]

XACML implementations that target a specific application domain (e.g., SAML or J2SE) may use a tool or process that is not an integral part of the XACML implementation to convert between the XACML contexts and its private data representation.

Disclaimer: Implementors SHALL NOT consider the test cases provided in the XACML conformance test suite as providing 100% test coverage. OASIS does not represent that a conformant implementation will operate correctly in all respects nor that it is fit for its purpose.

15 References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997
[RegEx]

[LDAP]

[SAML]
Security Assertion Markup Language available from http://www.oasis-open.org/committees/security/#documents
[XMLSig]
D. Eastlake et al., XML-Signature Syntax and Processing, http://www.w3.org/TR/xmldsig-core/, World Wide Web Consortium.

[XMLSig-XSD]
XML Signature Schema available from http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/xmldsig-core-schema.xsd.

Appendix A. Acknowledgments

The following individuals were voting members of the committee during the development of this specification:

Affinitex James MacLean JMaclean@affinitex.com
Self Simon Godik sgodik@crosslogix.com
Crosslogix Ken Yagen kyagen@crosslogix.com
Crosslogix Daniel Engovatov dengovatov@crosslogix.com
Entegrity Hal Lockhart hal.lockhart@entegrity.com
Entrust Carlisle Adams carlisle.adams@entrust.com
Entrust Tim Moses tim.moses@entrust.com
Hitachi Don Flinn Don.Flinn@hitachisoftware.com
Hitachi Konstantin Beznosov konstantin.beznosov@quadrasis.com
IBM Michiharu Kudoh kudo@jp.ibm.com
Self Bill Parducci bill@parducci.net
Self Polar Humenn polar@syr.edu
Sterling Commerce Suresh Damodaran Suresh_Damodaran@stercomm.com
University of Milan Pierangela Samarati samarati@pinky.crema.unimi.it
University of Milan Ernesto Damiani edamiani@crema.unimi.it
Sun Microsystems Sekhar Vajjhala sekhar.vajjhala@sun.com
Sun Microsystems Anne Anderson Anne.Anderson@Sun.com
Xtradyne Gerald Brose Gerald.Brose@xtradyne.com
Appendix B. Revision History

Rev
Date
By whom
What

V14
14 June 2002
Tim Moses
Added the XACML context schema. Added the Security and Privacy section.

V15
18 July 2002
Tim Moses
Changed the representation of <Function>

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

draft-xacml-specification-15.doc

PAGE
draft-sstc-core-22

12 December 2001
16
draft-xacml-specification-15.doc

