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INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – 

JPEG 2000 IMAGE CODING SYSTEM

1 Scope

This Recommendation | International Standard defines a set of lossless (bit-preserving) and lossy compression methods
for coding continuous-tone, bi-level, grey-scale, or colour digital still images.

This Recommendation | International Standard 

— specifies decoding processes for converting compressed image data to reconstructed image data

— specifies a codestream syntax containing information for interpreting the compressed image data

— specifies a file format

— provides guidance on encoding processes for converting source image data to compressed image data

— provides guidance on how to implement these processes in practice

2 References

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

— ITU-T Recommendation T.81 | ISO/IEC 10918-1:1994, Information technology - Digital compression
and coding of continuous-tone still images: Requirements and guidelines.

— ITU-T Recommendation T.88 | ISO/IEC 14492-1, Lossy/lossless coding of bi-level images

2.2 Additional references

— Coded character set—7 bit, American Standard Code for Information Interchange, ANSI X3.4–1986.

— ISO/IEC 646:1991, ISO 7-bit coded character set for information interchange.

— ITU-T Recommendation T.83 | ISO/IEC 10918-2:1995, Information technology - Digital compression
and coding of continuous-tone still images: Compliance testing.

— ITU-T Recommendation T.84 | ISO/IEC 10918-3:1996, Information technology - Digital compression
and coding of continuous-tone still images: Extensions.

— ITU-T Recommendation T.84 | ISO/IEC 10918-3 Amd 1 (In preparation), Information technology -
Digital compression and coding of continuous-tone still images: Extensions - Amendment 1. 
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— ITU-T Recommendation T.86 | ISO/IEC 10918-4, Information technology - Digital compression and
coding of continuous-tone still images: Registration of JPEG Profiles, SPIFF Profiles, SPIFF Tags,
SPIFF colour Spaces, APPn Markers, SPIFF, Compression types and Registration authorities
(REGAUT).

— ITU-T Recommendation T.87 | ISO/IEC 14495-1, Lossless and near-lossless compression of
continuous-tone still images-baseline. 

— ITU-T Recommendation T.82 | ISO/IEC 11544:1994, Information technology - Coded representation
of picture and audio information — Progressive bi-level image compression

— ISO 5807:1985, Information processing - Documentation symbols and conventions for data, program
and system flowcharts, program network charts and system resources charts.

— International Color Consortium, ICC profile format specification. ICC.1:1998–09

— International Electrotechnical Commission. Color management in multimedia systems: Part 2: Colour
Management, Part 2–1: Default RGB colour space—sRGB. IEC 61966–2–1 1998. 9 October 1998.

— W3C, Extensible Markup Language (XML 1.0), Rec-xml-19980210

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

, floor function: This indicates the largest integer not exceeding x.

, ceiling function: This indicates the smallest integer not exceeded by x.

arithmetic coder: An entropy coder that converts variable length strings to variable length codes.

auxiliary component: A component from the codestream that is used by the application outside the scope of
colourspace conversion. For example, an opacity component or a depth component would be an auxiliary
component.

box: A building block defined by a unique box type and length. Some particular boxes may contain other
boxes.

box contents: Refers to the data wrapped within the box structure. The contents of a particular box are stored
within the DBox field within the Box data structure as defined in Annex I.6

box type: Specifies the kind of information that shall be stored with the box. The type of a particular box is
stored within the TBox field within the Box data structure as defined in Annex I.6.

bit-plane: A two dimensional array of bits. In this Recommendation | International Standard a bit-plane refers
to all the bits of the same magnitude in all coefficients or samples. This could refer to a bit-plane in a
component, tile-component, code-block, region of interest, or other.

bit stream: The actual sequence of bits resulting from the coding of a sequence of symbols. It does not include
the markers or marker segments in the main and tile-part headers. It does include any packet headers and in
stream markers and marker segments not found in the main or tile-part headers.

big endian: The bits occur in order from most significant to least significant.

byte: Eight-bit octet.

cleanup pass: A coding pass performed on a single bit-plane of a code-block of coefficients. It is the first pass
and only coding pass for the first significant bit-plane; the third and the last pass of all the remaining bit-planes.

codestream: A collection of one or more bit streams and associated (overhead) information required for their
decoding and expansion into image data. The overhead information is restricted to that required for the
expansion into image data and may include, but is not limited to, marker segments indicating locations of
particular bit streams, indicating transform, quantization and coding types, etc.

code-block: A rectangular grouping of coefficients from the same sub-band of a tile-component.

x

x
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code-block scan: The order in which the coefficients within a code-block are visited during a coding pass. The
code-block is processed in stripes, each consisting of four rows and spanning the width of the code-block.
Each stripe is processed column by column from left to right and from top to bottom.

coder: An embodiment of either an encoding or decoding process.

coding pass: A complete pass through a code-block where the appropriate coefficient values and context are
applied. There are three types of coding passes: significance propagation pass, magnitude refinement pass and
cleanup pass. The result of each pass (after arithmetic coding) is a stream of compressed data.

colour component: A component from the codestream that functions as an input to a colour transformation
system. For example, a red component or a greyscale component would be a colour component.

colour image: An image that has more than one component.

component: A two-dimensional array of samples. A colour image typically consists of several components
from a specified colour space, for instance representing red, green, and blue.

compressed data: Any data that is part of the bit stream except for packet headers and in stream markers and
marker segments.

conforming reader: An application that reads and interprets a JP2 file correctly as defined by Annex J of this
Recommendation | International Standard.

container box: An box that itself contains a contiguous sequence of boxes (and only a contiguous sequence of
boxes). As the JP2 file contains only a contiguous sequence of boxes, the JP2 file is itself considered a
container box. When used as part of a relationship between two boxes, the term container box refers to the box
which directly contains the other box.

context: Function of coefficients previously decoded and used to condition the coding of the present sample.

context label: The arbitrary index used to distinguish different context values. The labels are used as a
convenience of notation rather than being normative.

context modelling: Procedure determining from the context the probability distribution of the predicted bit.

context vector: The binary vector consisting of the significance states of its context coefficients

decoder: An embodiment of a decoding process, and optionally a colour transformation process.

decoding process: A process which takes as its input compressed data and outputs reconstructed image data.

decomposition level: A collection of wavelet sub-bands where each coefficient has the same span with respect
to the original samples. These include HL, LH, HH and, for the lowest resolution decomposition level, LL
sub-bands. In this specification, only the LL sub-band can be further decomposed.

delimiting markers and marker segments: Markers and marker segments that give information about
beginning and ending points of structures in the codestream.

discrete wavelet transform (DWT): A transformation that iteratively transforms one signal into two or more
filtered and decimated signals corresponding to different frequency bands. This transform operates on spatially
discrete samples.

encoder: An embodiment of an encoding process.

encoding process: A process, that takes as its input a source image and outputs compressed image data.

file format: This consists of a codestream and additional support data and information not explicitly required
for the decoding of image data. Examples of such support data include text fields providing titling, security
and historical information, markers to support placement of multiple codestreams within a given data file, and
markers to support exchange between platforms or conversion to other file formats. 

fixed information markers and marker segments: Markers and marker segments that offer information
about the original image.

functional markers and marker segments: Markers and marker segments that offer information about the
decoding procedures to be used
ITU-T Rec. T.800 (2000 FCDV1.0) 3
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header: Part of the codestream that contains only markers and marker segments. There are two types of
headers. The main header is found at the beginning of the codestream and tile-part headers are found at the
beginning of each tile-part.

HH sub-band: The sub-band obtained by forward horizontal high-pass analysis filtering and vertical high-
pass analysis filtering. This sub-band contributes to reconstruction with inverse vertical high-pass synthesis
filtering and horizontal high-pass synthesis filtering.

HL sub-band: The sub-band obtained by forward horizontal high-pass analysis filtering and vertical low-pass
analysis filtering. This sub-band contributes to reconstruction with inverse vertical low-pass synthesis filtering
and horizontal high-pass synthesis filtering.

image: The set of all components.

image area: A rectangular part of the reference grid, registered by offsets from the origin and having the size
of the image. The components are contained within this area and are related to the reference grid with respect
to this area.

image area offset: The width and height down and to the right of the reference grid origin where the origin of
the image area can be found.

image data: Either source image data or reconstructed image data.

in bit stream markers and marker segments: Markers and marker segments that provide error resilience
functionality.

informational markers and marker segments: Markers and marker segments that offer ancillary
information.

irreversible: A transformation, progression, system, or quantization that, due to systemic or quantization error,
disallows lossless recovery. An irreversible process can only lead to lossy compression.

JP2 file: The name of file in the file format described in this specification. Structurally, a JP2 file is a
contiguous sequence of boxes. 

JPEG 2000: Used to refer globally to the encoding and decoding processes in this Recommendation |
International Standard and their embodiment in applications.

LH sub-band: The sub-band obtained by forward horizontal low-pass analysis filtering and vertical high-pass
analysis filtering. This sub-band contributes to reconstruction with inverse vertical high-pass synthesis filtering
and horizontal low-pass synthesis filtering.

LL sub-band: The sub-band obtained by forward horizontal low-pass analysis filtering and vertical low-pass
analysis filtering. This sub-band contributes to reconstruction with inverse vertical low-pass synthesis filtering
and horizontal low-pass synthesis filtering.

layer: A collection of coding pass compressed data from one, or more, code-blocks of a tile-component.
Layers have an order for encoding and decoding that must be preserved.

lossless: A descriptive term for the encoding and decoding processes in which the output of the decoding
process is identical to the input to the encoding process. Distortion free restoration can be assured. Lossless
processes require reversible systems.

lossless coding: The mode of operation that refers to any one of the coding processes defined in this
Recommendation | International Standard in which all of the procedures are lossless.

lossy: A descriptive term for encoding and decoding processes that are not lossless. Distortion free restoration
is not assured. This includes both systems that are irreversible and those that include quantization.

magnitude refinement pass: A coding pass performed on a single bit-plane of a code-block of coefficients.

main header: A group of markers and marker segments at the beginning of the codestream that describe the
image parameters and coding parameters that can apply to every tile and tile-component.

marker: A two-byte code in which the first byte is hexadecimal FF (0xFF) and the second byte is a value
between 1 (0x01) and hexadecimal FE (0xFE).
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marker segment: A marker and associated set of parameters.

mod: mod(y,x) = z, where z is an integer such that , and such that y-z is a multiple of x.

packet: A part of the bit stream comprising a packet header and the coded data from one layer of one
decomposition level of one component of a tile.

packet header: Portion of the packet that describes the layer, decomposition level, component, and the code-
block segment lengths.

packet partition: A division of one tile-component by a rectangular grid. One packet partition size is specified
for each resolution level.

packet partition location: One rectangular region of a packet partition.

pointer markers and marker segments: Markers and marker segments that offer information about the
location of structures in the codestream.

precinct: A sub-division of a tile-component, within a each resolution, used for limiting the size of packets.

precision: Number of bits allocated to a particular sample, coefficient, or other binary numerical
representation.

progressive: The order of a codestream where the decoding of each successive bit contributes to a “better”
reconstruction of the image. What metrics make the reconstruction “better” is a function of the application.
Some examples of progression are increasing resolution or improved pixel fidelity.

quantization: A method of reducing the precision of the individual coefficients to reduce the number of bits
used to entropy code them.

raster order: A particular sequential order of data of any type within an array. The raster order starts with the
top left data point and moves to the immediate right data point, and so on, to the end of the line. After the end
of the line is reached the next data point in the sequence is the left-most data point immediately below the
current line. This order is continued to the end of the array.

reconstructed image (data): An image, that is the output of a decoder.

reconstructed sample (value): The sample value reconstructed by the decoder. This always equals the
original sample value in lossless coding but may differ from the original sample value in lossy coding.

reference grid: A regular rectangular array of points to which images, components, tiles, sub-bands, etc. are
associated. Reference grid units or points are used to describe the mapping of the tiles and the components. 

reference tile: A rectangular sub-grid of any size associated with the reference grid.

region of interest (ROI): A defined area of the image, component, or tile-component that is considered of
particular relevance by some user defined measure.

resolution: The spatial mapping of samples to a physical space. In this Recommendation | International
Standard the decomposition levels of the wavelet transform relate to each other with relative resolutions
differing by powers of two.

reversible: A transformation, progression, system, or quantization that does not suffer systemic or
quantization error and, therefore, allows lossless signal recovery. The result of reversible process may be lossy
or lossless depending on the quantization and other factors in the system.

sample: One element in the two-dimensional array that comprises a component.

segmentation symbol: A special symbol coded with a uniform context at the end of each coding pass for error
resilience.

selective arithmetic coding bypass: A coding style where some of the code-block passes are not coded by the
arithmetic coder.

shift: Multiplication or division of a binary number by factors of two.

0 z x<≤
ITU-T Rec. T.800 (2000 FCDV1.0) 5



ISO/IEC FCD15444-1 : 2000 (V1.0, 16 March 2000)
sign-magnitude notation: A binary representation of an integer number where the distance from the origin is
expressed with a positive number and the direction from the origin (positive or negative) is expressed with a
separate single bit.

significance propagation pass: A coding pass performed on a single bit-plane of a code-block of coefficients.

significance state: State of a coefficient at a particular bit-plane. If a coefficient, in sign-magnitude notation,
has the first 1 bit at, or before, the given bit-plane it is considered “significant.” If not, it is considered
“insignificant.”

source image (data): An image used as input to an encoder.

sub-band: A group of transform coefficients resulting from the same sequence of low-pass and high-pass
filtering operations, both vertically and horizontally.

sub-band coefficient: A transform coefficient within a given sub-band.

sub-band decomposition: A transformation of an image tile-component into sub-bands.

sub-band decomposition level: The number of decompositions performed on the original tile-component
samples to obtain the sub-band.

sub-band recomposition: The inverse of sub-band decomposition.

sub-band recomposition level: The remaining number of recompositions needed to reconstruct the original
image tile component samples.

superbox: A box that itself contains a contiguous sequence of boxes (and only a contiguous sequence of
boxes). As the JP2 file contains only a contiguous sequence of boxes, the JP2 file is itself considered a
superbox. When used as part of a relationship between two boxes, the term superbox refers to the box which
directly contains the other box.

tile: A rectangular array of points on the reference grid, registered with and offset from the reference grid
origin and defined by a base width and height. This tile overlaps the image area and is used to define image
tiles and tile-components.

tile-component: All the samples of a given component in a tile. There is a tile-component for every component
and every tile.

tile number: The index of the current tile ranging from zero to the number of tiles minus one.

tile-part: A portion of the codestream that makes up some, or all, of a tile. The tile-part includes at least one,
and up to all, of the packets that make up the tile.

tile-part header: A group of markers and marker segments at the beginning of each tile-part in the codestream
that describe the tile-part coding parameters.

tile-part number: The tile number of the tile with which the tile-part is associated.

transform: A mathematical mapping from one signal space to another.

transform coefficient: A value that is the result of a transformation.

XOR: Exclusive OR logical operator.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply.

ASCII: American Standard Code for Information Interchange

CCITT: International Telegraph and Telephone Consultative Committee, now ITU-T

ICC: International Colour Consortium

IEC: International Electrotechnical Commission
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ISO: International Organization for Standardization

ITTF: Information Technology Task Force

ITU: International Telecommunication Union

ITU-T: International Telecommunication Union – Telecommunication Standardization Sector (formerly the
CCITT)

JPEG: Joint Photographic Experts Group - The joint ISO/ITU committee responsible for developing
standards for continuous-tone still picture coding. It also refers to the standards produced by this
committee: ITU-T T.81 | ISO/IEC 10918-1, ITU-T T.83 | ISO/IEC 10918-2, ITU-T T.84 | ISO/IEC
10918-3 and T.87 | ISO/IEC 14495.

JURA: JPEG Utilities Registration Authority

1D-DWT: One-dimensional discrete wavelet transform

FDWT: Forward discrete wavelet transform

IDWT: Inverse of the forward discrete wavelet transform

LSB: Least significant bit.

MSB: Most significant bit.

PCS: Profile Connection Space

ROI: Region-of-interest

SNR: Signal to noise ratio.

UCS: Universal Character Set

URI: Uniform Resource Identifier

URL: Uniform Resource Location

UTF-8: UCS Transformation Format 8

UUID: Universal Unique Identifier

W3C: World-Wide Web Consortium

5 Symbols

For the purposes of this Recommendation | International Standard, the following symbols apply.

0x----: Denotes a hexadecimal number.

\nnn: A three-digit number preceded by a backslash indicates the value of a single byte within a character
string, where the three digits specify the octal value of that byte.

CME: Comment and extension marker

COC: Coding style component marker

COD: Coding style default maker

EPH: End of packet header marker

EOI: End of image marker

PLM: Packet length, main header marker

PLT: Packet length, tile-part header marker

POD: Progression order change, default marker

PPM: Packed packet headers, main header marker
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PPT: Packed packet headers, tile-part header marker

QCC: Quantization component marker

QCD: Quantization default marker

RGN: Region of interest marker

SIZ: Size of image marker

SOC: Start of image (codestream) marker

SOP: Start of partition marker

SOS: Start of scan marker

SOT: Start of tile marker

TLM: Tile length marker

6 General description

This specification describes an image compression system that allows great flexibility, not only for the compression of
images, but also for the access into the compressed data. The codestream provides a number of mechanisms for locating
and extracting data for the purpose of retransmission, storage, display, or editing. This access allows storage and retrieval
of data appropriate for a given application, without decoding.

The division of the both original data and the compressed data in a number of ways leads to the ability to extract data
from the compressed codestream to form a reconstructed image with lower resolution or lower bit-rate, or regions of the
original images. This allows the matching of a codestream to the transmission channel, storage device, or display device,
regardless of the size, number of components, and sample precision of the original image. The codestream can be
manipulated without decoding to achieve a more efficient arrangement for a given application.

Thus, the sophisticated features of this specification allow a single codestream to be used efficiently by a number of
applications. The largest image source devices can provide a codestream that is easily processed for the smallest image
display device, for example.

6.1 Purpose

There are four main elements described in this Recommendation | International Standard:

Encoder: An embodiment of an encoding process. An encoder takes as input digital source image data and
parameter specifications, and by means of a set of procedures generates as output compressed image
data.

Decoder: An embodiment of a decoding process and a sample transformation process. A decoder takes as input
compressed image data and parameter specifications, and by means of a specified set of procedures
generates as output digital reconstructed image data.

Codestream syntax: A compressed image data representation that includes all parameter specifications used in
the encoding process. 

Optional file format: The optional file format is for exchange between application environments. The
codestream can be used by other file formats or stand-alone without this file format.

6.2 Codestream

In general, this standard deals with three domains: spatial (samples) transformed (coefficients) and coded data. Some
entities (e.g. tile-component) have meaning in all three domains. Other entities (e.g. code-block or packet) have meaning
in only one domain (e.g. transformed or coded data respectively). The splitting of an entity into other entities in the same
domain (e.g. component to tile-components) is described separately for each of the domains.
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The codestream is a linear stream of bits from the first bit to the last bit. For convenience, it can be divided into (8 bits)
bytes, starting with the first bit of the codestream, with the “earlier” bit in a byte viewed as the most significant bit of the
byte when given e.g. a hexadecimal representation. This byte stream may be divided into groups of consecutive bytes.
The hexadecimal value representation is sometimes implicitly assumed in the text when describing bytes or group of
bytes that do not have a “natural” numeric value representation. This should be clarified in the text.

6.3 Coding principles

The main procedures for this Recommendation | International Standard are shown in Figure 6-1. Procedures are
presented in the Annexes in the order of the decoding process.

Many images have multiple components. This specification has a facility to decorrelate three component planes. This is
the only function in this specification that relates components to each other. (See Annex G.)

The image may be divided into tiles. These tiles are rectangular arrays that include the same relative portion of all the
components that make up the image. Thus, tiling of the image actually creates tile-components that can be decoded
independently of each other. These tile-components can also be extracted and reconstructed independently. This tile
independence provides one of the methods for extracting a region of the image. (See Annex B.)

The tile-components are decomposed into different decomposition levels using a wavelet transform. These
decomposition levels contain a number of sub-bands populated with coefficients that describe the horizontal and vertical
spatial frequency characteristics of the original tile-component planes. The coefficients provide frequency information
about a local area, rather than across the entire image like the Fourier Transform. That is, a small number of coefficients
completely describes a single sample. A decomposition level is related to the next decomposition level by spatial powers
of two. That is, each successive decomposition level of the sub-bands has approximately half the horizontal and half the
vertical resolution of the previous. Images of lower resolution than the original are generated by decoding a selected
subset of these sub-bands. (See Annex F.)

Although there are as many coefficients as there are samples, the information content tends to be concentrated in just a
few coefficients. Through quantization, the information content of a large number of small-magnitude coefficients is
further reduced (Annex E). Additional processing by the entropy coder reduces the number of bits required to represent
these quantized coefficients, sometimes significantly compared to the original image. (See Annex C, Annex D, and
Annex B.)

The individual sub-bands of a tile-component are further divided into code-blocks. These rectangular arrays of
coefficients can be extracted independently. The individual bit-planes of the coefficients in a code-block are coded with
three coding passes. Each of these coding passes collects contextual information about the bit-plane data. (See Annex D.)
An arithmetic coder uses this contextual information, and its internal state, to decode a compressed bit-stream. (See
Annex C.) Different termination mechanisms allow different levels of independent extraction of this coding pass data.

DC level, 
component 
transform 
(Annex G)

Figure 6-1 — Specification block diagram

Data ordering 
(Annex B)

Coefficient 
bit modeling 
(Annex D)

Quantization 
(Annex E)

Transform 
(Annex F)

Codestream syntax (Annex A)

Region of interest (Annex H)

Arithmetic 
coding 

(Annex C)

File format (optional, Annex I)
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The bit stream data created from these coding passes is conceptually grouped in layers. Layers are an arbitrary number of
groupings of coding passes from each code-block. Although there is great flexibility in layering, the basic premise is that
each successive layer contributes to a higher quality image. (See Annex B.)

Packets are a fundamental unit of the compressed codestream. A packet is a particular partition of one layer of one
decomposition level of one tile-component. This partition provides another method for extracting a spatial region
independently from the codestream. These packets may be interleaved in the codestream using a few different methods.
(See Annex B.)

A mechanism is provided that allows the data corresponding to regions of interest in the original tile-components to be
coded and placed earlier in the bit stream. (See Annex H.)

Several mechanisms are provided to allow the detection and concealment of bit errors that might occur over a noisy
transmission channel. (See Annex D.5.)

The compressed data relating to a tile, organized in packets, are arranged in one, or more, tile-parts. A tile-part header,
comprised of a series of markers and marker segments, contains information about the various mechanisms and coding
styles that are needed to locate, extract, decode, and reconstruct every tile-component. At the beginning of the entire
codestream is a main header, comprised of markers and marker segments, that offers similar information as well as
information about the original image. (See Annex A.)

The codestream is optionally wrapped in a file format that allows applications to interpret the meaning of, and other
information about, the image. The file format may also contain other data besides the codestream. (See Annex I.) 

To review, procedures that divide the original image are the following:

— The image is decomposed into components. 

— The image and its components are decomposed into rectangular tiles. The tile-component is the basic
unit of the original or reconstructed image.

— Performing the wavelet transform on a tile-component creates decomposition levels. These
decomposition levels can create components with different resolutions.

— These decomposition levels are made up of sub-bands of coefficients that describe the frequency
characteristics of local areas (rather than across the entire tile-component) of the tile-component.

— The sub-bands of coefficients are quantized and collected into rectangular arrays of code-blocks.

— The bit-planes of the coefficients in a code-block are entropy coded in three coding passes.

— Some of the coefficients can be coded first to provide a region of interest.

At this point the data is fully decomposed and coded. The procedures that reassemble these bit stream units into the
codestream are the following:

— The coding passes from the code-blocks are collected in layers.

— Packets are composed of one partition of a single layer of a single decomposition level of a single tile-
component. The packets are the basic unit of the compressed data.

— All the packets from a tile are interleaved in one of several orders and placed in one, or more, tile-parts.

— The tile-parts have a descriptive tile-part header and can be interleaved in any order.

— The codestream has a main header at the beginning that describes the original image and the various
decomposition and coding styles that shall be used to locate, extract, decode, and reconstruct the image
with the desired resolution, fidelity, region of interest, and other characteristics.

— The optional file format describes the meaning of the image and its components in the context of the
application.
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7 Encoder requirements 

An encoding process converts source image data to compressed image data. Annexes A, B, C, D, E, F, G, and H describe
the encoding process. Note that all encoding processes are specified informatively. 

An encoder is an embodiment of the encoding process. In order to conform to this Recommendation | International
Standard, an encoder shall convert source image data to compressed image data, that conform to the codestream syntax
specified in Annex A.

8 Decoder requirements 

A decoding process converts compressed image data to reconstructed image data. Annex C through Annex H describe
and specify the decoding process. All decoding processes are normative.

A decoder is an embodiment of the decoding process. In order to conform to this Recommendation | International
Standard, a decoder shall convert all, or specific parts of, any compressed image data that conform to the codestream
syntax specified in Annex A to a reconstructed image.

There is no normative or required implementation for the encoder or decoder. In some cases, the descriptions use
particular implementation techniques for illustrative purposes only.

8.1 Codestream syntax requirements

Annex A describes the codestream syntax that defines the coded representation of compressed image data for exchange
between application environments.Any compressed image data shall comply with the syntax and code assignments
appropriate for the coding processes defined in the Recommendation | International Standard.

This Recommendation | International Standard does not include a definition of compliance or conformance. The
parameters values of the syntax described in Annex A are not intended to portray the capabilities required to be
compliant.

There is no normative or required implementation for the encoder or decoder. In some cases, the descriptions use
particular implementation techniques for illustrative purposes only.

8.2 Optional file format requirements

Annex I describes the optional file format contains meta-data about the image in addition to the codestream, which
allows, for example, screen display or printing at a specific resolution. The optional file format when used, shall comply
with the file format syntax and code assignments appropriate for the coding processes defined in the Recommendation |
International Standard.

There is no normative or required implementation for the encoder or decoder. In some cases, the descriptions use
particular implementation techniques for illustrative purposes only.
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Annex A

Codestream syntax

(This annex forms an integral part of this Recommendation | International Standard)

This Annex specifies the marker and marker segment syntax defined by this Recommendation | International Standard.
These markers and marker segments provide codestream information for this Recommendation | International Standard.
Further, this Annex provides a marker and marker segment syntax that is designed to be used in future specifications that
include this Recommendation | International Standard as a normative reference.

This Recommendation | International Standard does not include a definition of compliance or conformance. The
parameter values of the syntax described in Annex A are not intended to portray the capabilities required to be compliant.

A.1 Headers and marker segments

This Recommendation | International Standard uses marker segments to delimit and signal the characteristics of the
codestream. This set of markers and marker segments is the minimal information needed to achieve the features of this
Recommendation | International Standard and is not a file format. A complete file format is offered in Annex I.

Headers are collections of markers and marker segments. There are two types of headers in this specification. The main
header is found at the beginning of the codestream. The tile-part headers are found at the beginning of each tile-part (see
below). Some markers and marker segments are restricted to only one of the two types of headers while others can be
found in either.

A.1.1 Markers and marker segments

Every marker is two bytes long. The first byte consists of a single 0xFF byte. The second byte denotes the specific marker
and can have any value in the range 0x01 to 0xFE. Many of these markers are already used in ITU-T Rec. T.81 | ISO/IEC
10918-1 and ITU-T Rec. T.84 | ISO/IEC 10918-3 and shall be regarded as reserve unless specifically used.

A marker segment includes a marker and associated parameters, called marker parameters. In every marker segment the
first two bytes after the marker shall be an unsigned big endian integer value that denotes the length in bytes of the
marker parameters (including two bytes of this length parameter but not the two bytes of the marker itself).

A.1.2 Types of markers and marker segments

Six types of markers and marker segments are used: delimiting, fixed information, functional, in bit stream, pointer, and
informational. Delimiting marker and marker segments must be used to frame the headers and the data. Fixed
information marker segments give required information about an image. The location of these marker segments, like
delimiting marker segments, is specified. Functional marker segments are used to describe the coding functions used. In
bit stream markers and marker segments are used for error resilience. Pointer marker segments point to specific offsets in
the bit stream. Informational marker segments provide ancillary information.

A.1.3 Syntax similarity with ITU-T Rec. T.81 | ISO/IEC 10918-1

The marker and marker segment syntax uses the same construction as defined in ITU-T Rec. T.81 | ISO/IEC 10918-1.
Some of the markers are exactly the same. Those that are not have numbers that were reserved in ITU.T Rec. 81 | IS
10918-1, ITU-T Rec. T.84 | ISO/IEC 10918-3, and ITU-T Rec. T.87 | ISO/IEC 14495-1 are registered by the registration
process defined in ITU-T Rec. T.86 | ISO/IEC 10918-4.

The marker range 0xFF30 — 0xFF3F is reserved by this specification for markers without marker parameters. This will
enable backward compatibility. Table A-1 shows in which specification these markers and marker segments are defined. 
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A.1.4 Marker and marker segment and codestream rules

— Marker segments, and therefore the headers, are a multiple of 8 bits (one byte). Further, the bit stream
data between the headers are padded to also be aligned to a multiple of 8 bits.

— All markers and marker segments in a tile-part header apply only to the tile to which it belongs.

— All markers and marker segments in the main header apply to the whole image unless specifically
overridden by marker segments in a tile-part header.

— Delimiting and fixed information marker segments must appear at specific points in the codestream.

— The marker segments shall correctly describe the image as represented by the codestream. If truncation,
alteration, or editing of the codestream has been performed, the marker segments shall be updated
accordingly.

— All parameter values in marker segments are big endian (most significant byte first).

— All markers with the marker value between 0xFF30 and 0xFF3F have no marker parameters. 

NOTE — The markers the range 0xFF30 — 0xFF3F may be used by future extensions. They may or may not be skipped by a
decoder without ramification.

A.1.5 Key to graphical descriptions (informative)

Each marker segment is described in terms of its function, usage, and length. The function describes the information
contained in the marker segment. The usage describes the logical location and frequency of this marker segment in the
codestream. The length describes which parameters determine the length of the marker segment.

These descriptions are followed by a figure that shows the order and relationship of the parameters in the marker segment.
Figure A-1 shows an example of this type of figure. The marker segments are designated by a three letter abbreviation.
The parameter values have capital letter designations with the marker’s abbreviation as a subscript. A rectangle is used to
indicate the parameters in the marker segment. The width of the rectangle is proportional to the number of bytes in the

Table A-1 — Marker definitions

Marker value range Standard definition

0xFF00, 0xFF01, 
0xFFFE, 0xFFC0 — 

0xFFDF
Defined in ITU-T Rec. T.81 | ISO/IEC 10918-1

0xFFF0 — 0xFFF6 Defined in ITU-T Rec. T.84 | ISO/IEC 10918-3

0xFFF7 — 0xFFF8 Defined in ITU-T Rec. T.87 | ISO/IEC 14495-1

0xFF4F — 0xFF6F, 
0xFF90 — 0xFF93

Defined in this International Standard | Recommendation

0xFF30 — 0xFF3F Reserved for definition as markers only (no marker segments)
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field. A shaded rectangle (diagonal stripes) indicates that the parameter is of varying size. Two parameters with
superscripts and a gray area between indicate a run of several of these parameters. 

The figure is followed by a list that describes the meaning of each parameter in the marker segment. If parameters are
repeated, the length and nature of the run of parameters is defined. As an example, in Figure A-1, the first rectangle
represents the marker with the name MAR. The second rectangle represents the length parameter. Parameters Amar,
Bmar, Cmar, and Dmar are 8, 16, 32 bit and variable length respectively. The parameter Emari has a run from 1 to n.

After the list is a table that either describes the allowed parameter values or provides references to other tables that
describe these values. Tables for individual parameters are provided to describe any parameter without a simple
numerical value. In some cases theses parameters are described by a bit value in a bit field. In this case, the bits that do
not matter for this parameter are denoted with an “x.”

Some marker segments are described using the notation “Sxxx” and “SPxxx” (for a marker named XXX). The Sxxx
parameter selects between many possible states of the SPxxx parameter. According to this selection, the SPxxx parameter
or parameter list is modified.

A.2 Information in the marker segments

Table A-2 lists the markers specified in this Recommendation | International Standard. Table A-3 shows a list of the
information provided by the syntax and which marker segment contains that information.   

Table A-2 — List of marker segments

Name Code Main headera Tile-part headera

Delimiting marker segments

Start of codestream SOC 0xFF4F required not allowed

Start of tile-part SOT 0xFF90 not Allowed required

Start of data SOD 0xFF93 not allowed last marker

End of codestreamb
EOC 0xFFD9 not allowed not allowed

Fixed information marker segments

Image and tile size SIZ 0xFF51 required not allowed

Functional marker segments

Coding style default COD 0xFF52 required optional

Coding style component COC 0xFF53 optional optional

Figure A-1 — Example of the marker segment description figures

MAR Lmar
Amar

Cmar Emar1Bmar

16-bit marker 8-bit parameter 32-bit parameter

Emarn

Run of n parameters

Dmar

Variable size parameter
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Region-of-interest RGN 0xFF5E optional optional

Quantization default QCD 0xFF5C required optional

Quantization component QCC 0xFF5D optional optional

Progression order default POD 0xFF5F optionalc optionalc

Pointer marker segments

Tile-part lengths, main header TLM 0xFF55 optional not allowed

Packet length, main header PLM 0xFF57 optional not allowed

Packet length, tile-part header PLT 0xFF58 not allowed optional

Packed packet headers, main header PPM 0xFF60 optionald not allowed

Packed packet headers, tile-part header PPT 0xFF61 not allowed optionald

In bit stream marker segments

Start of packet SOP 0xFF91 not allowed optional, in bit stream

End of packet header EPH 0xFF92 not allowed optional, in bit stream

Informational marker segments

Comment and extension CME 0xFF64 optional optional

a. Required means the marker segment shall be in this header, optional means it may be used.
b. The EOC marker is the last in the codestream. It is in neither the main nor the tile-part headers.
c. The POD marker segment is required if there are progression order changes.
d. Either the PPM or PPT marker segment is required if the packet headers are not distribuited in the bit stream. If the PPM marker

segment is used then PPT marker segments shall not be used, and visa versa.

Table A-3 — Information in the marker segments

Information Marker segment

Capabilities
Image size or reference grid size (height and width)
Tile size (height and width)
Number of components
Component transform used
Component precision
Component mapping to the reference grid (sub-sampling)

SIZ

Tile number
Tile-part data length

SOT, TLM

Table A-2 — List of marker segments

Name Code Main headera Tile-part headera
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A.3 Construction of the codestream

Figure A-2 shows the construction of the codestream. Figure A-3 shows the main header construction. Note that all of the
solid lines show required marker segments. The marker segments on the left are required to be in a specific location. The

Coding style
Number of decomposition levels
Progression order
Number of layers
Code-block size
Code-block style
Wavelet transform

COD, COC

Region of interest shift RGN

No quantization
Quantization implicit
Quantization explicit

QCD, QCC

Progression starting point 
Progression ending point
Progression order default

POD

Error resilience
End of packet header

SOP, EPH

Code-block values for new layers
Code-block layer number
Code-block inclusion
Maximum bit depth
Truncation point
Bit stream length for decomposition level and layer in a code-block

packet header, 
PPM, PPT

Packet lengths PLM, PLT

Optional information CME

Table A-3 — Information in the marker segments

Information Marker segment
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dashed lines show optional or possibly not required marker segments. Figure A-4 shows the construction of a tile-part
header. 

SOC

main

SOT

tile 1 marker

SOD

SOT

tile 2 marker

SOD

tile-part 2

EOC

Required at the beginning of each tile-part header.

Tile-part header marker segments

Required at the end of each tile-part header.

Tile-part bit stream. Might include SOP.

Main header marker segments

Required as the first marker.

Required as the last marker in the codestream.

Figure A-2 — Construction of the codestream

tile-part 1

Main header

Tile-part header

Tile-part header
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SOC

SIZ

COD

COC

QCD

QCC

RGN

TLM

PLM

CME

Required.

Optional, no more than one COC per component.

Required.

Optional, no more than one QCC per component.

Required as the second marker segment.

Required as the first marker.

Optional, only one per specific components.

Optional.

Optional.

Optional.

Figure A-3 — Construction of the main header

POD

Optional, either PPM or PPT or codestream packet headers 
required.

M
ai

n 
he

ad
er

PPM

Required in main or tile if any progression order changes.
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The COD and COC marker segments and the QCD and QCC marker segments have hierarchy of usage. This is designed
to allow tile-components to have dissimilar coding and quantization characteristics with a minimum of signalling. 

For example, the COD marker segment is required in the main header. If all components in all the tiles are coded the same
way, this is all that is required. If there is one component that is coded differently than the others (for example the
luminance component of an image composed of luminance and chrominance components) then the COC can denote that
in the main header. If one or more components are coded differently in different tiles, then the COD and COC are used in
a similar manner to denote this in the tile-part headers.

The POD marker likewise may appear in the main header, and is used in all tiles, unless a different POD appears in the
tile header.

SOT

SOD

COD

COC

QCD

QCC

RGN

PLT

CME

Optional, no more than one per tile.

Optional, no more than one per component.

Optional, no more than one per tile.

Optional, no more than one QCC per component.

Required as the first marker segment of every tile-part header.

Optional, only one per tile-component.

Optional.

Optional.

Required as the last marker of every tile or tile-part header.

Figure A-4 — Construction of a tile-part header

POD

Optional, either PPM or PPT or codestream packet headers 
required.

T
ile

-p
ar

t h
ea

de
r

PPT

Required if any progression order changes different from main 
POD.
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A.4 Delimiting markers

The delimiting marker segments shall be present in all codestreams conforming to this Recommendation | International
Standard. Each codestream has only one SOC marker, one EOC marker, and at least one tile-part (SOT and SOD). Each
tile-part has one SOT and one SOD marker. The SOC, SOD, and EOC delimiting markers are 16 bits in length with no
explicit length information. 

A.4.1 Start of codestream (SOC)

Function: Marks the beginning of a codestream specified in this Recommendation | International Standard.

Usage: This is the first marker in the codestream. There shall be only one SOC per codestream.

Length: Fixed. 

SOC: Marker value.

Table A-4 — Start of codestream parameter values

Parameter Size (bits) Values

SOC 16 0xFF4F
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A.4.2 Start of tile-part (SOT)

Function: Marks the beginning of a tile-part and the index of its tile within a codestream. The tile-parts of a tile shall
appear in order (see TPsot) in the codestream, but not necessarily consecutively.

Usage: Shall be the first marker segment in a tile-part header. There shall be at least one SOT in a codestream. There shall
be only one SOT per tile-part.

Length: Fixed. 

SOT: Marker value. Table A-5 shows the size and values for start of tile-part.

Lsot: Length of marker segment in bytes (not including the marker).

Isot: Tile number. This number refers to the tiles in raster order starting at the number 0.

Psot: Length, in bytes, from the beginning of the first byte of this SOT marker segment of the tile-part to the
end of the data of that tile-part. Figure A-13 shows this alignment. Only the last tile-part in the
codestream may contain a 0 for Psot. If the Psot is 0, this tile-part is assumed to contain all data until the
EOC marker.

TPsot:Tile-part instance. If this is a tile-part, there is a specific order required for decoding tile-parts; this
index then denotes the order from 0. If there is only one tile-part for a tile then this value is zero. The
tile-parts of this tile shall appear in the codestream in this order, although not necessarily consecutively.

TNsot:Number of tile-parts of a tile in the codestream. Two values are allowed: the correct number of tile-parts
for that tile and zero. A zero value indicates that the number of tile-parts of this tile is not defined in this
tile-part.    

Table A-5 — Start of tile-part parameter values

Parameter Size (bits) Values

SOT 16 0xFF90

Lsot 16 10

Isot 16 0 — 65 535

Psot 32 0 — (232-1)

TPsot 8 0 — 255

TNsot 8 0 — 255

Table A-6 — Number of tile-parts, TNsot, parameter value

Value Number of tile-parts

0 Number of tile-parts of this tile in the codestream is not defined

TNsot

Figure A-5 — Start of tile-part syntax
TPsot

SOT Lsot Isot Psot
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1 — 255 Number of tile-parts of this tile in the codestream

Table A-6 — Number of tile-parts, TNsot, parameter value

Value Number of tile-parts
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A.4.3 Start of data (SOD)

Function: Indicates the beginning of bit stream data for the current tile-part. The SOD also indicates the end of a tile-part
header.

Usage: Shall be the last marker in a tile-part header. Data between an SOD and the next SOT or EOC (end of image) shall
be a multiple of 8 bits — the codestream is padded with bits, as needed (see Annex D.4.2). There shall be at least one
SOD in a codestream. There shall be one SOD per tile-part.

Length: Fixed.

SOD: Marker value  

Table A-7 — Start of data parameter values

Parameter Size (bits) Values

SOD 16 0xFF93
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A.4.4 End of codestream (EOC)

Function: Indicates the end of the codestream.

NOTE — This marker shares the same number as the EOI marker in ITU-T Rec. T.81 | ISO/IEC 10918-1.

Usage: Shall be the last marker in a codestream. There shall be one EOC per codestream. 

Length: Fixed.

EOC: Marker value     

Table A-8 — End of codestream parameter values

Parameter Size (bits) Values

EOC 16 0xFFD9
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A.5 Fixed information marker segment

This marker segment describes required information about the image.The SIZ marker segment is required in the main
header immediately after the SOC marker segment.

A.5.1 Image and tile size (SIZ)

Function: Provides information about the uncompressed image such as the width and height of the reference grid, the
width and height of the tiles, the number of components, component bit depth, and the separation of component samples
with respect to the reference grid. 

Usage: There shall be one and only one in the main header immediately after the SOC marker segment. There shall be
only one SIZ per codestream.

Length: Variable depending on the number of components.   

SIZ: Marker value. Table A-9 shows the size and parameter values for image and tile size.

Lsiz: Length of marker segment in bytes (not including the marker).

Rsiz: Denotes capabilities of the codestream.

Xsiz: Width of the reference grid.

Ysiz: Height of the reference grid.

XOsiz:Horizontal offset from the origin of the reference grid to the left side of the image area.

YOsiz:Vertical offset from the origin of the reference grid to the top side of the image area.

XTsiz:Width of one reference tile with respect to the reference grid.

YTsiz:Height of one reference tile with respect to the reference grid.

XTOsiz:Horizontal offset from the origin of the reference grid to the left side of the first tile.

YTOsiz:Vertical offset from the origin of the reference grid to the top side of the first tile.

Csiz: Number of components in the image.

Ssizi: Precision (depth) in bits and sign of the ith component. The precision is the precision of the component
before the RCT or ICT is performed. (It is not necessarily the precision of the component plane coded
in the file. The ICT or RCT can change the precision.) There is one occurrence of this parameter for
each component. This parameter signals the component precision that is in the codestream. Only those
bit-planes necessary need be extracted.

XRsizi:Horizontal separation of a sample of ith component with respect to the reference grid. There is one
occurrence of this parameter for each component. 

YRsizi:Vertical separation of a sample of ith component with respect to the reference grid. There is one
occurrence of this parameter for each component.           

SsiziYRsizi YRsiznSsizn

XRsizi XRsizn

Figure A-6 — Image and tile size syntax

SIZ Lsiz Rsiz Xsiz Ysiz XOsiz YOsiz

Csiz

XTsiz YTsiz

XTOsiz YTOsiz
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Table A-9 — Image and tile size parameter values

Parameter Size (bits) Values

SIZ 16 0xFF51

Lsiz 16 42 — 49 191

Rsiz 16 use Table A-10

Xsiz 32 1 — (232 - 1)

Ysiz 32 1 — (232 - 1)

XOsiz 32 0 — (232 - 2)

YOsiz 32 0 — (232 - 2)

XTsiz 32 1 — (232 - 1)

YTsiz 32 1 — (232 - 1)

XTOsiz 32 0 — (232 - 2)

YTOsiz 32 0 — (232 - 2)

Csiz 16 1 — 16 384

Ssizi 8 use Table A-11

XRsizi 8 1 — 255

YRsizi 8 1 — 255

Table A-10 — Capability Rsiz parameter

Value (bits)
MSB           LSB

Capability

0000 0000 0000 0000 Capabilities specified in this Recommendation | International Standard only

All other values reserved

Table A-11 — Component Ssiz parameter

Values (bits)
MSB           LSB

Coefficient size

x000 0000
x010 0101

Components are value+1; from 1 bit deep through 38 bits deep 
respectively (including the sign bit, if appropriate)a

0xxx xxxx Components are unsigned values

1xxx xxxx Components are signed values
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All other values reserved.

a. The component precision is limited by the number of guard bits, quantization, growth of
coefficients at each level of the transform, and the number of coding passes that can be
signalled. Not all combinations of coding styles will allow the coding of 38 bit samples.

Table A-11 — Component Ssiz parameter

Values (bits)
MSB           LSB

Coefficient size
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A.6 Functional marker segments

These marker segments describe the functions used to code the entire tile, if found in the tile-part header, or image, if
found in the main header. If there are multiple tile-parts for a tile, then these marker segments shall be found only in the
first tile-part (Tsot = 0).

A.6.1 Coding style default (COD)

Function: Describes the coding style, decomposition, and layering that is the default used for compressing all
components of an image (if in the main header) or a tile (if in the tile-part header) that are not described by COC marker
segment. The parameter values can be overridden for an individual component by a COC marker segment in either the
main or tile-part header.

Usage: Shall be one and only one in the main header. There may be at most one for all tile-part headers of a tile. If there
are multiple tile-parts in a tile, and this marker segment is present, it shall be found only in the first tile-part (Tsot = 0).

When used in the main header, the COD marker segment parameter values are used for all tile-components that do not
have a corresponding COC marker segment in either the main or tile-part header. When used in the tile-part header it
overrides the main header COD and COCs and is used for all components in that tile without a corresponding COC
marker segment in the tile-part. Thus, the order of precedence is the following:

Tile-part COC > Tile-part COD > Main COC > Main COD

where the “greater than” sign, >, means that the greater overrides the lessor marker segment.

Length: Variable depending on the value of Scod. 

COD: Marker value. Table A-12 shows the size and parameter values for coding styles.

Lcod: Length of marker segment in bytes (not including the marker).

Scod: Coding style for all components. Table A-13 shows the value for the Scod parameter.

SPcodi:Parameters for coding style designated in Scod. The parameters are designated, in order from top to
bottom, in the appropriate table.                      

Table A-12 — Coding style default parameter values

Parameter Size (bits) Values

COD 16 0xFF52

Lcod 16 12 — 65 535

Scod 8 Table A-13

SPcodi variable Table A-13

SPcodi

Figure A-7 — Coding style default syntax

COD Lcod

Scod SPcodn
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Table A-13 — Coding style parameter values for the Scod parameters

Values (bits)
MSB    LSB

Coding style SPcod usage

0000 00x0
0000 00x1

Entropy coder, without partitions (implies PPx = 215 and PPy = 215)
Entropy coder, with partitions

Table A-14

xxxx xx0x
xxxx xx1x

No SOP marker segments used
SOP marker segments may used

xxxx x0xx
xxxx x1xx

No EPH marker segments used
EPH marker segments may used

All other values reserved

Table A-14 — Coding style parameter values of the SPcod parameters

Parameters (in order) Size (bits) Values Meaning of SPcod values

Decomposition levels 8 0 — 32
Number of decomposition levels, dyadic decomposition.

(Zero implies no transform.)

Progression order 8 Table A-15 Progression order

Number of layers 16 0 — 65535 Number of layers

Code-block size width 8 Table A-16 Code-block width exponent value, xcb

Code-block size height 8 Table A-16 Code-block height exponent value, ycb

Code-block style 8 Table A-17 Style of the code-block coding passes

Transform 8 Table A-18 Wavelet transform used.

Multiple component 
transform

8 Table A-19 Multiple component transform usage

Packet partition size variable Table A-20

If partitions are not used, this parameter is not present.
If partitions are used, this indicates partition size width and height. The 
first parameter (8 bits) corresponds to the LL sub-band. Each successive 
parameter corresponds to each successive decomposition level in order.

Table A-15 — Progression order for the SPcod, Ppod parameters

Values (bits)
MSB        LSB

Progression order

0000 0000 Layer-resolution-component-position progressive

0000 0001 Resolution-layer-component-position progressive

0000 0010 Resolution-position-component-layer progressive

0000 0011 Position-component-resolution-layer progressive
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0000 0100 Component-position-resolution-layer progressive

All other values reserved

Table A-16 — Width and height of the code-blocks for the SPcod and SPcoc parameters

Values (bits)
MSB        LSB

Code-block width and height

xxxx 0000 —
xxxx 1000

Code-block width and height offset exponent value

. The code-block 
width and height are limited to powers of two with the minimum size 

being 22 and the maximum being 210. Further the code-block size is 
restricted to the xcb+ycb <= 12.

All other values reserved

Table A-17 — Code-block style for the SPcod and SPcoc parameters

Values (bits)
MSB           LSB

Code-block style

xxxx xxx0
xxxx xxx1

No selective arithmetic coding bypass
Selective arithmetic coding bypass

xxxx xx0x
xxxx xx1x

No reset of context probabilities on coding pass boundaries
Reset context probabilities on coding pass boundaries

xxxx x0xx
xxxx x1xx

No termination on each coding pass
Termination on each coding pass

xxxx 0xxx
xxxx 1xxx

No vertically stripe causal context
Vertically stripe causal context

xxx0 xxxx
xxx1 xxxx

No predictable termination
Predictable termination

xx0x xxxx
xx1x xxxx

No segmentation symbols are used
Segmentation symbols are used

All other values reserved

Table A-18 — Transform for the SPcod and SPcoc parameters

Values (bits)
MSB           LSB

Transform type

0000 0000 9-7 irreversible wavelet transform

Table A-15 — Progression order for the SPcod, Ppod parameters

Values (bits)
MSB        LSB

Progression order

xcb 2
value 2+

= or ycb 2
value 2+

=
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0000 0001 5-3 reversible wavelet transform

All other values reserved

Table A-19 — Multiple component transformation CSsiz parameter

Values (bits)
MSB           LSB

Multiple component transformation type

0000 0000
No multiple component transform specified. (A multiple component transform 

may be specified by the file format level.)

0000 0001
Reversible component transform on components 0, 1, 2 (see Annex G.2). Shall be 

used only with the 5-3 reversible wavelet transform.

0000 0010
Irreversible component transform on components 0, 1, 2 (see Annex G.2)Shall be 

used only with the 9-7 irreversible wavelet transform.

All other values reserved

Table A-20 — Packet partition width and height for the SPcod parameters

Values (bits)
MSB           LSB

Packet partition size

xxxx 0000 —
xxxx 1111

4 LSBs are the packet partition width exponent, . Only the 
first value may equal zero.

0000 xxxx —
1111 xxxx

4 MSBs are the packet partition height exponent . Only 
the first value may equal zero.

Table A-18 — Transform for the SPcod and SPcoc parameters

Values (bits)
MSB           LSB

Transform type

PPx value=

PPy value=
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A.6.2 Coding style component (COC)

Function: Describes the coding style, decomposition, and layering used for compressing a particular component.

Usage: Optional in both the main and tile-part headers. No more than one per any given component may be present in
either the main or tile-part headers. If there are multiple tile-parts in a tile, and this marker segment is present, it shall be
found only in the first tile-part (Tsot = 0).

When used in the main header it overrides the main COD marker segment for the specific component. When used in the
tile-part header it overrides the main COD, main COC, and tile COD for the specific component. Thus, the order of
precedence is the following:

Tile-part COC > Tile-part COD > Main COC > Main COD

where the “greater than” sign, >, means that the greater overrides the lessor marker segment.

Length: Variable depending on the value of Scoc. 

COC: Marker value. Table A-21 shows the size and parameter values for coding styles.

Lcoc: Length of marker segment in bytes (not including the marker).

Ccoc: The number of the component to which this marker segment relates. The components are numbered 0,
1, 2, etc. (Either 8 or 16 bits depending on Csiz value.)

Scoc: Coding style for this component. Table A-22 shows the value for each Scoc parameter.

SPcoci:Parameters for coding style designated in Scoc. The parameters are designated, in order from top to
bottom, in the appropriate table.      

Table A-21 — Coding style component parameter values

Parameter Size (bits) Values

COC 16 0xFF53

Lcoc 16 9 — 65 535

Ccoc
8
16

0 — 255; if Csiz < 257
0 — 16383; Csiz ≥ 257

Scoc 8 Table A-22

SPcoci variable Table A-22

SPcociCcoc

Figure A-8 — Coding style component syntax

COC Lcoc

Scoc SPcocn
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Table A-22 — Coding style parameter values for the Scoc parameters

Values (bits)
MSB    LSB

Coding style SPcoc usage

0000 0000 Entropy coder, PARTITION = 0 Table A-23

0000 0001 Entropy coder, PARTITION = 1 Table A-23

All other values reserved

Table A-23 — Coding style parameter values from SPcoc parameters

Parameters (in order) Size (bits) Values Meaning of SPcoc values

Decomposition levels 8 0 — 32
Number of decomposition levels, dyadic decomposition. (Zero 

implies no transform.)

Code-block size width 8 Table A-16 Code-block width exponent value of the number 2, xcb

Code-block size height 8 Table A-16 Code-block height exponent value of the number 2, ycb

Code-block context 8 Table A-17 Style of the code-block coding passes

Transform 8 Table A-18 Wavelet transform used.

Packet partition size variable Table A-20

If PARTITION = 0, not present
If PARTITION = 1, indicates partition size width and height

First is LL, then repeated for every decomposition level 
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A.6.3 Region-of-interest (RGN)

Function: Signals the location, shift, and type of RGN in the codestream.

Usage: May be used in main or tile-part header. If used in the main header it refers to the ROI scaling value for one
component in the whole image, valid for all tiles except those with an RGN maker.

When used in the tile-part header the scaling value is valid only for one component in that tile. There may be at most one
RGN marker segment for each component in either the main or tile-part headers. The RGN marker segment for a
particular component which appears in a tile-part header overrides any marker for that component in the main header, for
the tile in which it appears. If there are multiple tile-parts in a tile, then this marker segment shall be found only in the
first tile-part header.

Length: Variable. 

RGN: Marker value. Table A-24 shows the size and parameter values for coding styles.

Lrgn: Length of marker segment in bytes (not including the marker).

Crgn: The number of the component to which this marker segment relates. The components are numbered 0,
1, 2, etc. (Either 8 or 16 bits depending on Csiz value.)

Srgn: ROI style for the current ROI. Table A-25 shows the value for the Srgn parameter.

SPrgn:Parameter for ROI style designated in Srgn.          

Table A-24 — Region-of-interest parameter values

Parameter Size (bits) Values

RGN 16 0xFF5E

Lrgn 16 5 — 6

Crgn
8
16

0 — 255; if Csiz < 257
0 — 16383; Csiz ≥ 257

Srgn 8 Table A-25

SPrgn variable Table A-26

Table A-25 — Region-of-interest parameter values for the Srgn parameter

Values ROI style (Srgn) SPrgn usage

0 Implicit ROI (maximum shift) Table A-26

All other values reserved

Crgn SPrgn

Figure A-9 — Coding style default syntax

RGN Lrgn

Srgn
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Table A-26 — Region-of-interest values from SPrgn parameter (Srgn = 0)

Parameters (in order) Size (bits) Values Meaning of SPrgn value

Implicit ROI shift 8 0 — 255 Binary shifting of ROI coefficients above the background
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A.6.4 Quantization default (QCD)

Function: Describes the quantization default used for compressing all components not defined by a QCC marker
segment. The parameter values can be overridden for an individual component by a QCC marker segment in either the
main or tile-part header. 

Usage: Shall be one and only one in the main header. May be at most one for all tile-part headers of a tile. If there are
multiple tile-parts for a tile, and this marker segment is present, it shall be found only in the first tile-part (Tsot = 0).

When used in the tile-part header it overrides the main QCD and the main QCC for the specific component. Thus, the
order of precedence is the following:

Tile-part QCC > Tile-part QCD > Main QCC > Main QCD

where the “greater than” sign, >, means that the greater overrides the lessor marker segment.

Length: Variable depending on the number of quantized elements. 

QCD: Marker value. Table A-27 shows the size and parameter values for coding styles.

Lqcd: Length of marker segment in bytes (not including the marker).

Sqcd: Quantization style for all components.

SPqcdi:Quantization step size value for the ith sub-band in the defined order (see Annex B.6). The number of
parameters is the same as, or larger than, the number of sub-bands in the tile-component with the
greatest number of decomposition levels. If the number of parameters exceed number of sub-bands the
last parameters in the series is ignored.           

Table A-27 — Quantization default parameter values

Parameter Size (bits) Values

QCD 16 0xFF5C

Lqcd 16 4 — 197

Sqcd 8 Table A-28

SPqcdi variable Table A-28

Table A-28 — Quantization default values for the Sqcd and Sqcc parameters

Values (bits)
MSB     LSB

Quantization style
SPqcx size

(bits)
SPqcx usage

xxx0 0000 No quantization 8 Table A-29

xxx0 0001
Scalar implicit (values signalled for LL sub-

band only)
16 Table A-30

SPqcdi

Figure A-10 — Quantization default syntax

QCD Lqcd

Sqcd SPqcdn
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xxx0 0010
Scalar explicit (values signalled for each sub-

band)
16 Table A-30

000x xxxx —
111x xxxx

Number of guard bits 0 — 7

All other values reserved

Table A-29 — Reversible step size values for the SPqcd and SPqcc parameters (5-3 transform only)

Values (bits)
MSB                      LSB

Reversible step size values

xxx0 0000 —
xxx1 1111

Exponent, , of the reversible dynamic range (signalled for each sub-band)

All other values reserved

Table A-30 — Quantization values for scalar quantization for the SPqcd and SPqcc parameters (9-7 transform 
only)

Values (bits)
MSB                      LSB

Quantization step size values

xxxx x000 0000 0000 —
xxxx x111 1111 1111

Mantissa, , of the quantization step size value (see Equation E.1)

0000 0xxx xxxx xxxx —
1111 1xxx xxxx xxxx

Exponent, , of the quantization step size value (see Equation E.1)

Table A-28 — Quantization default values for the Sqcd and Sqcc parameters

Values (bits)
MSB     LSB

Quantization style
SPqcx size

(bits)
SPqcx usage

εb

µb

εb
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A.6.5 Quantization component (QCC)

Function: Describes the quantization used for compressing a particular component

Usage: Optional in both the main and tile-part headers. No more than one per any given component may be present in
either the main or tile-part headers. If there are multiple tile-parts in a tile, and this marker segment is present, it shall be
found only in the first tile-part (Tsot = 0).

Optional in both the main and tile-part headers. When used in the main header it overrides the main QCD marker
segment for the specific component. When used in the tile-part header it overrides the main QCD, main QCC, and tile
QCD for the specific component. Thus, the order of precedence is the following:

Tile-part QCC > Tile-part QCD > Main QCC > Main QCD

where the “greater than” sign, >, means that the greater overrides the lessor marker segment.

Length: Variable depending on the number of quantized elements. 

QCC: Marker value. Table A-31 shows the size and parameter values for coding styles.

Lqcc: Length of marker segment in bytes (not including the marker).

Cqcc: The number of the component to which this marker segment relates. The components are numbered 0,
1, 2, etc. (Either 8 or 16 bits depending on Csiz value.)

Sqcc: Quantization style for this component.

SPqcci:Quantization value for each sub-band in the defined order (see Annex B.6). If used in the main header,
the number of parameters is greater than, or equal to, the greatest number of sub-bands of this
component across all tiles in the image. If used in the tile header, the number of parameters is greater
than, or equal to, the number of sub-bands of the current tile-component.  

Table A-31 — Quantization component parameter values

Parameter Size (bits) Values

QCC 16 0xFF5D

Lqcc 16 5 — 199

Cqcc
8
16

0 — 255; if Csiz < 257
0 — 16383; Csiz ≥ 257

Sqcc 8 Table A-28

SPqcci variable Table A-28

SPqcciCqcc

Figure A-11 — Quantization component syntax

QCC Lqcc

Sqcc SPqccn
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A.6.6 Progression order change, default (POD)

Function: Describes the bounds and progression order for any progression order other than default in the codestream.

Usage: May be used in the main or tile-part header. At most one POD may appear in the main header. At most one POD
may appear in a tile-part header. A POD appearing in a tile-part header overrides any POD in the main header, for that tile
only. PODs appearing in tile-parts other than the first tile part may contain progression order only for packets contained in
that tile-part.

This tag if present overrides the progression field of the COD marker segments in the main and tile headers.

Tile-part POD > Tile-part COD > Main POD > Main COD

Each set of starting and ending parameters must be disjoint from any previous set of starting and ending parameters.
Further, for any packet with a given component, layer, resolution, and position, all packets with the same component,
resolution, position and a lower layer must appear before the packet with the given values.

Length: Variable depending on the number of different progressions. 

POD: Marker value. Table A-32 shows the size and parameter values for coding styles.

Lpod: Length of marker segment in bytes (not including the marker).

RSpodi:Resolution index for the start of a progression. One value for each progression change in this tile or
tile-part. The number of progression changes can be derived from the length of the marker parameters.

CSpodi:Component index for the start of a progression. The components are numbered 0, 1, 2, etc. (Either 8 or
16 bits depending on Csiz value.) One value for each progression change in this tile or tile-part. The
number of progression changes can be derived from the length of the marker parameters.

LYEpodi:Layer index for the end of a progression. The layer index always starts at zero for every progression.
Layers that have already been included in the codestream are not included again. One value for each
progression change in this tile or tile-part. The number of progression changes can be derived from the
length of the marker parameters.

REpodi:Resolution index for the end of a progression. One value for each progression change in this tile or
tile-part. The number of progression changes can be derived from the length of the marker parameters.

CEpodi:Component index for the end of a progression. The components are numbered 0, 1, 2, etc. (Either 8 or
16 bits depending on Csiz value.) One value for each progression change in this tile or tile-part. The
number of progression changes can be derived from the length of the marker parameters.

Ppod: Progression order. One value for each progression change in this tile or tile-part. The number of
progression changes can be derived from the length of the marker parameters.  

Table A-32 — Progression order change, tile parameter values

Parameter Size (bits) Values

POD 16 0xFF5F

REpodi PpodiCSpodi REpodn PpodnCSpodn

CEpodiLYEpodi

Figure A-12 — Progression order change, tile syntax

POD Lpod

RSpodi CEpodnRSpodn LYEpodn
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Lpod 16 9 — 65 535

RSpodi 8 0 — 255

CSpodi 8
16

0 — 255; if Csiz < 257
0 — 16383; Csiz ≥ 257

LYEpodi 16 0 — 65535

REpodi 8 0 — 255

CEpodi 8
16

0 — 255; if Csiz < 257
0 — 16383; Csiz ≥ 257

Ppodi 8 Table A-15

Table A-32 — Progression order change, tile parameter values

Parameter Size (bits) Values
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A.7 Pointer marker segments

Pointer marker segments either provide a length or pointer into the codestream.The TLM marker segment describes the
length of the tile-parts. It has the same length information as the SOT marker segment. The PLM or PLT marker segment
describes the length of the packets in the bit stream of the packets.

NOTE — Having the pointer marker segments all occur in the main header allows direct access into the compressed data. Having
the pointer information in the tile-part headers removes the burden on the encoder of rewinding to store the information.

The TLM (Ptlm) or the SOT (Psot) parameters point from the beginning of the current tile-part’s SOT marker segment to
the end of the data in that tile-part. Because tile-parts are required to be a multiple of 8 bits, these values are always a byte
length. Figure A-13 shows the length of a tile-part.

The PLM or PLT marker segments are optional. The PLM marker segment is used in the main header and the PLT marker
segments are used in tile-part headers. The PLM and PLT marker segments are lengths of each packet in the tile-part. 

A.7.1 Tile-part lengths, main header (TLM)

Function: Describes the length of every tile-part in the codestream. Each tile-part’s length is measured from the first byte
of the SOT marker segment to the end of the data of that tile-part. The value of each individual tile-part length in the TLM
marker segment is the same as the value in the corresponding Psot in the SOT marker segment.

Usage: Optional use in the main header only. There may be multiple TLM marker segments in the main header.

Length: Variable depending on the number of tile-parts in the codestream.   

TLM: Marker value. Table A-33 shows the size and values for the tile-part length main header parameters.

Ltlm: Length of marker segment in bytes (not including the marker).

Ztlm: Index of this marker segment relative to all other TLM markers present in the current header. For the
full list of parameters that follow, the lists of every like marker segment are concatenated in order.

Stlm: Size of the Ttlm and Ptlm parameters.

Ttlmi: Tile number of the ith tile-part. Either none or one value for every tile-part. The number of tile-parts can
be derived from the length of this marker segment or from a non-zero TNsot parameter, if present.

Ptlmi: Length, in bytes, from the beginning of the SOT marker of the ith tile-part to the end of the data for that
tile-part. One value for every tile-part. The number of tile-parts can be derived from the length of this
marker segment.  

Tile-part length (TLM, SOT(Psot))

SOT SODTile head

Figure A-13 — Coded tile-part lengths

Bit stream

Ztlm Ttlmi Ptlmi

Stlm

Figure A-14 — Tile-part length, main header syntax

TLM Ltlm

Ttlmn Ptlmn
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Table A-33 — Tile-part length, main header parameter values

Parameter Size (bits) Values

TLM 16 0xFF55

Ltlm 16 6 — 65 535

Ztlm 8 0 — 255

Stlm 8 Table A-34

Ttlmi
0 if ST = 0
8 if ST = 1
16 if ST = 2

tile in order
0 — 254

0 — 65 334

Ptlmi 16 if SP = 0
32 if SP = 1

2 — 65 534
2 — (232-2)

Table A-34 — Size parameters for Stlm

Values (bits)
MSB      LSB

Parameter size 

xx00 xxxx
ST = 0; Ttlm parameter is 0 bits, only one tile-part per tile, and tile-

parts are in index order without omission or repetition

xx01 xxxx ST = 1; Ttlm parameter 8 bits

xx10 xxxx ST = 2; Ttlm parameter 16 bits

x0xx xxxx SP = 0; Ptlm parameter 16 bits

x1xx xxxx SP = 1; Ptlm parameter 32 bits

All other values reserved
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A.7.2 Packet length, main header (PLM)

Function: A list of packet lengths in the tile-parts. This exists for every tile-part in order.

Usage: Can be used in the main header only. There may be multiple PLM marker segments. Both the PLM and PLT
marker segments are optional and can be used together or separately.

Length: Variable depending on the number of tile-parts in the image and the number of packets in each tile-part. 

PLM: Marker value. Table A-35 shows the size and values for the packets, main header parameters.

Lplm: Length of marker segment in bytes (not including the marker).

Zplm: Index of this marker segment relative to all other PLM markers present in the current header. For the
full list of parameters that follow, the lists of every like marker segment are concatenated in order.

Nplmi:Number of bytes of Iplm information for the ith tile-part in the order found in the codestream. One
value for each tile-part.

Iplmij: Length of the jth packet in the ith tile-part. If packet header is stored with the packet this length
includes the packet header, if packet headers are stored in PPM or PPT this length does not include the
packet header length. One range of values for each tile-part. One value for each packet in the tile.    

Table A-35 — Packets length, main header parameter values

Parameter Size (bits) Values

PLM 16 0xFF57

Lplm 16 5 — 65 535

Zplm 8 0 — 255

Nplmi 8 0 — 255

Iplmij variable Table A-36

Table A-36 — Iplm, Iplt list of packet lengths

Parameters
(in order)

Size (bits) Values Meaning of Iplm or Iplt values

Packet length
8 bits 

repeated as 
necessary

0xxx xxxx
1xxx xxxx

x000 0000 — 
x111 1111

Last 7 bits of packet length, terminate numbera

Continue readingb

7 bits of packet length

a. This is the last 7 bits that make up the packet length. 
b. This is not the last 7 bits that make up the packet length. Note that each 7 bit portion of the packet length is read from the
codestream and packed MSB first to make up the length of the packet.

Nplmn

Figure A-15 — Packets length, main header syntax

PLM Lplm

Nplmi

IplmnmIplmnjIplmimIplmijZplm
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A.7.3 Packets length, tile-part header (PLT)

Function: A list of packet lengths in the tile-part.

Usage: There may be multiple PLT marker segments per tile. Both the PLM and PLT marker segments are optional and
can be used together or separately.

Length: Variable depending on the number of packets in each tile-part.       

PLT: Marker value. Table A-37 shows the size and values for the packet parameters.

Lplt: Length of marker segment in bytes (not including the marker).

Zplt: Index of this marker segment relative to all other PLT markers present in the current header. For the full
list of parameters that follow, the lists of every like marker segment are concatenated in order.

Iplmi: Length of the ith packet. If packet headers are stored with the packet this length includes the packet
header, if packet headers are stored in PPM or PPT this length does not include the packet header
length.  

Table A-37 — Packet length, tile-part headers parameter values

Parameter Size (bits) Values

PLT 16 0xFF58

Lplt 16 4 — 65 535

Zplt 8 0 — 255

Iplti variable Table A-36

Figure A-16 — Packet length, tile-part header syntax

PLT Lplt

Iplti Ipltn

Zplt
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A.7.4 Packed packet headers, main header (PPM)

Function: A collection of the packet headers so multiple reads are not required to decode headers.

Usage: May be used in the main header for all tile-parts unless a PPT marker is used in the tile-part header. 

The packet headers shall be in only one of three places within the codestream. If the PPM marker segment is present, all
the packet headers are found in that marker segment. In this case, the PPT marker segment and packets distributed in the
bit stream of the tile-parts are disallowed.

If there is no PPM marker segment then the packets can be distributed either in a PPT marker segment in the first tile-part
(Tsot = 0) or distributed in the codestream as defined in Annex B.9. The packet headers shall not be in both a PPT marker
segment and the codestream for the same tile. There may be multiple PPM marker segments in the main header.

Length: Variable depending on the number of packets in each tile-part and the compression of the packet headers. 

PPM: Marker value. Table A-38 shows the size and values for the parameters.

Lppm:Length of marker segment in bytes, not including the marker.

Zppm:Index of this marker segment relative to all other PPM markers present in the current header. For the
full list of parameters that follow, the lists of every like marker segment are concatenated in order.

Nppmi:Number of bytes of Iplm information for the ith tile-part in the order found in the codestream. One
value for each tile-part (not tile).

Ippmij: Packet header for every packet in order in the tile-part. The component number, layer, and resolution
are determined from the method of progression or the POD marker(s). The contents are exactly the
packet header which would have been distributed in the bit stream as described in Annex B.8 packet
header information. One range of values for each tile-part. One value for each packet in each tile-part.    

Table A-38 — Packed packet headers, main header parameter values

Parameter Size (bits) Values

PPM 16 0xFF60

Lppm 16 6 — 65 535

Zppm 8 Table A-39

Nppmi 32 0 - 65 535

Ippmij variable packet headers

Figure A-17 — Packed packet headers, main header syntax

PPM Lppm

Ippmij Ippmim

Nppmn

Ippmnj Ippmnm

Nppmi

Zppm
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Table A-39 — Index for the PPM marker segment parameters for Zppm

Values (bits)
MSB      LSB

Index size 

0xxx xxxx
1xxx xxxx

Data in this marker segment starts with the next tile-part
Data in this marker segment continues with the tile-part from the last

x000 0000 —
x111 1111

Index of the marker segment from 0 to 127
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A.7.5 Packed packet headers, tile-part header (PPT)

Function: A collection of the packet headers so multiple reads are not required to decode headers.

Usage: May be used in the every tile-part header for a tile-part with packets unless a PPM marker is used in the main
header.

The packet headers shall be in only one of three places within the codestream. If the PPM marker segment is present, all
the packet headers are found in that marker segment. In this case, the PPT marker segment and packets distributed in the
bit stream of the tile-parts are disallowed.

If there is no PPM marker segment than the packets can be distributed either in a PPT marker segment in the first tile-part
(Tsot = 0) or distributed in the codestream as defined in Annex B.9. The packet headers shall not be in both a PPT marker
segment and the codestream for the same tile. There may be multiple PPT marker segments in a tile-part header.

Length: Variable depending on the number of packets in each tile-part and the compression of the packet headers. 

PPT: Marker value. Table A-40 shows the size and values for the parameters.

Lppt: Length of marker segment in bytes, not including the marker.

Zppt: Index of this marker segment relative to all other PPT markers present in the current header. For the full
list of parameters that follow, the lists of every like marker segment are concatenated in order.

Ippti:  Packet header for every packet in order in the tile-part. The component number, layer, and resolution
are determined from the method of progression or POD marker(s). The contents are exactly the packet
header which would have been distributed in the bit stream as described Annex B.8 packet header
information. One value for each packet in the tile.  

Table A-40 — Packet header, tile-part headers parameter values

Parameter Size (bits) Values

PPT 16 0xFF61

Lppt 16 4 — 65 535

Zppt 8 0 — 255

Ippti variable packet headers

Zppt

Figure A-18 — Packed packet headers, tile-part header syntax

PPT Lppt

Ippti Ipptn
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A.8 In bit stream marker segments

These marker segments are used for error resilience. The marker segments differ from all the others because they have no
length field and they are found in the bit stream, not the main or a tile-part header.

A.8.1 Start of packet (SOP)

Function: Marks the beginning of a partition and the index of that partition within a codestream. 

Usage: Optional. Used in the bit stream in front of every packet. Shall only be used if indicated in the proper COD
marker (see Annex A.6.1).

Length: Fixed 4 bytes. 

SOP: Marker value. Table A-41 shows the size and values for start of tile-part.

Lsop: Length of marker segment in bytes, not including the marker.

Nsop: Packet sequence number. The first packet in a tile is assigned the value zero. For every successive
packet this number is incremented by one. When the maximum number is reached, the number rolls
over to zero.  

Table A-41 — Start of packet parameter values

Parameter Size (bits) Values

SOP 16 0xFF91

Lsop 16 4

Nsop 16 0 — 65 535

Figure A-19 — Start of packet syntax

SOP Lsop Nsop
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A.8.2 End of packet header (EPH)

Function: Indicates the end of the packet header for a given packet. This delimits the packet headers in stream or in the
PPM or PPT marker segments. This marker does not denote the beginning of packet data. If there is no packet header in
stream, this marker shall not be used.

Usage: Optionally used in the bit stream or in the PPM or PPT marker segments. If there is no packet header in stream,
this marker shall not be used. Shall only be used if indicated in the proper COD marker (see Annex A.6.1).

Length: Fixed.

EPH: Marker value     

Table A-42 — End of packet header parameter values

Parameter Size (bits) Values

EPH 16 0xFF92
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A.9 Informational markers

These marker segments are strictly information and are not necessary for a decoder. However, these marker segments
might assist a parser or decoder. More information about the source and characteristics of the image can be obtained by
using a file format such as JP2 (see Annex I).

A.9.1 Comment and extension (CME)

Function: Allows unstructured data in the header. 

Usage: Repeatable as many times as desired in either or both the main or tile-part headers.

Length: Variable depending on the length of the message. 

CME: Marker value. Table A-43 shows the size and values for the comment parameters.

Lcme: Length of marker segment in bytes (not including the marker).

Rcme:Registration value of the marker segment.

Ccmei:Byte of unstructured data.  

Table A-43 — Comment and extension parameter values

Parameter Size (bits) Values

CME 16 0xFF64

Lcme 16 5 — 65 535

Rcme 16 Table A-44

Ccmei 8 0 — 255

Table A-44 — Registration values for the Rcme parameter

Values Registration values

0 General use (binary values)

1 General use (ISO 8859-1 (latin-1) values)

2 — 65 534 Reserved for registration

65 535 Reserved for extension

Ccmei

Figure A-20 — Coding style component syntax

CME Lcme Rcme

Ccmen
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Annex B

Data ordering

(This annex forms an integral part of this Recommendation | International Standard)

This annex deals with various structural entities composing the image and their organization in the codestream:
components, tiles, sub-bands, and their divisions. 

B.1 Image division into components

All components (and many other structures in this Annex) are defined with respect to a high resolution grid. The various
parameters defining the reference grid appear in Figure B-1. The reference grid is a rectangular grid of data points with
the indices from (0,0) to (Xsiz-1, Ysiz-1). An “image area” is defined on the reference grid by the dimensional
parameters, (Xsiz, Ysiz) and (XOsiz, YOsiz). Specifically, the image area on the reference grid is defined by its upper left
hand grid point at location (XOsiz, YOsiz), and its lower right hand grid point at location (Xsiz-1, Ysiz-1).

The samples of component i are at integer multiples of (XRsiz(i), YRsiz(i)) on the reference grid. Only those samples
which fall within the image area actually belong to the image component. Thus the samples of component i are mapped
into the image component domain, as a rectangle having upper left hand sample with coordinates (x0, y0) and lower right
hand sample with coordinates (x1-1, y1-1) where

 B.1

Thus, the dimensions of component i are given by

 B.2

The parameters, Xsiz, Ysiz, XOsiz, YOsiz, XRsiz(i) and YRsiz(i) are all defined in the SIZ marker (see Annex A.5.1). 

NOTE —  The fact that all components share the image offset (XOsiz, YOsiz) and size (Xsiz, Ysiz) induces a registration of the
components.

x0
XOsiz

XRsiz i( )
----------------------= x1

Xsiz
XRsiz i( )
----------------------= y0

YOsiz
YRsiz i( )
---------------------= y1

Ysiz
YRsiz i( )
---------------------=

width height,( ) x1 x0– y1 y0–,( )=

(XOsiz, 
YOsiz)

Xsiz

Y
si

z

XOsiz

Y
O

si
z

(Xsiz-1, Ysiz-

(Xsiz-1, 0)

(0, Ysiz-1)

(0, 0)

Image area

Figure B-1 — Reference grid diagram

Note that the lines in the figure correspond to 
boundary grid points. The image area includes 
grid points at locations (XOsiz, YOsiz) and 
(Xsiz-1, Ysiz-1), as well as all grid points in 
between.
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B.2 Image division into tiles and tile-components

The reference grid is partitioned into a regular sized rectangular array of tiles. The tile size and tiling offset are defined,
on the reference grid, by dimensional pairs (XTsiz, YTsiz) and (XTOsiz, YTOsiz), respectively. These are all parameters
from the SIZ marker (see Annex A.5.1).

Every tile is XTsiz reference grid points wide and YTsiz reference grid points high. The top left corner on the first tile
(tile 0) is offset from the top left corner of the reference grid by (XTOsiz, YTOsiz). The tiles are numbered in raster order.
This is the tile number in the SOT marker from Annex A. Thus, the first tile’s starting coordinates are (XTOsiz, YTOsiz).
Figure B-2 shows this relationship. 

The tile grid offsets (XTOsiz and YTOsiz) are constrained to be no greater than the image area offsets. This is expressed
by the following ranges:

B.3

Also, the tile size plus the tile offset shall be greater than the image area offset. This ensures that the first tile (tile 0) will
contain at least one reference grid point from the image area. This is expressed by the following ranges:

B.4

The number of tiles in the X direction (numXtiles) and the Y direction (numYtiles) is the following:

. B.5

For the purposes of this description, it is useful to have tiles indexed in terms of horizontal and vertical position. Let p be
the horizontal index of a tile, ranging from 0 to numXtiles -1, and q be the vertical index of a tile, ranging from 0 to
numYtiles -1, determined from the tile number as follows:

T0 T1 T2 T3 T4

T5 T6 T7 T8 T9

T10 T11 T12 T13 T14

T15 T16 T17 T18 T19

(XTOsiz, 
YTOsiz)

Figure B-2 — Tiling of the reference grid diagram

XTsizXTOsiz

Y
T

O
si

z
Y

T
si

z

Tile index 
number

0 XTOsiz XOsiz≤ ≤ 0 YTOsiz YOsiz≤ ≤

XTsiz XTOsiz+ XOsiz> YTsiz YTOsiz+ YOsiz>

numXtiles Xsiz XTOsiz–
XTsiz

------------------------------------= numYtiles Ysiz YTOsiz–
YTsiz

-----------------------------------=
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B.6

where t is the index of the tile in Figure B-2.

The coordinates of a particular tile on the reference grid are described by the following equation:

B.7

B.8

B.9

B.10

where tx0(p, q) and ty0(p, q) are the coordinates of the upper left corner of the tile, tx1(p, q) - 1 and ty1(p, q) - 1 are the
coordinates of the lower right corner of the tile. We will often drop the tile’s coordinates in referring to a specific tile and
refer to the coordinates (tx0, ty0) and (tx1, ty1).

Thus the dimensions of a tile in the reference grid are

B.11

Within the domain of image component i, the coordinates of the upper left hand sample are given by (tcx0, tcy0) and the
coordinates of the lower right hand sample are given by (tcx1-1, tcy1-1), where

 B.12

so that the dimensions of the tile-component are

B.13

B.3 Example of the mapping of components to the reference grid

The following example is included to illustrate the mapping of image components to the reference grid and the area
induced by tiling across components with different sub-sampling factors. The example assumes an application in which
an original image with aspect ratio 16:9 is to be compressed with this Recommendation | International Standard. Choices
of the image size, image offset, tile size, and tile offset are used such that an image of with aspect ratio 4:3 can be

p mod t numXtiles,( )= q t
numXtiles
--------------------------=

tx0 p q,( ) max XTOsiz p XTsiz XOsiz,⋅+( )=

ty0 p q,( ) max YTOsiz q YTsiz YOsiz,⋅+( )=

tx1 p q,( ) min XTOsiz p 1+( ) XTsiz Xsiz,⋅+( )=

ty1 p q,( ) min YTOsiz q 1+( ) YTsiz Ysiz,⋅+( )=

tx1 tx0 ty1 ty0–,–( )

tcx0
tx0

XRsiz i( )
----------------------= tcx1

tx1

XRsiz i( )
----------------------= tcy0

ty0

YRsiz i( )
---------------------= tcy1

ty1

YRsiz i( )
---------------------=

tcx1 tcx0 tcy1 tcy0–,–( )
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cropped from the center of the original image. Figure B-3 shows the reference grid and image areas along with the tiling
structure that will be imposed in this example.

Let the reference grid size (Xsiz, Ysiz) be (1432, 954). In this example, the image will contain two components
(component numbers will be represented by I = 0, 1). The sub-sampling factors Xrsiz(I) and Yrsiz(I) of the two
components with respect to the reference grid will be Xrsiz(0) = Yrsiz(0) = 1 and Xrsiz(1) = Yrsiz(1) = 2. The image
offset is set to be (XOsiz, YOsiz) = (152, 234). Given these parameters, the sizes of the two image components can be
determined from Equation B.13. The upper left corner of component 0 is found at (152/1,234/1) = (152 234). The
lower right corner of component 0 is found at (1432/1-1,954/1-1) = (1 431 953). The actual size of component 0 is
therefore 1280 samples in width by 720 samples in height. The upper left corner of component 1 is found at (152/
2,234/2) = (76 117), while the lower left corner of that component is found at (1432/2-1,954/2-1) = (715 476). The
actual size of component 1 is therefore 640 samples in width by 360 samples in height. 

The tiles are chosen to have an aspect ratio of 4:3. In this example, (Xtsiz,Ytsiz) will be set to (396,297) and the tile
offsets (Xtosiz, Ytosiz) will be set to (0,0). The number of tiles in the x and y directions are then determined from
Equation B.5 numXtiles = 1432/396 = 4, numYtiles = 954/297 = 4. The tiled image components will therefore contain
a total of t = 16 tiles, with tile grid indices p and q in the range 0 ≤ p, q < 4. It is now possible to compute the locations of
the tiles in each image component plane. To do so, the values of tx0, tx1, ty0, and ty1 are determined from Equation B.7,
Equation B.8, Equation B.9, and Equation B.10. Since p and q share the same set of admissible values, the notation ‘0:3’
will be used to refer to the sequence of values {0,1,2,3}, and the notation ‘*’ will be used to denote that the result is valid
for all admissible values. The values of tx0 are found as tx0(0:3,*) = {152,396,792,1188}, and the values of tx1 are given
by tx1(0:3,*) = {396,792,1188,1432}. The values of ty0 are ty0(*,0:3) = {234,297,594,981}, and the values of ty1 are
ty1(*,0:3) = {297,594,891,954}.
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Figure B-3 — Reference grid example
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With the values of tx0, tx1, ty0, and ty1 now known, the locations and sizes of all tiles can be determined for each of the
components. To do so, Equation B.12 is used. The relevant locations and sizes for component 0 are shown in Figure B-4,
while the same information is provided for component 1 in Figure B-5. Of particular interest are the ‘interior’ tiles in the
figures (tiles (1,1), (1,2), (2,1), and (2,2)). These tiles are not limited in extent by the image area. In component 0, all of
these tiles are the same size. This regularity is a result of the fact that the sub-sampling factors for this component are
(Xrsiz(0), Yrsiz(0)) = (1,1). However, in component 1, these tiles are not all the same size because (Xrsiz(0), Yrsiz(0)) =
(2,2). Notice that tiles (1,1) and (2,1) are both of size 198 x 148, while tiles (1,2) and (2,2) are both of size 198 x 149.
This illustrates that the number of samples in the interior tiles of a component can vary depending upon the particular
combination of tile size and component sub-sampling factors. 
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Tiling for Component 0

Figure B-4 — Example tile sizes and locations for component 0
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With these choices of reference grid, image offset, tile size, and tile offset, the coded image can be cropped directly to the
desired interior region. The four interior tiles from each component can be retained and will represent a cropped image of
size (792,594). When such a cropping is performed, it will not be necessary to recode the tiles, but the values of some of
the reference grid parameters must change. The image offsets must be set to the coordinates of the cropping locations, so
that (Xosiz’, Yosiz’) = (396,297). Similarly, the image size must be adjusted to reflect the cropped size: (Xsiz’, Ysiz’) =
(1188, 891). Finally, the tile offsets are no longer zero and instead must be set to (Xtsiz’, Ytsiz’) = (396,297).

B.4 Tile-component division into resolutions and sub-bands

Each image component is wavelet transformed with NL decomposition levels as explained in Annex F. As a result, the
component is available at NL+1 distinct resolutions, denoted r = 0,1,...,NL. The lowest resolution, r = 0, is represented by
the NLLL band. In general, resolution r is obtained by discarding sub-bands nHH, nHL, nLH for n = 1 through NL-r and
reconstructing the image component from the remaining sub-bands.

The tile coordinates are mapped into the image domain at any particular resolution, r, yielding upper left hand sample
coordinates, (trx0, try0) and lower right hand sample coordinates, (trx1-1, try1-1), where

B.14

In a similar manner, the tile coordinates may be mapped into any particular sub-band, b, yielding upper left hand sample
coordinates (tbx0, tby0) and lower right hand sample coordinates (tbx1-1, tby1-1) where
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Figure B-5 — Example tile sizes and locations for component 1
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B.15

where nb is the decomposition level associated with sub-band b, as discussed in Annex F, and the quantities (xob, yob) are
given by the Table B-1. 

B.5 Division of resolutions into precincts

Consider a particular tile, component, and resolution, whose bounding sample coordinates in the reduced resolution
image domain are (trx0, try0) and (trx1-1, try1-1), as already described. Figure B-6 shows the partitioning of this tile-
component resolution into precincts. The precinct partition is anchored at location (0, 0), so that the upper left hand

corner of any given precinct in the partition is located at integer multiples of (2PPx,2PPy) where PPx and PPy are signalled
in the COD or COC markers (see Annex A.6.1 and Annex A.6.2). PPx and PPy may be different for each tile, component
and resolution.

The number of precincts which span the tile-component at resolution, r, is given by 

Table B-1 — Quantities (xob,yob) for sub-band b

Sub-band xob yob

nbLL 0 0

nbHL (horizontally high-pass) 1 0

nbLH (vertically high-pass) 0 1

nbHH 1 1

tbx0
tcx0 2nb 1– xob⋅( )–

2
nb

-------------------------------------------------= tby0
tcy0 2nb 1– yob⋅( )–

2
nb

------------------------------------------------=

tbx1
tcx1 2nb 1– xob⋅( )–

2
nb

-------------------------------------------------= tby1
tcy1 2nb 1– yob⋅( )–

2
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------------------------------------------------=
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Figure B-6 — Precinct partition
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B.16

The precinct index runs from 0 to numprecincts - 1 where numprecincts = numprecinctswide * numprecincts high in
raster order (see Figure B-6). This is used in determining the order of appearance, in the codestream, of packets
corresponding to each precinct, as explained in Annex B.11.

It can happen that a precinct is empty, meaning that no sub-band samples from the relevant resolution actually contribute
to the precinct. When this happens every packet corresponding to that precinct must still appear in the codestream (see
Annex B.8).

B.6 Division of the sub-bands into code-blocks

The sub-bands are partitioned into rectangular code-blocks for the purpose of coefficient modeling and coding. The size
of each element of the partition is determined from two parameters, xcb and ycb, which are signalled in the COD or COC
markers (see Annex A.6.1 and Annex A.6.2) and is the same for all sub-bands in the tile-component, at the same
resolution, r. Specifically, the code-block size for the sub-bands is determined as 2xcb’ by 2ycb’ where 

B.17

and

B.18

These equations reflect the fact that the code-block size is constrained both by the precinct partition size and the nominal
code-block size, whose parameters, xcb and ycb, are identical for all sub-bands in the tile-component. Like the precinct
partition, the code-block partition is anchored at (0,0), as illustrated in Figure B-7. Thus, all first rows of code-blocks in
the partition are located at y = m2ycb’ and all first columns of code-blocks are located at x = n2xcb’. 

NOTE — Code-blocks in the partition may extend beyond the boundaries of the sub-band data. When this happens, only the
samples lying within the sub-band are coded using the method described in Annex D. The first stripe coded using this method
corresponds to the first four lines of sub-band samples in the code-block or as many of such lines as are present.
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B.7 Layers

The coded data of each code-block is distributed across one or more layers in the codestream. Each layer consists of
some number of consecutive bit-plane coding passes from each code-block in the tile, including all sub-bands of all
components for that tile. The number of coding passes in the layer may vary from code-block to code-block and may be
as little as zero for any or all code-blocks. The number of layers for the tile is signaled in the COD marker (see Annex
A.6.1).

Each layer successively and monotonically improves the image quality, so that the decoder shall be able to decode the
code-block contributions contained in each layer in sequence. For a given code-block, the first coding pass in layer n is
the coding pass immediately following the last coding pass for the code-block in layer n-1, if any.

Layers are numbered from 0 to L-1, where L is the number of layers in the tile.

B.8 Packets

The data representing a specific tile, layer, component, resolution and precinct appears in the codestream in a contiguous
segment called a packet. Packet data is aligned at 8-bit (one byte) boundaries.

As defined in Annex F.2.1, resolution r = 0 contains the sub-band samples from the NLLL band, where NL is the number
of decomposition levels. Each subsequent resolution, r > 0, contains the sub-band samples from the nHL, nLH, and nHH
sub-bands, as defined in Annex F, where n = NL-r+1. There are NL+1 resolutions for a decomposition with NL levels.

The data in a packet is ordered such that the contribution from the LL, HL, LH and HH sub-bands appear in that order.
This sub-band order is identical to the order defined in Annex F.2.1. Within each sub-band, the code-block contributions
appear in raster order, confined to the bounds established by the relevant precinct. It is understood that resolution r = 0
contains only the LL band and resolutions r > 0 contain only the HL, LH and HH bands. Only those code-blocks that
contain samples from the relevant sub-band, confined to the precinct, have any representation in the packet.

Packet data is introduced by a packet header whose syntax is described in Annex B.9, and followed by a packet body
containing the actual code-bytes contributed by each of the relevant code-blocks. The order defined above is followed in
constructing both the packet header and the packet body.

It can happen that a precinct contains no code-blocks from any of the sub-bands at some resolution. When this happens,
all packets corresponding to that precinct must appear in the codestream as empty packets, in accordance with the packet
header syntax described in Annex B.9.

B.9 Packet header information coding

The packets have headers with the following information:

— Zero length packet

— Code-block inclusion 

— Number of “insignificant” most significant bit-planes

— Number of coding passes for each code-block in this packet

— Length of the code-block data

Two items in the header are coded with a scheme called tag trees described below. The data bits of the packet header are
packed into a whole number of bytes with the bit stuffing routine described in Annex B.9.1.

The packet headers appear in the codestream immediately preceding the packet data, unless one of the PPM or PPT
marker segments has been used. If the PPM marker segment is used, all of the packet headers are relocated to the main
header (see Annex A.7.4). If the PPM is not used, then a PPT marker segment may be used. In this case, all of the packet
headers in that tile are relocated to the first tile-part header (see Annex A.7.5).
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B.9.1 Bit stuffing routine

Bits are packed into bytes from the MSB to the LSB. Once a complete byte is assembled, it is appended to the packet
header. If the value of the byte is 0xFF, the next byte includes an extra zero bit stuffed into the MSB. Once all bits of the
packet header have been assembled, the last byte is packed to the byte boundary and emitted. The last byte in the packet
header shall not be an 0xFF value (thus the one zero bit stuffed after a byte with 0xFF must be included even if the 0xFF
would otherwise have been the last byte).

B.9.2 Tag trees

A tag tree is a way of representing a two-dimensional array of non-negative integers in a hierarchical way. It successively
creates reduced resolution levels of this two-dimensional array, forming a tree. At every node of this tree the minimum
integer of the (up to four) nodes below it is recorded. Figure B-8 shows an example of this representation. The notation,
qi(m,n), is the value at the node that is mth from the left and nth from the top, at the ith level. Level 0 is the lowest level;
it contains the top node.

The coding is the answer to a series of questions. Each node has an associated current value, which is initialized to zero
(the minimum). A 0 bit in the tag tree means that the minimum (or the value in the case of the highest level) is larger than
the current value and a 1 bit means that the minimum (or the value in the case of the highest level) is equal to the current
value. For each contiguous 0 bit in the tag tree the current value is incremented by one. Nodes at higher levels cannot be
coded until lower level node values are fixed (i.e a 1 bit is coded). The top node on level 0 (the lowest level) is queried
first. The next corresponding node on level 1 is then queried, and so on.

Only the information needed for the current code-block is stored at the current point in the packet header. The decoding
of bits is halted when sufficient information has been obtained. Also, the hierarchical nature of the tag trees means that
the answers to many questions will have been answered when adjacent code-blocks and/or layers were coded. This
information is not coded again. Therefore, there is a causality to the information in packet headers.

NOTE — For example, in Figure B-8, the coding for the number at q3(0,0) would be 01111. The two bits, 01, imply that the top
node at q0(0,0) is greater than zero and is, in fact one. The third bit, 1, implies that the node at q1(0,0) is also one. The fourth bit, 1,
implies that the node at q2(0,0) is also one. And the final bit, 1, implies that the target node at q3(0,0) is also one. To decode the next
node q3(1,0) the nodes at q0(0,0), q1(0,0), and q2(0,0) are already known. Thus, the bits coded are 001, the zero says that node at
q3(1,0) is greater than 1, the second zero says it is greater than 2, and the one bit implies that the value is 3. Now that q3(0,0) and
q3(1,0) are known, the code bits for q3(2,0) will be 101. The first 1 indicates q2(1,0) is one. The following 01 then indicates q3(2,0)
is 2. This process continues for the entire array in Table B-8a. 
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Figure B-8 — Example of a tag tree representation
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B.9.3 Zero length packet

The first bit in the packet header denotes whether the packet has a length of zero (not present). The value 0 indicates a
zero length; no code-blocks are included in this case. The value 1 indicates a non-zero length; this case is considered
exclusively hereinafter.

B.9.4 Code-block inclusion

Information concerning whether or not each code-block is included in the packet is signalled in one of two different ways
depending upon whether or not the same code-block has already been included in a previous packet (i.e. within a
previous layer). For code-blocks that have been included in a previous layer, a single bit is used to represent the
information, where a 1 means that the code-block is included in this layer and a 0 means that it is not.

For code-blocks that have not been previously included in any packet, this information is signalled with a separate tag
tree code for each precinct. The values in this tag tree are the number of the layer in which the code-block is first
included. Note that only the bits needed for determining whether the code-block is included are placed in the packet
header. If some of the tag tree is already known from previous code-blocks or previous layers, it is not repeated.
Likewise, only as much of the tag tree as is needed to determine inclusion in the current layer is included. If a code-block
is not included until a later layer, then only a partial tag tree is included at that point in the bit stream.

B.9.5 Zero bit-plane information

If a code-block is included for the first time, the packet header contains information identifying the actual number of bit-
planes used to represent coefficients from the code-block. The maximum number of bit-planes available for the
representation of coefficients in any sub-band, b, is given by Mb as defined in Equation E.3. In general, however, the
number of actual bit-planes for which coding passes are generated is Mb-P, where the number of missing most significant
bit-planes, P, may vary from code-block to code-block; these missing bit-planes are all taken to be zero. The value of P is
coded in the packet header with a separate tag tree for every precinct, in the same manner as the code-block inclusion
information.

B.9.6 Number of coding passes

The number of coding passes included in this packet from each code-block is identified in the packet header using the
codewords shown in Table B-2. Note that this table provides for the possibility of signalling up to 164 coding passes. 

Table B-2 — Codewords for the number of coding passes for each code-block

Number of coding passes Codeword in Packet Header

1 0

2 10

3 1100

4 1101

5 1110

 6 —
36

1111 0000 0 —
1111 1111 0

37 —
164

1111 11111 0000 000 —
1111 11111 1111 111
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NOTE — Since the value of Mb is limited to a maximum value of 38 by the constraints imposed by the syntax of the COD and
COC markers (see Annex A.6.1 and Annex A.6.2), it is not possible for more than 109 coding passes to be employed by the block
coding algorithm described in Annex D.

B.9.7 Length of the data from a given code-block

The packet header identifies the number of bytes contributed by each included code-block. The sequence of bytes
actually included for any given code-block must not terminate in a 0xFF. This is, in fact, not a burdensome requirement,
since 0xFFs are always synthesized as necessary by the block decoder described in Annex C. Thus, in the event that an
0xFF would have appeared at the end of a code-block’s contribution to some packet, the 0xFF may be safely moved to the
subsequent packet which contains contributions from the code-block, or dropped if there is no such packet. The example
coding pass length calculation algorithm described in Annex D ensures that no coding pass will ever be considered as
terminating with an 0xFF.

In signalling the number of bytes contributed by the code-block, there are two cases: the code-block contribution contains
a single codeword segment; or the code-block contribution contains multiple codeword segments. Multiple codeword
segments arise when a termination occurs between coding passes which are included in the packet, as shown in Table D-
8 and Table D-9.

B.9.7.1 Single codeword segment

The number of bits used to signal the number of bytes contributed to a packet by a code-block is given by

B.19

where Lblock is a code-block state variable. A separate Lblock is used for each code-block in the precinct.

Thus, layers with more passes are assumed to have more data. The value of Lblock is initially set to three. The number of
bytes contributed by each code-block is preceded by signaling bits that can increase the value of Lblock, as needed. A
signaling bit of zero indicates the current value of Lblock is sufficient. If there are k ones followed by a zero, the value of
Lblock is incremented by k. While Lblock can only increase, the number of bits used to signal the code-block length can
increase or decrease depending on the number of coding passes included.

NOTE — For example, say that in successive layers a code-block has 6 bytes, 31 bytes, 44 bytes, and 134 bytes respectively,
further assume that the number of coding passes is 1, 9, 2, and 5. The code for each would be 0 110 (0 delimits and 110 = 6),
0011111 (0 delimits, log2 9 = 3 bits for the 9 coding passes, 011111 = 31), 11 0 101100 (110 adds two bits, log2 2 = 1, 101100 =
44), and 1 0 10000110 (10 adds one bit, log2 5 = 2, 10000110 = 134).

NOTE — There is no requirement that the minimum number of bits be used to signal length (any number is valid).

B.9.7.2 Multiple codeword segments

Let T be the set of indices of terminated coding passes included for the code-block in the packet as indicated in Table D-
8 and Table D-9. T is augmented with the final coding pass included in the packet. Let n1 < ... < nK be the indices in T. K
lengths are signaled consecutively with each length using the mechanism described in Annex B.9.7.1. The first length is
the number of bytes from the start of the code-block’s contribution in this packet to the end of coding pass n1. The
number of added coding passes for the purposes of Equation B.19 is the number of passes up to n1. The second length is
the number of bytes from the end of coding pass, n1, to the end of coding pass, n2. The number of added coding passes for
the purposes of Equation B.19 is n2-n1. This procedure is repeated for all K lengths.

B.9.8 Order of information within packet header

The following is the packet header information order for one packet representing a specific layer, component, resolution
and precinct, of the tile.

bit for zero or non-zero length packet
for each sub-band (LL or HL, LH and HH)

bits Lblock log2 coding passes added( )+=
64 ITU-T Rec. T.800 (2000 FCDV1.0)



ISO/IEC FCD15444-1 : 2000 (V1.0, 16 March 2000)
for all code-blocks in this sub-band confined to relevant precinct, in raster order
code-block inclusion bits (if not previously included then tag tree, else one bit)
if code-block included

if first instance of code-block
zero bit-planes information

number of coding passes included
increase of code-block length indicator
length of code-block contribution

The packet header may be immediately followed by the two-byte EPH marker as described in Annex A.8.2. In this case,
the EPH marker must appear, regardless of whether the packet contains any code-block contributions. In the event that
the packet header appears in a PPM or PPT marker segment, the EPH marker (if used) must appear together with the
packet header.

Figure B-9 shows a brief example. This is the information known to the encoder. In particular the “inclusion information”
shows the layer where each code-block first appears in a packet. The decoder will receive this information via the
inclusion tag tree in several packet headers. Table B-3 shows the resulting bit stream (in part) from this information.    

Table B-3 — Example packet header bit stream

Bit stream (in order) Derived meaning

1 Packet non-zero in length

111 Block 0,0 included for the first time

000111 Block 0,0 insignificant for 3 bit-planes

1100 Block 0,0 has 3 coding passes included

0 Block 0,0 length indicator is unchanged

0 0 1

2 1 0

3 4 7

3 3 6

3 2 —

— — 1

4 4 —

— — 2

Inclusion information Zero bit-planes # of coding passes (layer 0) Length information (layer 0)

0 0 3 6
3 — 2

— 1 —

10 — 2

— 1 —

Inclusion tag tree Zero bit-planes tag tree # of coding passes (layer 1) Length information (layer 1)

0 3

Figure B-9 — Example of the information known to the encoder
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0100 Block 0,0 has 4 bytes
4 bits are used, 3 + floor(log2 3)

1 Block 1,0 included for the first time

01 Block 1,0 insignificant for 4 bit-planes

10 Block 1,0 has 2 coding passes included

10 Block 1,0 length indicator is increased by 1 bit (3 to 4)

00100 Block 1,0 has 4 bytes
5 bits are used 4 + floor(log2 2)

(Note that while this is a legitimate entry, it is not minimal in code length.)

0 Block 2,0 not yet included

0 Block 0,1 not yet included

0 Block 1,1 not yet included

1 Block 2,1 included for the first time

00011 Block 2,1 insignificant for 6 bit-planes

0 Block 2,1 has 1 coding passes included

0 Block 2,1 length information is unchanged (3 bits)

010 Block 2,1 has 2 bytes
3 + log2 1 bits used

••• Packet header data for the other sub-bands, coded packet data

Packet for the next layer

1 Packet non-zero in length

1 Block 0,0 included again

1100 Block 0,0 has 3 coding passes included

0 Block 0,0 length information is unchanged

1010 Block 0,0 has 10 bytes, 3 + log2 (3) bits used

0 Block 1,0 not included in this layer

1 Block 2,0 included for the first time

01 Block 2,0 insignificant for 7 bit-planes

Table B-3 — Example packet header bit stream

Bit stream (in order) Derived meaning
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B.10 Tile Data and Tile-Parts

Each tile is represented by a sequence of packets. The order in which these packets appear within the tile is defined in
Annex B.11. Note that it is possible for a tile to contain no packets whatsoever, in the event that no samples from any
image component map to the region occupied by the tile on the reference grid.

Any tile’s representation may be truncated by discarding one or more trailing bytes. In this way, any number of whole
packets may be dropped and the final packet appearing in the tile may be partially truncated.

The sequence of packets representing any particular tile may be divided into contiguous segments known as tile-parts.
Each tile must contain at least one tile-part. The divisions between tile-parts must occur at packet boundaries. Each
packet in any given tile-part is prepended with an SOP marker, if and only if SOP markers are to be used for that tile-part
as signalled by COD markers, described in Annex A.6.1. If the packet headers are moved to a PPM or PPT marker, then
the SOP marker appears immediately before the packet body in the tile-part data portion. Otherwise, it appears
immediately before the packet header, again in the tile-part data portion.

While tiles are coherent geometric areas on the image, the tile-parts may be distributed throughout the codestream in any
desired fashion, provided tile-parts from the same tile appear in the order that preserves the original packet sequence.
Each tile-part commences with an SOT marker (see Annex A.4.2), containing the index of the tile to which the tile-part
belongs.

B.11 Progression Order

For a given tile, the packets contain data from a specific layer, a specific component, a specific resolution, and a specific
precinct. The order in which these packets are interleaved is called the progression order. The interleaving of the packets
can progress along four axes: layer, component, resolution and precinct.

10 Block 2,0 has 2 coding passes included

0 Block 2,0 length information is unchanged

0010 Block 2,0 has 2 bytes, 3 + log2 2 bits used

0 Block 0,1 not yet included

1 Block 1,1 included for the first time

1 Block 1,1 insignificant for 3 bit-planes

0 Block 1,1 has 1 coding passes included

0 Block 1,1 length information is unchanged

001 Block 1,1 has 1 byte

0 Block 2,1 not included in this layer

••• Packet header data for the other sub-bands, packet data

Table B-3 — Example packet header bit stream

Bit stream (in order) Derived meaning
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B.11.1 Progression order determination

The COD markers signal which of the five progression orders are used (see Annex A.6.1). The progression order can also
be overridden with the POD marker (see Annex A.6.6). For each of the possible progression orders the mechanism to
determine the order in which packets are included is described below.

B.11.1.1 Layer-resolution-component-position progressive

Layer-resolution-component-position progression is defined as the interleaving of the packets in the following order:
for each l = 0, ... , L-1

for each r = 0, ... , Nmax 
for each i = 0, ... , Csiz-1

for each k = 0, ... , numprecincts-1
packet for component, i, resolution, r, layer, l, and precinct, k.

Here, L is the number of layers and Nmax is the maximum number of decomposition levels, NL, used in any component of
the tile.

B.11.1.2 Resolution-layer-component-position progressive

Resolution-layer-component-position progression is defined as the interleaving of the packets in the following order:
for each r = 0, ... , Nmax

for each l = 0, ... , L-1
for each i = 0, ... , Csiz-1

for each k = 0, ... , numprecincts-1
packet for component, i, resolution, r, layer, l, and precinct, k.

B.11.1.3 Resolution-position-component-layer progressive

Resolution-position-component-layer progression is defined as the interleaving of the packets in the following order:
for each r = 0, ... , Nmax

for each y = ty0, ... , ty1-1,
for each x = tx0, ... , tx1-1,

for each i = 0, ... , Csiz-1
if (y = ty0 or y divisible by )

if (x = tx0 or x divisible by )
for the next precinct, k, in the sequence shown in Figure B-6

for each l = 0, ... , L-1
packet for component, i, resolution, r, layer, l, and precinct, k.

In the above, k can be obtained from:

B.20

To use this progression, XRsiz and YRsiz values must be powers of two for each component.

NOTE — The iteration of variables x and y in the above formulation is given for simplicity only of expression, not implementation.
Most of the (x,y) pairs generated by this loop will generally result in the inclusion of no packets. More efficient iterations can be
found based upon the minimum of the dimensions of the various precinct partitions, mapped into the reference grid. This note also
applies to the loops given for the following two progressions.

YRsiz i( ) 2
PPy r i,( ) NL r–+

⋅
XRsiz i( ) 2

PPx r i,( ) NL r–+
⋅

k

x

XRsiz i( ) 2
NL r–

⋅
------------------------------------------

2
PPx r i,( )------------------------------------------------

trx0

2
PPx r i,( )--------------------– numpacketswide r i,( )
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YRsiz i( ) 2
NL r–

⋅
-----------------------------------------

2
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try0

2
PPy r i,( )--------------------–
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B.11.1.4 Position-component-resolution-layer progressive

Position-component-resolution-layer progression is defined as the interleaving of the packets in the following order:
for each y = ty0, ... , ty1-1,

for each x = tx0, ... , tx1-1,
for each i = 0, ... , Csiz-1

for each r = 0, ... , NL where NL is the number of decomposition levels for component i,
if (y = ty0 or y divisible by )

if (x = tx0 or x divisible by )
for the next precinct, k, in the sequence shown in Figure B-6

for each l = 0, ... , L-1
packet for component, i, resolution, r, layer, l, and precinct, k.

In the above, k can be obtained from Equation B.20.

To use this progression, XRsiz and YRsiz values shall be powers of two for each component.

B.11.1.5 Component-position-resolution-layer progressive

Component-position-resolution-layer progression is defined as the interleaving of the packets in the following order:
for each i = 0, ... , Csiz-1

for each y = ty0, ... , ty1-1,
for each x = tx0, ... , tx1-1,

for each r = 0, ... , NL where NL is the number of decomposition levels for component i,
if (y = ty0 or y divisible by )

if (x = tx0 or x divisible by )
for the next precinct, k, in the sequence shown in Figure B-6

for each l = 0, ... , L-1
packet for component, i, resolution, r, layer, l, and precinct, k.

In the above, k can be obtained from Equation B.20.

B.11.2 Progression order default

The progression order and extent of progression in a tile is affected if a POD marker segment is present in either the main
or tile header (see Annex A.6.6).

If a POD marker segment is present, then the progression loops in Annex B.11.1 go from

B.21

These ranges apply to the progression order provided in the COD marker. A new progression order is specified by Ppod
to be used in place of that given in the COD marker, outside the ranges given above. The POD allows this new
progression to be further limited by subsequent start and end points, CSpod, CEpod, RSpod, REpod and LEpod, with a
new default progression order, Ppod, to be applied outside those limits. This process may be continued as often as desired
by signalling successive start and end points and new default progression orders.

Although no restriction is placed on the allowable values for CSpod, CEpod, RSpod and REpod, in the event that the
appropriately modified progression order loops from Annex B.11.1 identify packets with layer, component or resolution
indices outside the available range, the relevant position in the packet sequence is understood to be skipped.

Likewise, in the event that the appropriately modified progression order loops from Annex B.11.1 identify packets which
have been previously included, the relevant position in the packet sequence is understood to be skipped.

YRsiz i( ) 2
PPy r i,( ) NL r–+

⋅
XRsiz i( ) 2

PPx r i,( ) NL r–+
⋅

YRsiz i( ) 2
PPy r i,( ) NL r–+

⋅
XRsiz i( ) 2

PPx r i,( ) NL r–+
⋅

CSpod i≤ CEpod<
RSpod r≤ REpod<

0 l≤ LEpod<
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Figure B-10 shows an example of two progression loops for a single component image. First packets are sent in
resolution-layer-component-position progression until the box labeled “First” in the figure is complete; then packets are
sent in layer-resolution-component-position progression for the layers of all resolutions which were not previously sent.

First

(0,0)

 L
ay

er

Resolution

Figure B-10 — Example of progression order change in two dimensions

Second
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Annex C

Arithmetic entropy coding

(This annex forms an integral part of this Recommendation | International Standard)

This annex defines the lossless arithmetic entropy coding. This annex is compatible with the arithmetic coder defined in
ITU-T Rec.T.88 | ISO/IEC 14492.

In this Annex and all of its subclauses, the flow charts and tables are normative only in the sense that they are defining an
output that alternative implementations shall duplicate.

C.1 Binary encoding (informative)

Figure C-1 shows a simple block diagram of the binary adaptive arithmetic encoder. The decision (D) and context (CX)
pairs are processed together to produce compressed data (CD) output. Both D and CX are provided by the model unit
(not shown). CX selects the probability estimate to use during the coding of D. In this International Standard, CX is a
label for a context. 

C.1.1 Recursive interval subdivision (informative)

The recursive probability interval subdivision of Elias coding is the basis for the binary arithmetic coding process. With
each binary decision the current probability interval is subdivided into two sub-intervals, and the code string is modified
(if necessary) so that it points to the base (the lower bound) of the probability sub-interval assigned to the symbol which
occurred.

In the partitioning of the current interval into two sub-intervals, the sub-interval for the more probable symbol (MPS) is
ordered above the sub-interval for the less probable symbol (LPS). Therefore, when the MPS is coded, the LPS sub-
interval is added to the code string. This coding convention requires that symbols be recognized as either MPS or LPS,
rather than 0 or 1. Consequently, the size of the LPS interval and the sense of the MPS for each decision must be known
in order to code that decision.

Since the code string always points to the base of the current interval, the decoding process is a matter of determining, for
each decision, which sub-interval is pointed to by the compressed data. This is also done recursively, using the same
interval sub-division process as in the encoder. Each time a decision is decoded, the decoder subtracts any interval the
encoder added to the code string. Therefore, the code string in the decoder is a pointer into the current interval relative to
the base of the current interval. Since the coding process involves addition of binary fractions rather than concatenation
of integer code words, the more probable binary decisions can often be coded at a cost of much less than one bit per
decision.

C.1.2 Coding conventions and approximations (informative)

The coding operations are done using fixed precision integer arithmetic and using an integer representation of fractional
values in which 0x8000 is equivalent to decimal 0,75. The interval A is kept in the range 0,75 ≤ A < 1,5 by doubling it
whenever the integer value falls below 0x8000.

Figure C-1 — Arithmetic encoder inputs and outputs

ENCODER CD

D

CX
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The code register C is also doubled each time A is doubled. Periodically – to keep C from overflowing – a byte of data is
removed from the high order bits of the C-register and placed in an external compressed data buffer. Carry-over into the
external buffer is resolved by a bit stuffing procedure.

Keeping A in the range 0,75 ≤ A < 1,5 allows a simple arithmetic approximation to be used in the interval subdivision.
The interval is A and the current estimate of the LPS probability is Qe, a precise calculation of the sub-intervals would
require:

A - (Qe * A) = sub-interval for the MPS C.1

Qe * A = sub-interval for the LPS C.2

Because the value of A is of order unity, these are approximated by

A - Qe = sub-interval for the MPS C.3

Qe = sub-interval for the LPS C.4

Whenever the MPS is coded, the value of Qe is added to the code register and the interval is reduced to A - Qe. Whenever
the LPS is coded, the code register is left unchanged and the interval is reduced to Qe. The precision range required for A
is then restored, if necessary, by renormalization of both A and C.

With the process illustrated above, the approximations in the interval subdivision process can sometimes make the LPS
sub-interval larger than the MPS sub-interval. If, for example, the value of Qe is 0,5 and A is at the minimum allowed
value of 0,75, the approximate scaling gives 1/3 of the interval to the MPS and 2/3 to the LPS. To avoid this size
inversion, the MPS and LPS intervals are exchanged whenever the LPS interval is larger than the MPS interval. This
MPS/LPS conditional exchange can only occur when a renormalization is needed.

Whenever a renormalization occurs, a probability estimation process is invoked which determines a new probability
estimate for the context currently being coded. No explicit symbol counts are needed for the estimation. The relative
probabilities of renormalization after coding an LPS and MPS provide an approximate symbol counting mechanism
which is used to directly estimate the probabilities.

C.2 Description of the arithmetic encoder (informative)

The ENCODER (Figure C-2) initializes the encoder through the INITENC procedure. CX and D pairs are read and
passed on to ENCODE until all pairs have been read. The probability estimation procedures which provide adaptive
estimates of the probability for each context are imbedded in ENCODE. Bytes of compressed data are output when no
longer modifiable. When all of the CX and D pairs have been read (Finished?), FLUSH sets the contents of the C-register
to as many 1-bits as possible and then outputs the final bytes. FLUSH also terminates the encoding and generates the
required terminating marker.

NOTE — While FLUSH is required in ITU-T Rec.T.88 | ISO/IEC 14492 it is informative in this specification. Other methods, such
as that defined in Annex D.4.2, are acceptable.
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C.2.1 Encoder code register conventions (informative)

The flow charts given in this Annex assume the register structures for the encoder shown in Table C-1.

The “a” bits are the fractional bits in the A-register (the current interval value) and the “x” bits are the fractional bits in
the code register. The “s” bits are spacer bits which provide useful constraints on carry-over, and the “b” bits indicate the
bit positions from which the completed bytes of the data are removed from the C-register. The “c” bit is a carry bit.

The detailed description of bit stuffing and the handling of carry-over will be given in a later part of this Annex.

Table C-1 — Encoder register structures

MSB LSB

C-register 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx

A-register 0000 0000 0000 0000 aaaa aaaa aaaa aaaa

Figure C-2 — Encoder for the MQ-coder
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C.2.2 Encoding a decision (ENCODE) (informative)

The ENCODE procedure determines whether the decision D is a 0 or not. Then a CODE0 or a CODE1 procedure is
called appropriately. Often embodiments will not have an ENCODE procedure, but will call the CODE0 or CODE1
procedures directly to code a 0-decision or a 1-decision. Figure C-3 shows this procedure.

C.2.3 Encoding a 1 or a 0 (CODE1 and CODE0) (informative)

When a given binary decision is coded, one of two possibilities occurs – the symbol is either the more probable symbol or
it is the less probable symbol. CODE1 and CODE0 are illustrated in Figure C-4 and Figure C-5. In these figures, CX is
the context. For each context, the index of the probability estimate which is to be used in the coding operations and the
MPS value are stored. MPS(CX) is the sense (0 or 1) of the MPS for context CX. 

Figure C-3 — ENCODE procedure

Figure C-4 — CODE1 procedure
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C.2.4 Encoding an MPS or LPS (CODEMPS and CODELPS)

The CODELPS (Figure C-6) procedure usually consists of a scaling of the interval to Qe(I(CX)), the probability estimate
of the LPS determined from the index I stored for context CX. The upper interval is first calculated so it can be compared
to the lower interval to confirm that Qe has the smaller size. It is always followed by a renormalization (RENORME). In
the event that the interval sizes are inverted, however, the conditional MPS/LPS exchange occurs and the upper interval is
coded. In either case, the probability estimate is updated. If the SWITCH flag for the index I(CX) is set, then the
MPS(CX) is inverted. A new index I is saved at CX as determined from the next LPS index (NLPS) column in Table C-2.

Figure C-5 — CODE0 procedure
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Table C-2 — Qe values and probability estimation process

Index Qe_Value NMPS NLPS SWITCH

(hexadecimal) (binary) (decimal)

0 0x5601 0101 0110 0000 0001 0,503 937 1 1 1

1 0x3401 0011 0100 0000 0001 0,304 715 2 6 0

2 0x1801 0001 1000 0000 0001 0,140 650 3 9 0

3 0x0AC1 0000 1010 1100 0001 0,063 012 4 12 0

Figure C-6 — CODELPS procedure with conditional MPS/LPS exchange
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4 0x0521 0000 0101 0010 0001 0,030 053 5 29 0

5 0x0221 0000 0010 0010 0001 0,012 474 38 33 0

6 0x5601 0101 0110 0000 0001 0,503 937 7 6 1

7 0x5401 0101 0100 0000 0001 0,492 218 8 14 0

8 0x4801 0100 1000 0000 0001 0,421 904 9 14 0

9 0x3801 0011 1000 0000 0001 0,328 153 10 14 0

10 0x3001 0011 0000 0000 0001 0,281 277 11 17 0

11 0x2401 0010 0100 0000 0001 0,210 964 12 18 0

12 0x1C01 0001 1100 0000 0001 0,164 088 13 20 0

13 0x1601 0001 0110 0000 0001 0,128 931 29 21 0

14 0x5601 0101 0110 0000 0001 0,503 937 15 14 1

15 0x5401 0101 0100 0000 0001 0,492 218 16 14 0

16 0x5101 0101 0001 0000 0001 0,474 640 17 15 0

17 0x4801 0100 1000 0000 0001 0,421 904 18 16 0

18 0x3801 0011 1000 0000 0001 0,328 153 19 17 0

19 0x3401 0011 0100 0000 0001 0,304 715 20 18 0

20 0x3001 0011 0000 0000 0001 0,281 277 21 19 0

21 0x2801 0010 1000 0000 0001 0,234 401 22 19 0

22 0x2401 0010 0100 0000 0001 0,210 964 23 20 0

23 0x2201 0010 0010 0000 0001 0,199 245 24 21 0

24 0x1C01 0001 1100 0000 0001 0,164 088 25 22 0

25 0x1801 0001 1000 0000 0001 0,140 650 26 23 0

26 0x1601 0001 0110 0000 0001 0,128 931 27 24 0

27 0x1401 0001 0100 0000 0001 0,117 212 28 25 0

28 0x1201 0001 0010 0000 0001 0,105 493 29 26 0

Table C-2 — Qe values and probability estimation process

Index Qe_Value NMPS NLPS SWITCH

(hexadecimal) (binary) (decimal)
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The CODEMPS (Figure C-7) procedure usually reduces the size of the interval to the MPS sub-interval and adjusts the
code register so that it points to the base of the MPS sub-interval. However, if the interval sizes are inverted, the LPS sub-
interval is coded instead. Note that the size inversion cannot occur unless a renormalization (RENORME) is required
after the coding of the symbol. The probability estimate update changes the index I(CX) according to the next MPS index
(NMPS) column in Table C-2.

29 0x1101 0001 0001 0000 0001 0,099 634 30 27 0

30 0x0AC1 0000 1010 1100 0001 0,063 012 31 28 0

31 0x09C1 0000 1001 1100 0001 0,057 153 32 29 0

32 0x08A1 0000 1000 1010 0001 0,050 561 33 30 0

33 0x0521 0000 0101 0010 0001 0,030 053 34 31 0

34 0x0441 0000 0100 0100 0001 0,024 926 35 32 0

35 0x02Al 0000 0010 1010 0001 0,015 404 36 33 0

36 0x0221 0000 0010 0010 0001 0,012 474 37 34 0

37 0x0141 0000 0001 0100 0001 0,007 347 38 35 0

38 0x0111 0000 0001 0001 0001 0,006 249 39 36 0

39 0x0085 0000 0000 1000 0101 0,003 044 40 37 0

40 0x0049 0000 0000 0100 1001 0,001 671 41 38 0

41 0x0025 0000 0000 0010 0101 0,000 847 42 39 0

42 0x0015 0000 0000 0001 0101 0,000 481 43 40 0

43 0x0009 0000 0000 0000 1001 0,000 206 44 41 0

44 0x0005 0000 0000 0000 0101 0,000 114 45 42 0

45 0x0001 0000 0000 0000 0001 0,000 023 45 43 0

46 0x5601 0101 0110 0000 0001 0,503 937 46 46 0

Table C-2 — Qe values and probability estimation process

Index Qe_Value NMPS NLPS SWITCH

(hexadecimal) (binary) (decimal)
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C.2.5 Probability Estimation

Table C-2 shows the Qe value associated with each Qe index. The Qe values are expressed as hexadecimal integers, as
binary integers, and as decimal fractions. To convert the 15 bit integer representation of Qe to the decimal probability, the
Qe values are divided by (4/3) * (0x8000).

The estimator can be defined as a finite-state machine – a table of Qe indexes and associated next states for each type of
renormalization (i.e., new table positions) – as shown in Table C-2. The change in state occurs only when the arithmetic
coder interval register is renormalized. This is always done after coding the LPS, and whenever the interval register is
less than 0x8000 (0,75 in decimal notation) after coding the MPS.

After an LPS renormalization, NLPS gives the new index for the LPS probability estimate. After an MPS
renormalization, NMPS gives the new index for the LPS probability estimate. If Switch is 1, the MPS symbol sense is
reversed.

Figure C-7 — CODEMPS procedure with conditional MPS/LPS exchange
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The index to the current estimate is part of the information stored for context CX. This index is used as the index to the
table of values in NMPS, which gives the next index for an MPS renormalization. This index is saved in the context
storage at CX. MPS(CX) does not change.

The procedure for estimating the probability on the LPS renormalization path is similar to that of an MPS
renormalization, except that when SWITCH(I(CX)) is 1, the sense of MPS(CX) is inverted.

The final index state 46 can be used to establish a fixed 0,5 probability estimate.

C.2.6 Renormalization in the encoder (RENORME) (informative)

Renormalization is very similar in both encoder and decoder, except that in the encoder it generates compressed bits and
in the decoder it consumes compressed bits.

The RENORME procedure for the encoder renormalization is illustrated in Figure C-8. Both the interval register A and
the code register C are shifted, one bit at a time. The number of shifts is counted in the counter CT, and when CT is
counted down to zero, a byte of compressed data is removed from C by the procedure BYTEOUT. Renormalization
continues until A is no longer less than 0x8000. 

C.2.7 Compressed data output (BYTEOUT) (informative)

The BYTEOUT routine called from RENORME is illustrated in Figure C-9. This routine contains the bit-stuffing
procedures which are needed to limit carry propagation into the completed bytes of compressed data. The conventions

Figure C-8 — Encoder renormalisation procedure
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used make it impossible for a carry to propagate through more than the byte most recently written to the compressed data
buffer. 

The procedure in the block in the lower right section does bit stuffing after a 0xFF byte; the similar procedure on the left
is for the case where bit stuffing is not needed.

B is the byte pointed to by the compressed data buffer pointer BP. If B is not a 0xFF byte, the carry bit is checked. If the
carry bit is set, it is added to B and B is again checked to see if a bit needs to be stuffed in the next byte. After the need for
bit stuffing has been determined, the appropriate path is chosen, BP is incremented and the new value of B is removed
from the code register “b” bits.

Figure C-9 — BYTEOUT procedure for encoder
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C.2.8 Initialisation of the encoder (INITENC) (informative)

The INITENC procedure is used to start the arithmetic coder. The basic steps are shown in Figure C-10. 

The interval register and code register are set to their initial values, and the bit counter is set. Setting CT = 12 reflects the
fact that there are three spacer bits in the register which need to be filled before the field from which the bytes are
removed is reached. Note that BP always points to the byte preceding the position BPST where the first byte is placed.
Therefore, if the preceding byte is a 0xFF byte, a spurious bit stuff will occur, but can be compensated for by increasing
CT. The default settings for MPS and I are shown in Table D-7.

C.2.9 Termination of coding (FLUSH) (informative)

The FLUSH procedure shown in Figure C-11 is used to terminate the encoding operations and generate the required
terminating marker. The procedure guarantees that the 0xFF prefix to the marker code overlaps the final bits of the
compressed data. This guarantees that any marker code at the end of the compressed data will be recognized and
interpreted before decoding is complete.

Figure C-10 — Initialisation of the encoder
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The first part of the FLUSH procedure sets as many bits in the C-register to 1 as possible as shown in Figure C-12. The
exclusive upper bound for the C-register is the sum of the C-register and the interval register. The low order 16 bits of C
are forced to 1, and the result is compared to the upper bound. If C is too big, the leading 1-bit is removed, reducing C to
a value which is within the interval.

�
✒

✏
✑FLUSH

❄
SETBITS

❄
C = C << CT

❄
BYTEOUT

❄
C = C << CT

❄
BYTEOUT

❄

✧✧✧✧✧

❜❜❜❜❜

✧✧✧✧✧

❜❜❜❜❜

B = 0xFF?
Yes

No

❄
BP = BP + 1

❄�
✒

✏
✑Done

❄
Discard B

✛

Figure C-11 — FLUSH procedure
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The byte in the C-register is then completed by shifting C, and two bytes are then removed. If the byte in buffer, B, an
0xFF then it is discarded. Otherwise, buffer B is output to the bit stream.

NOTE — This is the only normative option for termination in ITU-T Rec.T.88 | ISO/IEC 14492. However, further reduction of the
bit stream is allowed provided correct decoding is assured (see Annex D.4.2).

C.3 Arithmetic decoding procedure

Figure C-13 shows a simple block diagram of a binary adaptive arithmetic decoder. The compressed data CD and a
context CX from the decoder's model unit (not shown) are input to the arithmetic decoder. The decoder's output is the
decision D. The encoder and decoder model units need to supply exactly the same context CX for each given decision. 

The DECODER (Figure C-14) initializes the decoder through INITDEC. Contexts, CX, and bytes of compressed data (as
needed) are read and passed on to DECODE until all contexts have been read. The DECODE routine decodes the binary
decision D and returns a value of either 0 or 1. The probability estimation procedures which provide adaptive estimates of

Figure C-12 — Setting the final bits in the C register

Figure C-13 — Arithmetic decoder inputs and outputs

DECODER D

CD

CX
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the probability for each context are embedded in DECODE. When all contexts have been read (Finished?), the
compressed data has been decompressed. 

C.3.1 Decoder code register conventions

The flow charts given in this Annex assume the register structures for the decoder shown in Table C-3. 

Chigh and Clow can be thought of as one 32 bit C-register in that renormalization of C shifts a bit of new data from the
MSB of Clow to the LSB of Chigh. However, the decoding comparisons use Chigh alone. New data is inserted into the
“b” bits of Clow one byte at a time.

The detailed description of the handling of data with stuff-bits will be given later in this Annex.

Note that the comparisons shown in the various procedures in this section assume precisions greater than 16 bits. Logical
comparisons can be used with 16 bit precision.

Table C-3 — Decoder register structures

MSB LSB

Chigh register xxxx xxxx xxxx xxxx

Clow register bbbb bbbb 0000 0000

A-register aaaa aaaa aaaa aaaa

Figure C-14 — Decoder for the MQ-coder
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C.3.2 Decoding a decision (DECODE)

The decoder decodes one binary decision at a time. After decoding the decision, the decoder subtracts any amount from
the compressed data that the encoder added. The amount left in the compressed data is the offset from the base of the
current interval to the sub-interval allocated to all binary decisions not yet decoded. In the first test in the DECODE
procedure illustrated in Figure C-15 the Chigh register is compared to the size of the LPS sub-interval. Unless a
conditional exchange is needed, this test determines whether a MPS or LPS is decoded. If Chigh is logically greater than
or equal to the LPS probability estimate Qe for the current index I stored at CX, then Chigh is decremented by that
amount. If A is not less than 0x8000, then the MPS sense stored at CX is used to set the decoded decision D. 

When a renormalization is needed, the MPS/LPS conditional exchange may have occurred. For the MPS path the
conditional exchange procedure is shown in Figure C-16. As long as the MPS sub-interval size A calculated as the first
step in Figure C-16 is not logically less than the LPS probability estimate Qe(I(CX)), an MPS did occur and the decision
can be set from MPS(CX). Then the index I(CX) is updated from the next MPS index (NMPS) column in Table C-2. If,
however, the LPS sub-interval is larger, the conditional exchange occurred and an LPS occurred. The probability update
switches the MPS sense if the SWITCH column has a “1” and updates the index I(CX) from the next LPS index (NLPS)
column in Table C-2. Note that the probability estimation in the decoder needs to be identical to the probability
estimation in the encoder.

Figure C-15 — Decoding an MPS or an LPS
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For the LPS path of the decoder the conditional exchange procedure is given the LPS_EXCHANGE procedure shown in
Figure C-17. The same logical comparison between the MPS sub-interval A and the LPS sub-interval Qe(I(CX))
determines if a conditional exchange occurred. On both paths the new sub-interval A is set to Qe(I(CX)). On the left path
the conditional exchange occurred so the decision and update are for the MPS case. On the right path, the LPS decision
and update are followed.

Figure C-16 — Decoder MPS path conditional exchange procedure
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Figure C-17 — Decoder LPS path conditional exchange procedure
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C.3.3 Renormalization in the decoder (RENORMD)

The RENORMD procedure for the decoder renormalization is illustrated in Figure C-18. A counter keeps track of the
number of compressed bits in the Clow section of the C-register. When CT is zero, a new byte is inserted into Clow in the
BYTEIN procedure. 

Both the interval register A and the code register C are shifted, one bit at a time, until A is no longer less than 0x8000.

C.3.4 Compressed data input (BYTEIN)

The BYTEIN procedure called from RENORMD is illustrated in Figure C-19. This procedure reads in one byte of data,
compensating for any stuff bits following the 0xFF byte in the process. It also detects the marker codes which must occur

Figure C-18 — Decoder renormalisation procedure
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at the end of a scan or resynchronization interval. The C-register in this procedure is the concatenation of the Chigh and
Clow registers. 

B is the byte pointed to by the compressed data buffer pointer BP. If B is not a 0xFF byte, BP is incremented and the new
value of B is inserted into the high order 8 bits of Clow.

If B is a 0xFF byte, then B1 (the byte pointed to by BP+1) is tested. If B1 exceeds 0x8F, then B1 must be one of the
marker codes. The marker code is interpreted as required, and the buffer pointer remains pointed to the 0xFF prefix of the
marker code which terminates the arithmetically compressed data. 1-bits are then fed to the decoder until the decoding is
complete. This is shown by adding 0xFF00 to the C-register and setting the bit counter CT to 8.

If B1 is not a marker code, then BP is incremented to point to the next byte which contains a stuffed bit. The B is added to
the C-register with an alignment such that the stuff bit (which contains any carry) is added to the low order bit of Chigh.

Figure C-19 — BYTEIN procedure for decoder
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C.3.5 Initialisation of the decoder (INITDEC)

The INITDEC procedure is used to start the arithmetic decoder. The basic steps are shown in Figure C-20. 

BP, the pointer to the compressed data, is initialized to BPST (pointing to the first compressed byte). The first byte of the
compressed data is shifted into the low order byte of Chigh, and a new byte is then read in. The C-register is then shifted
by 7 bits and CT is decremented by 7, bringing the C-register into alignment with the starting value of A. The interval
register A is set to match the starting value in the encoder.

C.3.6 Resetting arithmetic coding statistics

At certain points during the decoding some or all of the arithmetic coding statistics are reset. This process involves
setting I(CX) and MPS(CX) equal to zero for some or all values of CX.

C.3.7 Saving arithmetic coding statistics

In some cases, the decoder needs to save or restore some values of I(CX) and MPS(CX).

Figure C-20 — Initialisation of the decoder
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Annex D

Coefficient bit modeling

(This annex forms an integral part of this Recommendation | International Standard)

This annex defines the modeling of the transform coefficient bits. It describes how the coefficients are arranged into
code-blocks, bit-planes, and coding passes.

The coefficients are associated with different sub-bands arising from the transform applied (see Annex F). These
coefficients are then arranged into rectangular blocks within each sub-band, called code-blocks. These code-blocks are
then coded a bit-plane at a time starting from the most significant bit-plane with a non-zero element to the least
significant bit-plane. 

For each bit-plane in a code-block, a special code-block scan pattern is used for each of three coding passes. Each
coefficient bit in the bit-plane is coded in only one of the three coding passes. The coding passes are called significance
propagation, magnitude refinement, and cleanup. For each pass contexts are created which are provided to the arithmetic
coder, CX, along with the bit stream, CD, (see Annex C.3). The arithmetic coder is reset according to selected rules.

D.1 Code-block scan pattern within code-blocks

Each bit-plane of a code-block is scanned in a particular order. Starting at the top left, the first four bits of the first column
are scanned. Then the first four bits of the second column, until the width of the code-block has been covered. Then the
second four bits of the first column are scanned and so on. A similar vertical scan is continued for any leftover rows on
the lowest code-blocks in the sub-band. Figure D-1 shows an example of the code-block scan pattern for a code-block. 

D.2 Coefficient bits and significance

All quantized transform coefficients, , are signed values even when the original components are unsigned. These
coefficients are expressed in a sign-magnitude representation. For a particular sub-band, there is a maximum number of
magnitude bits, Mb. The “significance state” changes from insignificant to significant (see the section below) at the bit-
plane where the most significant 1 bit is found. For a code-block, the number of bit-planes starting from the most
significant bit-plane that are all zero, is signalled in the packet header (see Annex B.9.5). No other coding of those
insignificant bit-planes is made.

D.3 Decoding passes over the bit-planes

Each coefficient in a code-block has an associated binary state variable called its significance state. Significance states
are initialized to 0 (coefficient is insignificant) and may become 1 (coefficient is significant) during the course of the
coding of the code-block. The context vector for a given current coefficient is the binary vector consisting of the
significance states of its 8 nearest-neighbor coefficients, as shown in Figure D-2. Any nearest neighbor lying outside the

3    7   11 15  19  23 27  31  35 39  43  47  51 55  59  63

64 ...

2    6   10 14  18  22 26  30  34 38  42  46 50  54  58  62

1    5    9  13  17  21 25  29  33 37  41  45 49  53  57  61

0    4    8  12  16  20 24  28  32 36  40  44 48  52  56 60

Code-block 16 wide by N high

Figure D-1 — Example code-block scan pattern of a code-block

65 ...

qb u v,( )
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current coefficient’s code-block is regarded as insignificant (i.e., it is treated as having a zero significance state) for the
purpose of coding a bit in the current coefficient.

In general, a current coefficient can have 256 possible context vectors. These are clustered into a smaller number of
contexts according to the rules specified below for context formation. Four different context formation rules are defined,
one for each of the four coding operations: significance coding, sign coding, magnitude refinement coding, and cleanup
coding. These coding operations are performed in three coding passes over each bit plane: significance and sign coding in
a significance propagation pass, magnitude refinement coding in a magnitude refinement pass, and cleanup and sign
coding in a cleanup pass. For a given coding operation, the context label (or context) provided to the arithmetic coding
engine is a label assigned to the current coefficient’s context.

NOTE — Although (for the sake of concreteness) specific integers are used in the tables below for labeling contexts, the tokens
used for context labels are implementation-dependent and their values are not mandated by this Recommendation | International
Standard.

The number of bit-planes starting from the most significant bit that have no significant coefficients (only insignificant
bits) is signalled in the packet headers (see Annex B.9.5). The first bit-plane with a non-zero element has a cleanup pass
only. The remaining bit-planes are coded in three coding passes. Each coefficient bit is coded in exactly one of the three
coding passes. Which pass a coefficient bit is coded in depends on the conditions for that pass. In general, the significance
propagation pass includes the coefficients that are predicted, or “most likely,” to become significant and their sign bits, as
appropriate. The magnitude refinement pass includes bits from already significant coefficients. The cleanup pass includes
all the remaining coefficients.

D.3.1 Significance propagation decoding pass

The eight surrounding neighbor coefficients of a current coefficient (shown as an X in Figure D-2 where X denotes the
current coefficient) are used to create 9 context bins based on how many and which ones are significant. If a coefficient is
significant then it is given a 1 value for the creation of the context, otherwise it is given a 0 value. The mapping to the
contexts also depends on which sub-band (at a given decomposition level) the code-block is in. Table D-1 shows these
contexts. 

Table D-1 — Contexts for the significance propagation pass and cleanup coding passes

LL and LH sub-bands
(vertical high-pass)

HL sub-band
(horizontal high-pass)

HH sub-band
(diagonally high-pass)

Context 
labela

∑H ∑V ∑D ∑H ∑V ∑D ∑(H+V) ∑D

2 xb x x 2 x x ≥3 8

1 ≥1 x ≥1 1 x ≥1 2 7

1 0 ≥1 0 1 ≥1 0 2 6

1 0 0 0 1 0 ≥2 1 5

D0 V0 D1

H0 X H1

D2 V1 D3

Figure D-2 — Neighbors states used to form the context
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The significance propagation pass includes only bits of coefficients that were insignificant (the significance bit has yet to
be encountered) and have a non-zero context. All other coefficients are skipped. The context is delivered to the arithmetic
decoder (along with the bit stream) and the decoded coefficient bit is returned. If the value of this bit is 1 then the
significance state is set to 1 and the immediate next bit to be decoded is the sign bit for the coefficient. Otherwise, the
significance state remains 0. When the contexts of successive coefficients and coding passes are considered, the most
current significance state for this coefficient is used. 

D.3.2 Sign bit decoding

The context label for sign bit decoding is determined using another context of the neighborhood. Computation of the
context label can be viewed as a two step process. The first step summarizes the contribution of the vertical and the
horizontal neighbors. The second step reduces those contributions to one of 5 context labels.

For the first step, the two vertical neighbors (see Figure D-2) are considered together. Each neighbor may have one of
three states: significant positive, significant negative, or insignificant. If the two vertical neighbors are both significant
with the same sign, or if only one is significant, then the vertical contribution is 1 if the sign is positive or -1 if the sign is
negative. If both vertical neighbors are insignificant, or both are significant with different signs, then the vertical
contribution is 0. The horizontal contribution is created the same way. Once again, if the neighbors fall outside the code-
block they are considered to be insignificant. Table D-2 shows these contributions.

0 2 x 2 0 x 1 1 4

0 1 x 1 0 x 0 1 3

0 0 ≥2 0 0 ≥2 ≥2 0 2

0 0 1 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0

a. Note that the context labels are numbered only for identification convenience in this specification. The actual identifiers used
is a matter of implementation.

b. x = do not care.

Table D-2 — Contributions of the vertical (and the horizontal) neighbors to the sign context

V0 (or H0) V1 (or H1)
V (or H) 

contribution

significant, positive significant, positive 1

significant, negative significant, positive 0

insignificant significant, positive 1

significant, positive significant, negative 0

significant, negative significant, negative -1

insignificant significant, negative -1

Table D-1 — Contexts for the significance propagation pass and cleanup coding passes

LL and LH sub-bands
(vertical high-pass)

HL sub-band
(horizontal high-pass)

HH sub-band
(diagonally high-pass)

Context 
labela
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The second step reduces the nine permutations of the vertical and horizontal contributions into 5 context labels. Table D-
3 shows these context labels. This context is provided to the arithmetic decoder with the bit stream. The bit returned is
then logically exclusive ORed with the XORbit in Table D-3 to produce the sign bit. The following equation is used:

D.1

where signbit is the sign bit of the current coefficient (a one bit indicates a negative coefficient, a zero bit a positive
coefficient), AC(contextlabel) is the value returned from the arithmetic decoder given the context label and the bit stream,
and the XORbit is found in Table D-3 for the current context label. 

D.3.3 Magnitude refinement pass

The magnitude refinement pass includes the bits from coefficients that are already significant (except those that have just
become significant in the immediately proceeding significance propagation pass).

The context used is determined by the summation of the significance state of the horizontal, vertical, and diagonal
neighbors. These are the states as currently known to the decoder, not the states used before the significance decoding
pass. Further, it is dependent on whether this is the first refinement bit (the bit immediately after the significance and sign
bits) or not. Table D-4 shows the three context bins for this pass. 

significant, positive insignificant 1

significant, negative insignificant -1

insignificant insignificant 0

Table D-3 — Sign contexts from the vertical and horizontal contributions

Horizontal contribution Vertical contribution Context label XORbit

1 1 13 0

1 0 12 0

1 -1 11 0

0 1 10 0

0 0 9 0

0 -1 10 1

-1 1 11 1

-1 0 12 1

-1 -1 13 1

Table D-2 — Contributions of the vertical (and the horizontal) neighbors to the sign context

V0 (or H0) V1 (or H1)
V (or H) 

contribution

signbit AC contextlabel( ) XORbit⊕=
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D.3.4 Cleanup pass

All the remaining coefficients are insignificant and had the context value of zero during the significance propagation
pass. These are all included in the cleanup pass. The cleanup pass not only uses the neighbor context, like that of the
significance propagation pass, from Table D-1, but also a run-length context.

First, the neighbor contexts for the coefficients in this pass are recreated using Table D-1. Note that the context label can
now have any value because the coefficients that were found to be significant in the significance propagation pass are
considered to be significant in the cleanup pass. Run-lengths are decoded with a unique single context. If the four
contiguous coefficients in the column being scanned are all coded in the cleanup pass and the context label for all is 0
(including context coefficients from previous magnitude significance and cleanup passes), then the unique run-length
context is given to the arithmetic decoder along with the bit stream. If the symbol 0 is returned, then all four contiguous
coefficients in the column remain insignificant.

Otherwise, if the symbol 1 is returned, then at least one of the four contiguous coefficients in the column is significant.
The next two bits, returned with the UNIFORM context (index 46 in Table C-2), denote which coefficient from the top of
the column down is the first to be found significant. The two bits decode with the UNIFORM context are decoded MSB
then LSB. That coefficient’s sign bit is determined as described in Annex D.3.2. The decoding of any remaining
coefficients continues in the manner described in Annex D.3.1.

If the four contiguous coefficients in a column are not all decoded in the cleanup pass or the context bin for any is non-
zero, then the coefficient bits are decoded with the context in Table D-1 as in the significance propagation pass. Note that
the same contexts as the significance propagation are used here (the state is used as well as the model). Table D-5 shows
the logic for the cleanup pass. 

Table D-4 — Contexts for the magnitude refinement coding passes

∑H+∑V+∑D First refinement for this coefficient Context label

xa false 16

≥1 true 15

0 true 14

a. "x" indicates a "don’t care" state.

Table D-5 — Run-length decoder for cleanup passes

Four contiguous 
coefficients in a column 
remaining to be decoded 
and each currently have 

the 0 context

Symbols with 
run-length 

context

Four contiguous bits to be 
decoded are zero

Symbols decoded 
with UNIFORMa 

context

a. See Annex C.

Number of 
coefficients to 

decode

true 0 true none none

true 1 false
skip to first coefficient sign
skip to second coefficient sign
skip to third coefficient sign
skip to fourth coefficient sign

MSB LSB
00
01
10
11

3
2
1
0

false none x none rest of column
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If there are fewer than four rows remaining in a code-block, then no run-length coding is used. Once again, the
significance state of any coefficient is changed immediately after decoding the first 1 magnitude bit.

D.3.5 Example of coding passes and significance propagation (informative)

Table D-6 shows an example of the coding order for the quantized coefficients of one 4-sample column in the scan. This
example assumes all neighbors not included in the table are identically zero, and indicates in which pass each bit is
coded. The sign bit is coded after the initial 1 bit and is indicated in the table by the + or - sign. Note that the very first
pass in a new block is always a clean-up pass because there can be no predicted significant, or refinement bits. After the
first pass, the decoded 1 bit of the first coefficient causes the second coefficient to be coded in the significance pass for the
next bit-plane. The 1 bit coded for the last coefficient in the second clean-up pass causes the third coefficient to be coded
in the next significance pass. 

D.4 Initializing and terminating

When the contexts are initialized, or re-initialized, they are set to the values in the Table D-7. The contexts are either re-
initalized at the end of every coding pass, or only at the end of every code-block. The COD or COC marker signals where
contexts are reinitialized (see Annex A.6.1 and Annex A.6.2). 

Table D-6 — Example of sub-bit-plane coding order and significance propagation

Coding Pass
Coefficient Value

10 1 3 -7

Clean-up 1+ 0 0 0

Significance 0

Refinement 0

Clean-up 0 1-

Significance 0 1+

Refinement 1 1

Clean-up

Significance 1+

Refinement 0 1 1

Clean-up

Table D-7 — Initial states for all contexts

Context Initial index from Table C-2 MPS

UNIFORM 46 0

Run-length 3 0

All zero neighbors (context label 0 in Table D-1) 4 0
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In the normal operation (not selective arithmetic coding bypass), the arithmetic coder shall be terminated either at the end
of every coding pass or only at the end of every code-block. Table D-8 shows two examples of termination patterns for
the coding passes in a code-block. The COD or COC marker signals which termination pattern is used (see Annex A.6.1
and Annex A.6.2). 

When multiple terminations of the arithmetic coder are present, the length of each terminated segment is signalled in the
packet header as described in Annex B.9.7.

NOTE — Termination should never create a byte aligned value between 0xFF90 and 0xFFFF. These values are available as in bit
steam marker values. 

D.4.1 Decoder termination

The decoder anticipates that the given number of codestream bytes will decode a given number of coding passes before
the arithmetic coder is terminated. During decoding, bytes are pulled successively from the codestream until all the bytes
for those coding passes have been consumed. The number of bytes corresponding to the coding passes is specified in the
packet header. Often at that point there are more symbols to be decoded. Therefore, the decoder shall extend the input bit
stream to the arithmetic coder with 0xFF bytes, as necessary, until all symbols have been decoded.

It is sufficient to append no more than two 0xFF bytes. This will cause the arithmetic coder to have at least one pair of
consecutive 0xFF bytes at its input which is interpreted as an end-of-stream marker (see Annex C.3.4). The bit stream
does not actually contain a terminating marker. However, the byte length is explicitly signalled enabling the terminating
marker to be synthesized for the arithmetic coder. 

NOTE — Two 0xFF bytes appended in this way is the simplest method. However, other equivalent extensions exist. This might be
important since some arithmetic coder implementations might attach special meaning to the specific termination marker.

All other contexts 0 0

Table D-8 — Examples of arithmetic coder termination patterns

# Pass
Coding Operation

Termination only on last pass
Coding Operation 

Termination on every pass

1 cleanup Arithmetic Coder (AC) AC, terminate

2 significance propagation AC AC, terminate

2 magnitude refinement AC AC, terminate

2 cleanup AC AC, terminate

... ... ... ...

final significance propagation AC AC, terminate

final magnitude refinement AC AC, terminate

final cleanup AC, terminate AC, terminate

Table D-7 — Initial states for all contexts

Context Initial index from Table C-2 MPS
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D.4.2 Arithmetic encoder termination

This termination is required if the predictable termination flag is 1 in the COD or COC markers (see Annex A.6.1 and
Annex A.6.2). Otherwise, it is allowed, but not required.

It is important for fixed rate coding purposes to be able to compute the number of bytes required to correctly decode all
symbols up to any given truncation point, i.e., up to the end of the relevant coding passes. According to the termination
style selected, a certain number of coding passes are performed before the arithmetic coder is terminated. The truncated
length of the bit stream segment created must be estimated for rate control algorithms.

The FLUSH procedure performs this task adequately (see Annex C.2.9). However, since the FLUSH procedure increases
the length of the codestream, and frequent termination may be desirable, other techniques may be employed. Any
technique that places all of the needed bytes in the codestream in such a way that the decoder need not backtrack to find
the position at which the next segment of the codestream should begin is acceptable.

Using the notation of Annex C.2, the followings steps can be used:

1 Identify the number of bits in code register, C, which must be pushed out through the byte buffer. This
is given by k = (11 - CTn) +1

2 While (k > 0)

— Shift C left by CT and set CT = 0.

— Execute the BYTEOUT procedure. Note that this sets CT equal to the number of bits cleared out
of the C register.

— Subtract CT from k.

3 Execute the BYTEOUT procedure to push the contents of the byte buffer register out to the codestream.
Note that this step shall be skipped if the byte in the byte buffer has an 0xFF byte value. 

The relevant truncation length in this case is simply the total number of bytes pushed out onto the codestream. The last
byte output by the above procedure can generally be modified, within certain bounds, without affecting the symbols to be
decoded. It will sometimes be possible to augment the last byte to the special value, 0xFF, which shall not be sent. It can
be shown that this happens approximately 1/8 of the time.

D.4.3 Length computation (informative)

To include compressed coding pass data into packets the number of bytes to be included must be determined. If the
compressed coding pass data is terminated, the algorithm in the previous section may be used. Otherwise, the encoder
should calculate a suitable length such that corresponding bytes are sufficient for the decoder to reconstruct the coding
passes.

D.5 Error resilience segmentation symbol

A segmentation symbol is a special symbol. Whether it is used is signalled in the COD or COC marker segments (Annex
A.6.1 and Annex A.6.2). The symbol is coded with the UNIFORM context of the arithmetic coder at the end of each bit-
plane. The correct decoding of this symbol confirms the correctness of the decoding of this bit-plane, which allows error
detection. At the decoder, a segmentation symbol “1010” or “0xA” should be decoded at the end of each bit-plane. If the
segmentation symbol is not decoded correctly, then bit errors occurred for this bit-plane.

NOTE — This can be used with or without the predictable termination.

D.6 Selective arithmetic decoding bypass

This style of coding allows bypassing the arithmetic coder for the significance propagation pass and magnitude
refinement coding passes in the fifth significant bit-plane, and the following bit-planes, of the code-block. The first
cleanup pass (which is the first bit-plane of a code-block with a non-zero element) and the successive three significance
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propagation pass, magnitude refinement, and cleanup coding passes are decoded with the arithmetic coder as before. The
fourth cleanup pass shall include an arithmetic coder termination (see Table D-9).

Starting with the fourth significance propagation pass and magnitude refinement coding passes the bits that would have
been returned from the arithmetic coder are instead returned after a routine that undoes the effects of bit stuffing. After
each magnitude refinement pass the bit stream has been “terminated” by padding to the byte boundary. The cleanup
coding passes continue to receive data directly from the arithmetic coder and are always terminated.

The sign bit context is determined as in Annex D.3.2. However, the sign bit is computed with Equation D.2, not Equation
D.1.

D.2

where raw_value = 1 is a negative sign bit and raw_value = 0 is a positive sign bit.

The COD or COC marker signals whether or not this coding style is used (see Annex A.6.1 and Annex A.6.2). Table D-9
shows this progression 

Table D-9 — Selective arithmetic coding bypass

# Pass type Coding Operations

1 cleanup Arithmetic Coding (AC)

2 significance propagation AC

2 magnitude refinement AC

2 cleanup AC

3 significance propagation AC

3 magnitude refinement AC

3 cleanup AC

4 significance propagation AC

4 magnitude refinement AC

4  cleanup AC, terminate

5 significance propagation raw

5 magnitude refinement raw, terminate

5 cleanup AC, terminate

... ... ...

final significance raw

final magnitude refinement raw, terminate

signbit raw_value=
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The length of each terminated segment is signalled in the packet header as described in Annex B.9.7.

D.6.1 Undoing the effects of bit stuffing

If a 0xFF value is encountered in the bit stream, then the first bit of the next byte is discarded. The sequence of bits used
in the selective arithmetic coding bypass have been stuffed into bytes using a bit stuffing routine.

At the encoder, bits are packed into bytes from the most significant bit to the least significant bit. Once a complete byte is
assembled, it is emitted to the bit stream. If the value of the byte is an 0xFF a single zero bit is stuffed into the most
significant bit of the next byte. Once all bits of the coding pass have been assembled, the last byte is packed to the byte
boundary and emitted. The last byte shall not be an 0xFF value.

NOTE — Since the decoder appends 0xFF values, as necessary, to the bit stream representing the coding pass (see Annex D.4.1),
truncation of the bit stream may be possible.

D.6.2 Predictable termination

This termination is required if the predictable termination flag is 1 in the COD or COC markers (see Annex A.6.1 and
Annex A.6.2). Otherwise, it is allowed, but not required. This termination in not optimal.

When all the bits from a coding pass have been assembled by the encoder, if necessary the last byte is packed to a byte
boundary with an alternating sequence of 0’s and 1’s. This sequence should start with a 0 regardless of the number of bits
to be padded.

D.7 Vertically causal context formation

This style of coding constrains the context formation to the current and past code-block scans (four rows of vertically
scanned samples). That is, any coefficient from the next code-block scan are considered to be insignificant. The COD or
COC marker signals whether or not this style of coding is used (see Annex A.6.1 and Annex A.6.2).

The bit labelled 14 in Figure D-1 is decoded as usual using the neighbor states as specified in Figure D-2. However, the
bit labeled 15 is decoded assuming D2 = V1 = D3 = 0 in Figure D-2.

D.8 Flow diagram of the code-block coding

The steps for modeling each bit-plane of each code-block can be viewed graphically in Figure D-3. The decisions made
are in Table D-10 and the bits and context sent to the coder are in Table D-11. These show the context model without the
selective arithmetic coding bypass or the vertically causal model.

final cleanup AC, terminate

Table D-10 — Decisions in the context model flow chart

Decision Question Description

D0 Is this the first significance bit-plane for the code-block? Annex D.3

D1 Is the current coefficient significant? Annex D.3.1

D2 Is the context bin zero? (see Table D-1) Annex D.3.1

D3 Did the current coefficient just become significant? Annex D.3.1

Table D-9 — Selective arithmetic coding bypass

# Pass type Coding Operations
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D4 Are there more coefficients in the significance propagation?

D5 Is the coefficient insignificant? Annex D.3.3

D6 Was the coefficient coded in the last significance propagation? Annex D.3.3

D7 Are there more coefficients in the magnitude refinement pass?

D8 Are four contiguous undecoded coefficients in a column each with a 0 context? Annex D.3.4

D9 Is the coefficient significant? Annex D.3.4

D10 Are there more coefficients remaining of the four column coefficients?

D11 Are the four contiguous bits all zero? Annex D.3.4

D12 Are there more coefficients in the cleanup pass?

Table D-11 — Coding in the context model flow chart

Code Decoded symbol Context Brief explanation Description

C0 — — Goto the next coefficient or column

C1 Newly significant?
Table D-1, 9 

context labels
Decode significant bit of current coefficient 

(significance propagation)
Annex D.3.1

C2 Sign bit
Table D-3, 5 

context labels
Decode sign bit of current coefficient Annex D.3.2

C3
Current magnitude 

bit
Table D-4, 3 

context labels
Decode magnitude refinement pass bit of current 

coefficient
Annex D.3.3

C4
0
1

Run-length 
context label

Decode run-length of four zeros
Decode run-length not of four zeros

Annex D.3.4

C5

00
01
10
11

UNIFORM

First coefficient is first with non-zero bin
Second coefficient is first with non-zero bin
Third coefficient is first with non-zero bin
Forth coefficient is first with non-zero bin

Annex D.3.4 
and Table C-2

Table D-10 — Decisions in the context model flow chart

Decision Question Description
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Figure D-3 — Flow chart for all coding passes on a code-block bit-plane
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Annex E

Quantization

(This annex forms an integral part of this Recommendation | International Standard)

This Annex specifies the forms of quantization and dequantization used for encoding and reconstruction of image tile
components. Quantization is the process by which the transform coefficients are reduced in precision. This operation is
lossy unless the quantization step is one and the coefficients are integer.

E.1 Scalar coefficient dequantization (normative)

For the 9-7 wavelet filter, the quantization step-sizes for all sub-bands are retrieved from the bit stream using Equation
E.1 where  and  are derived from the SPqcdi parameters defined in the QCD (see Annex A.6.4) or from the SPqcci

parameters defined in the QCC markers (see Annex A.6.5). The nominal dynamic range  is the sum of the number of
bits used to represent the original image tile component specified by the SIZ marker (see Annex A.5.1) and the base 2
exponent of the analysis gain of the current sub-band. The analysis gain of a sub-band is recursively defined as the
analysis gain of the previous sub-band multiplied by the respective gains of the horizontal and vertical filters used to
produce that sub-band. The low-pass filter has a unit gain, while the high-pass filter has a gain of 2. Therefore, the
analysis gain of a given sub-band in the wavelet decomposition is 2 to the power of the number of high-pass filtering
steps needed to produce that sub-band. Figure E-1 shows the analysis gain of each sub-band for one and two levels of the
wavelet transform decomposition and Figure E-2 presents the corresponding nominal dynamic range for each sub-
band. 

NOTE — The quantized transform coefficient should generally be confined to their nominal dynamic range, but occasional
excursions beyond that range might be expected.

The quantization step size  is represented relative to the nominal dynamic range of sub-band , by the exponent
 and mantissa  as:

E.1

NOTE — The denominator, 211, in Equation E.1 is determined by the allocation of 11 bits in the codestream for mb, as given in
Table A-30.

The exponent/mantissa pairs  are either explicitly signaled in the bit stream syntax for every sub-band, this is
referred to as explicit quantization, or only signaled in the bit stream for the LL band (see Table A-30). In the latter case,
known as implicit quantization, all other exponent/mantissa pairs  are derived implicitly from the single exponent/
mantissa pair  corresponding to the LL band, according to:

 E.2

εb µb
Rb

Rb

∆b Rb b
εb µb

∆b 2
Rb εb–

1
µb

2
11-------+

 
 
 

=

εb µb( , )

εb µb( , )
εo µo( , )

εb µb( , ) εo nsdb nsdo–+ µo( , )=
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where  denotes the number of sub-band decomposition levels from the original image tile component to the sub-
band b. 

The maximum number of encoded bit-planes (see Annex D.1) which can be expected in the code stream for sub-band
 is retrieved by using Equation E.3 where the number of guard bits G is specified in the QCD or QCC markers (see

Annex A.6.4 and Annex A.6.5). 

 E.3

For the reversible 5-3 wavelet transform, the quantization step size is equal to one (no quantization performed). The
maximum number of encoded bit-planes is also calculated by Equation E.3, where  is derived from the SPqcdi

parameters defined in the QCD (see Annex A.6.4) or from the SPqcci parameters defined in the QCC markers (see Annex
A.6.5). 

Although the encoder might have encoded all the bit-planes of all samples in sub-band , due to the embedded nature of
the code stream, a decoder may decide to decode only  bit-planes for a particular coding-block of the sub-band .
This is equivalent as to the use of a scalar quantizer with step size for all the samples of this coding-block.
Due to the nature of the three coding passes (see Annex D.3), the step-size used in practice when truncation of the bit
stream occurs may be different for different samples within the same coding-blocks if one bit-plane is not completely
decoded. However, these step-sizes are always multiples of the reference step size by some power of two. Each decoded
coefficient  of sub-band  is expressed in a sign magnitude representation (see Annex D.3) in which non
decoded bits are set to 0.  is used to generate a reconstructed transform coefficient . 

For the 9-7 wavelet transform, this reconstructed coefficient is specified in Equation E.4.

nsdb

4

1 2

2 4

2

42

21

2

a) One level analysis gain b) Two level analysis gain

Figure E-1 — Analysis gain of each sub-band of the wavelet transform decomposition
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Figure E-2 — Nominal dynamic range for each sub-band of the wavelet transform decomposition, where  is 
the bit depth of the original image tile-component
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E.4

where  is the number of decoded bit-plane for sample .

NOTE — The value r is the coefficient reconstruction value and is in the range of . It may be chosen to produce the best
visual or objective quality for reconstruction. A typical value is r=1/2.

In the case of the reversible 5-3 integer wavelet transform, the reconstructed transform coefficient  is recovered
differently depending whether the bit stream has been truncated or not. Truncation of the bit stream can be determined
from the number of layers signalled in the COD marker in the main or tile header (see Annex A.6.1), and the number of
bytes in a code-block is signaled in the packet header (see Annex B.9). If the bit stream is completely decoded (no
truncation occurs) then  otherwise to reconstruct a transform coefficient , the following
formula is used:

E.5

E.2 Scalar coefficient quantization (informative) 

After the Forward Wavelet Transform (see Annex F), each of the transform coefficients  of the sub-band is
quantized to the value  according to the following equation:

E.6

where the quantization step size  is represented using Equation E.1

In order to prevent possible overflow or excursion beyond the nominal range of the integer representation of
arising, for example during floating point calculations, the number of bits for the integer representation of

 used at the encoder side is defined by Equation E.3. The number  of guard bits, has to be specified in the QCD
or QCC marker (see Annex A.6.4 and Annex A.6.5). If a ROI is defined, then the number of magnitude bit is modified
accordingly (see Annex H).

NOTE —  Typical values for the number of guard bits are =1 or =2.

For reversible compression, the quantization step size is required to be 1. This implies that  and . In this
case, only the exponent has to be recorded in the bit stream in the QCD or QCC markers (see Annex A.6.4 and Annex
A.6.5). 

NOTE — When the RCT is used the nominal dynamic range has to be modified according to Annex G.

For irreversible compression, no particular selection of the quantization step size is required in this Specification and
different applications may specify the quantization step sizes according to specific image tile component characteristics.
One effective way of selecting the quantizer step size for one sub-band is to normalize a default step size  with
respect to the vertical and horizontal synthesis filters which are used in that specific sub-band [22]. The relationship
between errors in one transformed coefficient induced by quantization and the corresponding errors in the samples value
in the image tile component is expressed by the energy weight , i.e. the amount of squared errors introduced by a
unit error in the transformed coefficient. The energy weight of a given sub-band  is the product of its row weight and
column weight. The column (row) weight is a function of the synthesis filter applied in the column (row) direction during
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the Inverse Transform (see Annex F). For example, a transformed coefficient belonging to sub-band  (see Annex
F for the definition of 3LH) undergoes three low-pass filtering in the row direction. In the column direction, the
appropriate filtering is high-pass followed by two low-pass. Let  and  be the impulse response of the low and high
pass synthesis 1D filters (see Table E.1). To calculate the column weight,  is up-sampled (one zero is inserted between
every coefficient of the filter) and convolved with . The result is then up-sampled and convolved with . If more than
three synthesis filters are applied in the column direction, the previous calculation is repeated until all filters needed to
perform the inverse wavelet transform have been applied. The column weight is then the sum of the square of all samples
in the final convolution result. The row weight is computed in the same way. A typical choice for the quantization step
size for sub-band  is then:

E.7

 A typical value for  is  where  is the bit depth of the original tile image component.

Table E-1 — Impulse response of the low and high pass synthesis filter for the 9-7 wavelet transform

i

0 1.115087052456994 0.6029490182363579

±1 0.5912717631142470 -0.2668641184428723

±2 -0.05754352622849957 -0.07822326652898785

±3 -0.09127176311424948 0.01686411844287495

±4 0 0.02674875741080976

all other values 0 0
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108 ITU-T Rec. T.800 (2000 FCDV1.0)



ISO/IEC FCD15444-1 : 2000 (V1.0, 16 March 2000)
Annex F

Discrete wavelet transformation of tile components

(This annex forms an integral part of this Recommendation | International Standard)

This Recommendation | International Standard describes the forward discrete wavelet transformation applied to one tile
component and specifies the inverse discrete wavelet transformation used to reconstruct the tile component.

F.1 Introduction and overview

F.1.1 Tile component parameters

Consider the tile component defined by the coordinates , ,  and  given in Equation B.10, in Annex B.
Then the coordinates  of the tile component (with sample values ) lie in the range defined by:

  and . F.1

F.1.2 Discrete Wavelet Transformations (informative)

F.1.2.1 Low-pass and high-pass filtering

To perform the forward discrete wavelet transformation (FDWT), this Recommendation | International Standard uses a
one-dimensional sub-band decomposition of a one-dimensional set of samples into low-pass coefficients, representing a
downsampled low-resolution version of the original set, and high-pass coefficients, representing a downsampled residual
version of the original set, needed to perfectly reconstruct the original set from the low-pass set.

To perform the inverse discrete wavelet transformation (IDWT), this Recommendation | International Standard uses a
one-dimensional sub-band recomposition of a one-dimensional set of samples from low-pass and high-pass coefficients.

F.1.2.2 Levels of decomposition

Each tile component is transformed into a set of two-dimensional sub-band signals (called sub-bands), each representing
the activity of the signal in various frequency bands, at various spatial resolutions. The different number of levels of
spatial resolutions  is called the number of decomposition levels.

F.1.2.3 Discrete wavelet filters (informative)

This Recommendation | International Standard uses one reversible transformation and one irreversible transformation.
Given that tile component samples are integer-valued, a reversible transformation requires the specification of a rounding
procedure for intermediate non-integer-valued transform coefficients.

F.2 The inverse discrete wavelet transformation (normative)

F.2.1 The IDWT procedure

The inverse discrete wavelet transformation (IDWT) inverse transforms a set of sub-bands with coefficients 
into DC-level shifted tile component samples  (IDWT procedure), which depend on the parameter ,

tcx0 tcx1 tcy0 tcy1
x y,( ) I x y,( )

tcx0 x tcx1<≤ tcy0 y tcy1<≤

NL

ab ub vb,( )
I x y,( ) NL
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representing a number of iterations, known as the number of decomposition levels (see Figure F-1). The number of
decomposition levels  is signalled in the COD or COC markers (see Annex A.6.1 and Annex A.6.2). 

The total number of sub-bands is . The sub-bands are labelled in the following way: an index lev
corresponding to the level of the sub-band decomposition, followed by two letters which are either LL, HL, LH or HH.
Coefficients from the sub-band b=levHL, are the transform coefficients obtained from low-pass filtering vertically and
high-pass filtering horizontally at decomposition level lev. Coefficients from the sub-band b=levLH, are the transform
coefficients obtained from high-pass filtering vertically and low-pass filtering horizontally at decomposition level lev.
Coefficients from the sub-band b=levHH, are the transform coefficients obtained from high-pass filtering vertically and
high-pass filtering horizontally at decomposition level lev. Coefficients from the sub-band b=NLLL, are the transform
coefficients obtained from low-pass filtering vertically and low-pass filtering horizontally at the last decomposition level
NL.

The following ordering of sub-bands is used:

NLLL, NLHL, NLLH, NLHH, (NL-1)HL, (NL-1)LH, (NL-1)HH, ... , 1HL, 1LH, 1HH

As illustrated in Figure F-2, all the sub-bands in the case where NL=2 can be represented in the following way: 

The IDWT procedure starts with the initialization of the variable  (the current level of decomposition) to . The
2D_SR procedure is performed at every level , where the level  decreases at each iteration, and until 
iterations are performed. The 2D_SR procedure is iterated over the LL sub-band produced at each iteration. Finally, the
sub-band  is the output array .

As defined in Annex B, the coefficient values  lie in the range defined by:

  and , F.2

which are defined in Annex B.

Figure F-3 describes the IDWT procedure. 

NL

Figure F-1 — Inputs and outputs of the IDWT procedure

ab(ub,vb) IDWT I x y,( )

NL
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Figure F-2 — The IDWT (NL=2)
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F.2.2 The 2D_SR procedure

The 2D_SR procedure performs a recomposition of four groups of sub-band coefficients ,
,  and  into a two-dimensional array of samples  (see Figure

F-4).The total number of samples of the recomposed  sub-band is equal to the sum of the total number of samples
of the four sub-bands input to the 2D_SR procedure (see Figure F-5). 

First, the four sub-bands are interleaved to form an array  using the 2D_INTERLEAVE procedure. Then the
2D_SR procedure first applies the HOR_SR procedure to all rows of . It finally applies the VER_SR procedure to
all columns of .

Figure F-6 describes the 2D_SR procedure. 

Done

Figure F-3 — The IDWT Procedure

IDWT

I x y,( ) a0LL x y,( )←

lev NL←

a lev 1–( )LL u v,( )=2D_SR(a
levLL

u v,( ),alevHL u v,( ),alevLH u v,( ),alevHH u v,( ) )

No

Yes
lev 0≥

lev lev 1–←

a lev 1+( )LL u v,( )
a lev 1+( )HL u v,( ) a lev 1+( )LH u v,( ) a lev 1+( )HH u v,( ) alevLL u v,( )

levLL

Figure F-4 — Inputs and outputs of the 2D_SR procedure
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a lev 1+( )LL

a lev 1+( )LH
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alevLL

Figure F-5 — One-level recomposition from four sub-bands (2D_SR procedure)
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F.2.3 The 2D_INTERLEAVE procedure

As illustrated in Figure F-7, the 2D_INTERLEAVE procedure interleaves the coefficients of four sub-bands to form
. 

The way these sub-bands are interleaved to form the output  is described by the 2D_INTERLEAVE procedure
illustrated in Figure F-8.   

F.2.4 The HOR_SR procedure

The HOR_SR procedure performs a horizontal sub-band recomposition of a two-dimensional array of samples. It takes
as input a two-dimensional array , the horizontal and vertical coordinates  and  of its first and last
samples (see Figure F-9) and produces as output a horizontally inverse filtered version of the input array, row by row. 

2D_SR

Done

Figure F-6 — The 2D_SR procedure

VER_SR a u v,( )( )

HOR_SR a u v,( )( )

2D_INTERLEAVE a u v,( )( )

a u v,( )

a u v,( )

2D_INTERLEAVE

Figure F-7 — Parameters of 2D_INTERLEAVE procedure 
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Figure F-9 — Inputs and outputs of the HOR_SR procedure 
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2D_INTERLEAVE

Done

a 2ub 2vb 1+,( ) aLH ub vb,( )← a 2ub 1+ 2vb 1+,( ) aHH ub vb,( )←

Figure F-8 — The 2D_INTERLEAVE procedure

a 2ub 1+ 2vb,( ) aHL ub vb,( )←

vb v0 2⁄←

ub ub 1+←

ub u1 2⁄≥

ub u0 2⁄←

vb vb 1+←

vb v1 2⁄≥

vb v0 2⁄←

ub ub 1+←

ub u1 2⁄≥

ub u0 2⁄←

vb vb 1+←

vb v1 2⁄≥

vb v0 2⁄←

ub ub 1+←

ub u1 2⁄≥

ub u0 2⁄←

vb vb 1+←

vb v1 2⁄≥

vb v0 2⁄←

ub ub 1+←

ub u1 2⁄≥

ub u0 2⁄←

vb vb 1+←

vb v1 2⁄≥

a 2ub 2vb,( ) aLL ub vb,( )←
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As illustrated in Figure F-10, the HOR_SR procedure applies the one-dimensional sub-band recomposition (1D_SR
procedure) to each row of the input array . The result of the application of the 1D_SR procedure on each row is
stored back in each row. 

F.2.5 The VER_SR procedure

The VER_SR procedure performs a vertical sub-band recomposition of a two-dimensional array of samples. It takes as
input a two-dimensional array , the horizontal and vertical coordinates  and  of its first and last
samples (see Figure F-11) and produces as output a vertically inverse filtered version of the input array, column by
column. 

a u v,( )

Figure F-10 — The HOR_SR procedure

HOR_SR

Done

v v0←

Yes

X u( ) a u v,( )←

v v 1+←

Y u( ) 1D_SR X u( )( )=

a u v,( ) Y u( )←

No
v v1≥

a u v,( ) u0 u1,( ) v0 v1,( )

Figure F-11 — Inputs and outputs of the VER_SR procedure

a u v,( )

VER_SD
a u v,( )u0 u1,( )

v0 v1,( )
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As illustrated in Figure F-12, the VER_SR procedure applies the one-dimensional sub-band recomposition (1D_SR
procedure) to each column of the input array . The result of the application of the 1D_SR procedure on each
column is stored back in each column.

F.2.6 The 1D_SR procedure

As illustrated in Figure F-13, the 1D_SR procedure takes as input a one-dimensional array Y, the index i0 of the first
sample in array X, the index i1 of the sample following the last sample in array Y. It produces as output an array X, with
the same indices . 

For signals of length one (i.e. ), the 1D_SR procedure is the identity, i.e. .

For signals of length greater than or equal to two (i.e. ), as illustrated in Figure F-14, the 1D_SR procedure first
uses the 1D_EXTR procedure to extend the signal Y beyond its left and right boundaries resulting in the extended signal

a u v,( )

VER_SR

Done

Figure F-12 — The VER_SR procedure

u u0←

X v( ) a u v,( )←

u u 1+←

Y v( ) 1D_SR X v( )( )=

a u v,( ) Y v( )←

No

Yes

u u1≥

i0 i1,( )

Y
X

1D_SRi0
i1

Figure F-13 — Parameters of the 1D_SR procedure

i0 i1 1–= X i0( ) Y i0( )=

i0 i1 1–<
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Yext, and then uses the 1D_IFILTR procedure to inverse filter the extended signal Yext and produce the desired filtered
signal X. 

F.2.7 The 1D_EXTR procedure

As illustrated in Figure F-15 and Figure F-16, the 1D_EXTR procedure extends signal X by ileft samples to the left and
iright samples to the right. The extension of the signal is needed to enable filtering at both boundaries of the signal.

The first sample of signal X is sample i0, and the last sample of signal X is sample i1-1. This extension procedure is
known as “periodic symmetric extension”. Symmetric extension consists in extending the signal with the signal samples
obtained by a reflection of the signal centered on the first sample (sample i0) for extension to the left, and in extending the
signal with the signal samples obtained by a reflection of the signal centered on the last sample (sample i1-1) for
extension to the right. Periodic symmetric extension applies to the case where the number of samples by which to extend
the signal on any one side exceeds the signal length: this case may happen at lower levels of decomposition. The
procedure described in Figure F-15 is one among possibly others which implements periodic symmetric extension.

1D_SR

Done

Yext=1D_EXTR(Y,i0,i1)

X=1D_IFILTR(Yext,i0,i1)

Figure F-14 — The 1D_SR procedure
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The minimum but sufficiently large values of the extension parameters  and  for the reversible transformation
(5/3) and the irreversible transformation (9/7) are given in Table F-1 and Table F-2

and Table F-1

Table F-1 — Extension to the left

even 2 4

odd 1 3

1D_EXTR

i 1←

Xext i0 i–( ) X j( )←

i i 1+←

i ileft> Yes

No

j i0←
dir 1←

j j dir+←

j i1 1–=

dir 1–←

j i0=

dir 1←

No

No

Yes

Yes

i 1←

Xext i1 1– i+( ) X j( )←

i i 1+←

i iright> Yes

No

j i1 1–←
dir 1–←

j j dir+←

j i1 1–=

dir 1–←

j i0=

dir 1←

No

No

Yes

Yes

Done

Figure F-15 — 1D_EXTR procedure implementing periodic symmetric extension

      ...EFGFEDCBABCDEFGFEDCBABC...

 i0               i1

Figure F-16 — Periodic symmetric extension of signal

irightileft

ileft iright

i0 ileft 5 3⁄( ) ileft 9 7⁄( )
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F.2.8 The 1D_IFILTR procedure

One irreversible inverse filtering procedure 1D_IFILTRI and one reversible filtering procedure 1D_IFILTRR are
described.

As illustrated in Figure F-17, both procedures take as input an extended 1D signal Yext, the index of the first coefficient i0,
and the index of the coefficient i1 immediately following the last coefficient (i1-1). They both produce as output signal X. 

Both the irreversible and reversible inverse transformations are described using lifting-based inverse filtering [14], which
is a very efficient implementation of the inverse DWT. Lifting-based filtering consists of a sequence of very simple
filtering operations for which alternately, odd coefficient values of the signal are updated with a weighted sum of even
coefficient values, and even coefficient values are updated with a weighted sum of odd coefficient values. 

F.2.8.1 Reversible 1D inverse filtering

The reversible inverse transformation is also described using lifting-based filtering. Reversible lifting-based inverse
filtering consists of a sequence of simple filtering operations for which alternately, odd coefficient values of the signal are
updated with a weighted sum of even coefficient values which is rounded to an integer value, and even coefficient values
are updated with a weighted sum of odd coefficient values which is rounded to an integer value. 

The even sample values of output signal X are computed first from the even coefficient values of extended signal Yext and
the odd coefficient values of signal Yext for all values of n such that :

F.3

Then the odd sample values of output signal X are computed from the odd coefficient values of extended signal Yext and
the even sample values of signal X for all values of n such that : 

. F.4

F.2.8.2 Irreversible 1D inverse filtering

The irreversible inverse transformation described in this section is the lifting-based DWT implementation of filtering by
the Daubechies 9/7 filter [6].

Equation F.5 describes the 2 “scaling” steps (1 and 2) and the 4 “lifting” steps (3 through 6) and of the 1D filtering
performed on the extended signal Yext(n) to produce the i1 samples of signal X.

Table F-2 — Extension to the right

odd 2 4

even 1 3

i1 iright 5 3⁄( ) iright 9 7⁄( )

Yext X
1D_IFILTRi0

Figure F-17 — Parameters of the 1D_IFILTR procedure

i1

i0 1– 2n≤ i1 1–<

X 2n( ) Y ext 2n( ) Y ext 2n 1–( ) Y ext 2n 1+( ) 2+ +

4
-----------------------------------------------------------------------------–=

i0 2n 1+≤ i1<

X 2n 1+( ) Y ext 2n 1+( ) X 2n( ) X 2n 2+( )+
2

-----------------------------------------------+=
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Step 1 is performed for all values of n such that  and step 2 is performed for all values of n such that
.

Step 3 is performed for all values of n such that . Step 4 is performed for all values of n such that
. Step 5 is performed for all values of n such that . Finally, step 6 is performed

for all values of n such that . 

F.5

where the values of the parameters  are:

F.6

and the scaling factor K is equal to: .

F.3 Forward Transformation (informative)

F.3.1 The FDWT procedure

The forward discrete wavelet transformation (FDWT) transforms DC-level shifted tile component samples  into a
set of sub-bands with coefficients  (FDWT procedure), which depend on the parameter , representing a
number of iterations, known as the number of decomposition levels (see Figure F-18). The number of decomposition
levels  is signalled in the COD or COC markers (see Annex A.6.1 and Annex A.6.2). 

The total number of sub-bands is . The sub-bands are labelled in the following way: an index lev
corresponding to the level of the sub-band decomposition, followed by two letters which are either LL, HL, LH or HH.
Coefficients from the sub-band b=levHL, are the transform coefficients obtained from low-pass filtering vertically and
high-pass filtering horizontally at decomposition level lev. Coefficients from the sub-band b=levLH, are the transform
coefficients obtained from high-pass filtering vertically and low-pass filtering horizontally at decomposition level lev.
Coefficients from the sub-band b=levHH, are the transform coefficients obtained from high-pass filtering vertically and
high-pass filtering horizontally at decomposition level lev. Coefficients from the sub-band b=NLLL, are the transform
coefficients obtained from low-pass filtering vertically and low-pass filtering horizontally at the last decomposition level
NL.

The following ordering of sub-bands is used:

i0 3– 2n i1 3+<≤
i0 2– 2n 1+ i1 2+<≤

i0 3– 2n i1 3+<≤
i0 2– 2n 1+ i1 2+<≤ i0 1– 2n i1 1+<≤

i0 2n 1+ i1<≤

X 2n( ) K Y ext 2n( )×← STEP1[ ]

X 2n 1+( ) 1 K⁄( )– Y ext 2n 1+( )×← STEP2[ ]

X 2n( ) X 2n( )← δ X 2n 1–( ) X 2n 1+( )+[ ]×( )– STEP3[ ]
X 2n 1+( ) X 2n 1+( )← γ X 2n( ) X 2n 2+( )+[ ]×( )– STEP4[ ]

X 2n( ) X← 2n( ) β X 2n 1–( ) X 2n 1+( )+[ ]×( )– STEP5[ ]
X 2n 1+( ) X← 2n 1+( ) α X 2n( ) X 2n 2+( )+[ ]×( )– STEP6[ ]












α β γ δ, , ,( )

α 1,586 134 342–=

β 0 052 980 118,–=

γ 0 882 911 075,=

δ 0 443 506 852,=







K 1 230 174 105,=

I x y,( )
ab ub vb,( ) NL

NL

Figure F-18 — Inputs and outputs of the FDWT procedure

ab(ub,vb)FDWT
I x y,( )

NL

3 NL×( ) 1+
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NLLL, NLHL, NLLH, NLHH, (NL-1)HL, (NL-1)LH, (NL-1)HH, ... , 1HL, 1LH, 1HH

As illustrated in Figure F-19, all the sub-bands in the case where NL=2 can be represented in the following way: 

The FDWT procedure starts with the initialization of the variable  (the current level of decomposition) to zero, and
and setting the sub-band  to the input array . The 2D_SD procedure is performed at every level ,
where the level  increases at each iteration, and until  iterations are performed. The 2D_SD procedure is iterated
over the LL sub-band produced at each iteration.

As defined in Annex B, the coordinates of the sub-band  lie in the range defined by:

  and . F.7

Figure F-20 describes the FDWT procedure. 

F.3.2 The 2D_SD procedure

The 2D_SD procedure performs a decomposition of a two-dimensional array of samples  into four groups of
sub-band coefficients , ,  and . The four sub-bands are
filtered and downsampled version of the original array of samples.

The total number of samples of the  sub-band is equal to the sum of the total number of samples of the four sub-
bands resulting from the 2D_SD procedure. 

FDWT

Figure F-19 — The FDWT (NL=2)

I x y,( )

a1LH u1LH v1LH,( ) a1HH u1HH v1HH,( )

a1HL u1HL v1HL,( )
a2HH u2HH v2HH,( )

a2HL u2HL v2HL,( )
a2LH u2LH v2LH,( )

a2LL u2LL v2LL,( )

lev
a0LL u v,( ) I u v,( ) lev

lev NL

alevLL u v,( )

tbx0 u tbx1<≤ tby0 v tby1<≤

FDWT

Done

Figure F-20 — The FDWT Procedure

No

Yes

a0LL u v,( ) I u v,( )←
lev 0←

lev lev 1+←

lev NL<

2D_SD[   ]alevLL u v,( )

alevLL u v,( )
a lev 1+( )LL u v,( ) a lev 1+( )HL u v,( ) a lev 1+( )LH u v,( ) a lev 1+( )HH u v,( )

levLL
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Figure F-21 describes the input and output parameters of the 2D_SD procedure.

Figure F-22 illustrates the sub-band decomposition performed by the 2D_SD procedure.

The 2D_SD procedure first applies the VER_SD procedure to all columns of . It then applies the HOR_SD
procedure to all rows of . The coefficients thus obtained from  are deinterleaved into the four sub-bands
using the 2D_DEINTERLEAVE procedure.

Figure F-23 describes the 2D_SD procedure. 

Figure F-21 — Inputs and outputs of the 2D_SD procedure

2D_SD

a lev 1+( )LL

a lev 1+( )LH

a lev 1+( )HL

a lev 1+( )HH

alevLL

tbx0 tby0( , )

tbx1 tby1( , )

Figure F-22 — One-level decomposition into four sub-bands (2D_SD procedure)

a lev 1+( )LL

2D_SDalevLL

a lev 1+( )LH

a lev 1+( )HL

a lev 1+( )HH

a u v,( )
a u v,( ) a u v,( )

2D_SD

Done

Figure F-23 — The 2D_SD procedure

VER_SD a u v,( )( )

HOR_SD a u v,( )( )

2D_DEINTERLEAVE a u v,( )( )
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F.3.3 The VER_SD procedure

The VER_SD procedure performs a vertical sub-band decomposition of a two-dimensional array of samples. It takes as
input a two-dimensional array , the horizontal and vertical coordinates  and  of its first and last
samples (see Figure F-24) and produces as output a vertically filtered version on the input array, column by column. 

As illustrated in Figure F-25, the VER_SD procedure applies the one-dimensional sub-band decomposition (1D_SD
procedure) to each column of the input array . The result of the application of the 1D_SD procedure on each
column is stored back in each column.

F.3.4 The HOR_SD procedure

The HOR_SD procedure performs a horizontal sub-band decomposition of a two-dimensional array of samples. It takes
as input a two-dimensional array , the horizontal and vertical coordinates  and  of its first and last
samples (see Figure F-26) and produces as output a horizontally filtered version on the input array, row by row. 

a u v,( ) u0 u1,( ) v0 v1,( )

Figure F-24 — Inputs and outputs of the VER_SD procedure

a u v,( )

VER_SD
a u v,( )u0 u1,( )

v0 v1,( )

a u v,( )

VER_SD

Done

Figure F-25 — The VER_SD procedure

u u0←

X v( ) a u v,( )←

u u 1+←

Y v( ) 1D_SD X v( )( )=

a u v,( ) Y v( )←

No

Yes

u u1≥

a u v,( ) u0 u1,( ) v0 v1,( )
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As illustrated in Figure F-27, the HOR_SD procedure applies the one-dimensional sub-band decomposition (1D_SD
procedure) to each row of the input array . The result of the application of the 1D_SD procedure on each row is
stored back in each row. 

F.3.5 The 2D_DEINTERLEAVE procedure

As illustrated in Figure F-28, the 2D_DEINTERLEAVE procedure deinterleaves the coefficients of  into four sub-
bands. The arrangement is dependent on the coordinates  of the first sample of .   

The way these sub-bands are formed from the output  of the HOR_SD procedure is described by the
2D_DEINTERLEAVE procedure illustrated in Figure F-28. 

The formation of the sub-bands is simply a deinterleaving of the coefficients of . 

Figure F-26 — Inputs and outputs of the HOR_SD procedure 

a u v,( )

HOR_SDu0 u1,( ) a u v,( )

v0 v1,( )

a u v,( )

Figure F-27 — The HOR_SD procedure

HOR_SD

Done

v v0←

Yes

X u( ) a u v,( )←

v v 1+←

Y u( ) 1D_SD X u( )( )=

a u v,( ) Y u( )←

No
v v1≥

a u v,( )
u0 v0,( ) a u v,( )

a u v,( )

2D_DEINTERLEAVE

Figure F-28 — Parameters of 2D_DEINTERLEAVE procedure 

a lev 1+( )LL

a lev 1+( )LH

a lev 1+( )HL

a lev 1+( )HH

a u v,( )

u0 v0,( )

a u v,( )
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2D_DEINTERLEAVE

Done

aLH ub vb,( ) a 2ub 2vb 1+,( )← aHH ub vb,( ) a 2ub 1+ 2vb 1+,( )←

Figure F-29 — The 2D_DEINTERLEAVE procedure

aHL ub vb,( ) a 2ub 1+ 2vb,( )←aLL ub vb,( ) a 2ub 2vb,( )←

vb v0 2⁄←

ub ub 1+←

ub u1 2⁄≥

ub u0 2⁄←

vb vb 1+←

vb v1 2⁄≥

vb v0 2⁄←

ub ub 1+←

ub u1 2⁄≥

ub u0 2⁄←

vb vb 1+←

vb v1 2⁄≥

vb v0 2⁄←

ub ub 1+←

ub u1 2⁄≥

ub u0 2⁄←

vb vb 1+←

vb v1 2⁄≥

vb v0 2⁄←

ub ub 1+←

ub u1 2⁄≥

ub u0 2⁄←

vb vb 1+←

vb v1 2⁄≥
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F.3.6 The 1D_SD procedure

As illustrated in Figure F-30, the 1D_SD procedure takes as input a one-dimensional array X, the index i0 of the first
sample in array X, the index i1 of the sample following the last sample in array X. It produces as output an array Y, with
the same indices . 

For signals of length one (i.e. ), the 1D_SD procedure is the identity, i.e. .

For signals of length greater than or equal to two (i.e. ), as illustrated in Figure F-31, the 1D_SD procedure first
uses the 1D_EXTD procedure to extend the signal X beyond its left and right boundaries resulting in the extended signal
Xext, and then uses the 1D_FILTD procedure to filter the extended signal Xext and produce the desired filtered signal Y. 

F.3.7 The 1D_EXTD procedure

The 1D_EXTD procedure is identical to the 1D_EXTR procedure.

F.3.8 The 1D_FILTD procedure

This Recommendation | International Standard uses exclusively one irreversible or one reversible transformation of
image tile components. The transformation is reversible if the 1D_FILTD procedure is reversible. The transformation is
irreversible if the 1D_FILTD procedure is irreversible. One irreversible procedure 1D_FILTDI and one reversible
filtering procedure 1D_FILTDR is described.

As illustrated in Figure F-32, both procedures take as input an extended 1D signal Xext, the index of the first sample i0,
and the index of the sample i1 immediately following the last sample (i1-1). They both produce the output signal Y. The
even coefficients of the Y signal are a low-pass downsampled version of the extended signal Xext, while the odd
coefficients of the signal Y are a high-pass downsampled version of the extended signal Xext. 

Both the irreversible and reversible transformations are described using lifting-based filtering [14], which is a very
efficient implementation of the DWT. Lifting-based filtering consists of a sequence of very simple filtering operations for

i0 i1,( )

1D_SD

Figure F-30 — Parameters of the 1D_SD procedure

i0 i1,( )
X Y

i0 i1 1–= Y i0( ) X i0( )=

i0 i1 1–<

1D_SD

Done

Figure F-31 — The 1D_SD procedure

Xext 1D_EXTD X( )←

Y ext 1D_FILTD Xext i0 i1, ,( )←

1D_FILTD

Figure F-32 — Parameters of the 1D_FILTD procedure 

i0 i1,( )
Xext Y
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which alternately, odd sample values of the signal are modified with a weighted sum of even sample values, and even
sample values are modified with a weighted sum of odd sample values. 

F.3.8.1 Reversible 1D filtering

The reversible transformation described in this section is the reversible lifting-based implementation of filtering by the 5/
3 filter [13].

The reversible transformation is also described using lifting-based filtering. Reversible lifting-based filtering consists of a
sequence of simple filtering operations for which alternately, odd sample values of the signal are updated with a weighted
sum of even sample values which is rounded to an integer value, and even sample values are updated with a weighted
sum of odd sample values which is rounded to an integer value. 

The odd coefficients of output signal Y are computed first for all values of n such that : 

. F.8

Then the even coefficients of output signal Y are computed from the even values of extended signal Xext and the odd
coefficients of signal Y for all values of n such that 

F.9

The values of Y(k) such that  form the output of the 1D_FILTR procedure.

F.3.8.2 Irreversible 1D filtering

The irreversible transformation described in this section is the lifting-based DWT implementation of filtering by the
Daubechies 9/7 filter [6].

Equation F.10 describes the 4 “lifting” steps (1 through 4) and the 2 “scaling” steps (5 and 6) of the 1D filtering
performed on the extended signal Xext(n) to produce the i1 coefficients of signal Y.

Step 1 is performed for all values of n such that . Step 2 is then performed for all values of n
such that . Step 3 is then performed for all values of n such that . Step 4 is
performed for all values of n such that . Each of these steps is performed on the entire tile component before
moving to the next step.

Step 5 is performed for all values of n such that . Step 6 is performed for all values of n such that
.

F.10

where the values of the parameters  are:

i0 1– 2≤ n 1 i1 1+<+

Y 2n 1+( ) Xext 2n 1+( ) Xext 2n( ) Xext 2n 2+( )+

2
------------------------------------------------------------–=

i0 2n≤ i1<

Y 2n( ) Xext 2n( ) Y 2n 1–( ) Y 2n 1+( ) 2+ +
4

----------------------------------------------------------------+=

i0 k≤ i1<

i0 3– 2n 1+ i1 3+<≤
i0 2– 2n i1 2+<≤ i0 1– 2n 1+ i1 1+<≤

i0 2n i1<≤

i0 2n 1+ i1<≤
i0 2n i1<≤

Y 2n 1+( ) X← ext 2n 1+( ) α Xext 2n( ) Xext 2n 2+( )+[ ]×( )+ STEP1[ ]

Y 2n( ) X← ext 2n( ) β Y 2n 1–( ) Y 2n 1+( )+[ ]×( )+ STEP2[ ]

Y 2n 1+( ) Y 2n 1+( )← γ Y 2n( ) Y 2n 2+( )+[ ]×( )+ STEP3[ ]
Y 2n( ) Y 2n( )← δ Y 2n 1–( ) Y 2n 1+( )+[ ]×( )+ STEP4[ ]

Y 2n 1+( ) K– Y 2n 1+( )×← STEP5[ ]
Y 2n( ) 1 K⁄( ) Y 2n( )×← STEP6[ ]












α β γ δ, , ,( )
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F.11

and the scaling factor K is equal to: .

The values of  such that  form the output of the 1D_FILTDI procedure.

α 1,586 134 342–=

β 0 052 980 118,–=

γ 0 882 911 075,=

δ 0 443 506 852,=







K 1 230 174 105,=

Y k( ) i0 k≤ i1<
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Annex G

DC level shifting and component transformations

(This annex forms an integral part of this Recommendation | International Standard)

This Annex specifies DC level shifting that converts the signed values resulting from the decoding process to the proper
reconstructed samples.

This Annex also describes two component transforms. These component transforms are used to improve compression
efficiency. They are not related to colour transforms used to map colour values for display purposes. One component
transform is reversible and may be used for lossy or lossless coding. The other is irreversible and may only be used for
lossy coding.

G.1 DC level shifting of tile components

Figure G-1 shows the flow of DC level shifting in the system with a component transform. 

Figure G-2 shows the flow of DC level shifting in the system without a component transform.

G.1.1 DC level shifting of tile components (informative)

DC level shifting is performed on samples of components that are unsigned only. It is performed either prior to
computation of the forward component transform (RCT or ICT), if used. Otherwise it is performed prior to the transform
described in Annex F. If the MSB of Ssizi from the SIZ marker segment (see Annex A.5.1) is zero, all samples I(x,y) of
the ith component are level shifted by subtracting the same quantity from each sample as follows

 . G.1

G.1.2 Inverse DC level shifting of tile components (normative)

Inverse DC level shifting is performed on reconstructed samples of components that are unsigned only. It is performed
either after to computation of the forward component transform (RCT or ICT), if used. Otherwise it is performed prior to
the transform described in Annex F. If the MSB of Ssizi from the SIZ marker segment (see Annex A.5.1) is zero, all
samples I(x,y) of the ith component are level shifted by adding the same quantity from each sample as follows

 . G.2
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Figure G-1 — Placement of the DC level shifting with component transform
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Figure G-2 — Placement of the DC level shifting without component transform

Forward 
wavelet 

transform

Inverse 
wavelet 

transform
Inverse DC 
level shift

Forward 
DC level 

shift

coding
reconstructed 

sample
sample

I' x y,( ) I x y,( ) 2
Ssiz

i 1–
–←

I x y,( ) I x y,( ) 2
Ssiz

c 1–
+←
ITU-T Rec. T.800 (2000 FCDV1.0) 129



ISO/IEC FCD15444-1 : 2000 (V1.0, 16 March 2000)
NOTE — Due to quantization effects, the reconstructed sample values I(x, y) may exceed the dynamic range of the original tile-
component samples values.

G.2 Reversible component transformation (RCT)

The use of the reversible component transformation is signaled in the COD marker segment (see Annex A.6.1). The RCT
shall only be used with the 5-3 reversible wavelet transform. The RCT is a decorrelating transformation which is applied
to the three first components of an image (indexed as 0, 1 and 2). All three of the components shall have the separation on
the reference grid (no sub-sampling) and the same bit-depth. There shall be at least three components if this transform is
used.

While the RCT is reversible, it is appropriate for use with lossy compression as well as lossless and progressive lossless
to lossy compression.

G.2.1 The Forward RCT (informative)

Prior to applying the Forward RCT, the image component samples are DC level shifted, for unsigned components (see
Annex F).

The Forward RCT is applied to all image component samples I0(x,y), I1(x,y), I2(x,y), corresponding to the first, second,
and third components, and produces transform samples Y0(x,y), Y1(x,y), Y2(x,y):

 G.3

 G.4

 G.5

Equation G.5 and Equation G.4 results in a numeric precision of Y1 and Y2 that is one bit greater than the original
components, if I0, I1, and I2 were normalized to the same precision. For reversibility, this precision must be maintained.

G.2.2 The Inverse RCT (normative)

After being inverse transformed as described in Annex F, the following transformation is specified to perform the Inverse
RCT:

 G.6

 G.7

 G.8

After applying the Inverse RCT, the image component samples are inverse DC level shifted, for unsigned components.

G.3 Irreversible component transformation (ICT).

This section specifies an irreversible component transformation. The use of the irreversible component transformation is
signaled in the COD marker segment (see Annex A.6.1). The ICT shall only be used with the 9-7 irreversible wavelet
transform. The ICT is a decorrelating transformation which is applied to the three first components of an image (indexed
as 0, 1 and 2). There shall be at least three components if this transform is used. All three of the components shall have the

Y 0 x y,( ) I0 x y,( ) 2I1 x y,( ) I2 x y,( )+ +

4
------------------------------------------------------------------------=

Y 1 x y,( ) I=
2

x y,( ) I1 x y,( )–

Y 2 x y,( ) I0 x y,( ) I1 x y,( )–=

I1 x y,( ) Y 0 x y,( ) Y 2 x y,( ) Y 1 x y,( )+

4
----------------------------------------------–=

I0 x y,( ) Y 2 x y,( ) I1 x y,( )+=

I2 x y,( ) Y 1 x y,( ) I1 x y,( )+=
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separation on the reference grid (no sub-sampling) and the same bit-depth. There shall be at least three components if this
transform is used.

G.3.1 The Forward ICT (informative)

The Forward ICT is applied to all image component samples I0(x,y), I1(x,y), I2(x,y), corresponding to the first, second,
and third component, and produces transform samples Y0(x,y), Y1(x,y), Y2(x,y):

G.9

 G.10

 G.11

NOTE — If the first three components are Red, Green and Blue components, then the Forward ICT can be seen as an
approximation of a YCbCr transformation.

NOTE — The Equation G.9, Equation G.10, and Equation G.11 do not imply a required precision for the irrational numbers. 

G.3.2 The Inverse ICT (normative)

After being inverse transformed as described in Annex F, the following transformation is specified to perform the Inverse
ICT:

 G.12

G.13

 G.14

The Equation G.12, Equation G.13, and Equation G.14 do not imply a required precision for the irrational numbers. After
applying the Inverse ICT, the image component samples are inverse DC level shifted, for unsigned components.

G.4 Chrominance component sub-sampling and the image reference grid (informative)

The relationship between the components and the reference grid is signaled in the SIZ marker (see Annex A.5.1) and
described in Annex B.1.

G.4.1 Interpretation of multiple components

The interpretation of multiple components is unspecified within the scope of the codestream. Interpretations, such as
multiple colour components, may be supplied by the file format, the application, or other source. Moreover, this standard
can accommodate multi-component sources that do not require inter-component decorrelating transforms.

Y 0 x y,( ) 0 299,( ) I0× x y,( ) 0 587,( ) I1 x y,( ) 0 144,( )+× I2 x y,( )×+=

Y 1 x y,( ) 0 168 75,( ) I×– 0 x y,( ) 0 331 26,( ) I× 1 x y,( )– 0 5,( ) I× 2 x y,( )+=

Y 2 x y,( ) 0 5,( )I0 x y,( ) 0.41869( ) I1× x y,( )– 0 081 31,( )I2– x y,( )=

I0 x y,( ) Y 0 x y,( ) 1 402,( ) Y 2× x y,( )+=

I1 x y,( ) Y 0 x y,( ) 0 344 13,( ) Y 1×– x y,( ) 0 714 14,( ) Y 2×– x y,( )=

I2 x y,( ) Y 0 x y,( ) 1 772,( ) Y 1× x y,( )+=
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Annex H

Coding of images with Regions of Interest

(This annex forms an integral part of this Recommendation | International Standard)

This annex describes the Region of Interest (ROI) technology. An ROI is a part of an image that is coded earlier in the
codestream than the rest of the image (the background). The coding is also done in such a way that the information
associated with the ROI precedes the information associated with the background. The method used (and described in
this annex) is the Maxshift method.

H.1 Description of the Maxshift method 

H.1.1 Encoding (informative)

The encoding of the quantized transform coefficients is done in a similar way to encoding without any ROIs. At the
encoder side an ROI mask is created describing which quantized transform coefficients must be encoded with better
quality (even up to losslessly) in order to encode the ROI with better quality (up to lossless). The ROI mask is a bit map
describing these coefficients. See Annex H.2 for details on how the mask is generated.

The quantized transform coefficients outside of the ROI mask (to be called background coefficients) are scaled down so
that the bits associated with the ROI are placed in higher bit-planes than the background. This means that when the
entropy coder encodes the quantized transform coefficients, the bit planes associated with the ROI are coded before the
information associated with the background. The scaling value used must be sufficiently large to make the smallest non-
zero ROI coefficient, qROI(x,y), larger than the largest background coefficient, qBG(x,y) (Annex H.1.2). 

The method can be described using the following steps:

1) Generate ROI mask, M(x,y) (Annex H.2).

2) Find the scaling value, s (Annex H.1.2).

3) Scale down all background coefficients given by M(x,y) using the scaling value, s (Annex H.2).

4) Write the scaling value, s, into codestream using the RGN marker (Annex A.6.3).

After these four steps the quantized transform coefficients are entropy coded as usual.

After the scaling operation, the number of bit-planes to coded is increased by the Maxshift scaling value.

H.1.2 Selection of scaling value, s, at encoder side (normative)

The scaling value, s, must be chosen so that Equation H.1 holds, where max(Mb) is the largest number of magnitude bit
planes, see Equation E.3, for any background coefficient, qBG(x,y) in any code-block in the current component.

H.1

This means that the scaling value used will be sufficiently large to make the smallest non-zero ROI coefficient, qROI(x,y),
larger than the largest background coefficient, qBG(x,y). This, in turn, means that after the scaling of the background
coefficients, all significant bits associated with the ROI will be in higher bit planes than all the significant bits associated
with the background.

s max Mb( )≥
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H.1.3 Decoding (normative)

At the decoder side the received quantized coefficients are compared to the threshold value 2s, where s is the ROI scaling
value for this component obtained from the RGN marker in the codestream (see Annex A.6.3). All coefficients that are
found to be lower than 2s are known to belong to the background. These coefficients are scaled up by 2s.

The method can be described using the following steps:

1) Get the scaling value, s, from the RGN marker in the codestream (Annex A.6.3).

2) Compare each quantized transform coefficient q(x,y) to 2s. If the coefficient is below 2s scale up
the coefficient by 2s

H.2 Region of interest mask generation

To achieve an ROI with better quality than the rest of the image while maintaining a fair amount of compression, bits
need to be saved by sending less information for the background. To do this an ROI mask is calculated. The mask is a bit
plane indicating a set of quantized transform coefficients whose coding is sufficient in order for the receiver to
reconstruct the desired region with better quality than the background (up to lossless). This mask denotes all coefficients
that are needed in order to reconstruct the ROI. 

To illustrate the concept of ROI mask generation, let us restrict ourselves to a single ROI and a single image component,
and identify the pixels that belong to the ROI in the image domain by a binary mask, M[m,n], where

H.2

M is then bit-wise 1 for all ROI coefficients so that if the first bit of M is 1 then M(x, y) belongs to the first ROI. 

The mask is a map of the ROI in the image domain, so that it has a non-zero value inside the ROI and 0 outside. In each
step the LL sub-band of the mask is then updated line by line and then column by column. The mask will then indicate
which coefficients are needed at this step so that the inverse transform will reproduce the coefficients of the previous
mask. 

For example, the last step of the inverse transform is a composition of two sub-bands into one. Then to trace this step
backwards, the coefficients in the two sub-bands that are needed, are found. The step before that is a composition of four
sub-bands into two. To trace this step backwards, the coefficients in the four sub-bands that are needed to give a perfect
reconstruction of the coefficients included in the mask for two sub-bands are found. 

All steps are then traced backwards to give the mask. If the coefficients corresponding to the mask are transmitted and
received, and the inverse transform calculated on them, the desired ROI will be reconstructed with better quality than the
rest of the image (up to lossless if the ROI coefficients were coded losslessly). 

Given below is a description of how the expansion of the mask is acquired from the various filters. Similar methods can
be used for other filters. Please refer to [23][24][25][26] for more details. 

H.2.1 Region of Interest mask generation using the W5X3 filter (informative)

In order to get the optimal set of quantized coefficients to be scaled, the following equations described in this section
should be used. 

To see what coefficients need to be in the mask, the inverse transform is studied. Equation F.3 and Equation F.4 give the
coefficients needed to reconstruct X(2n) and X(2n+1) losslessly. It can immediately that these are L(n), L(n+1), H(n-1),
H(n), H(n+1) (see Figure H-1). Hence if X(2n) or X(2n+1) are in the ROI, the listed Low and High sub-band coefficients

M x y,( ) 1 wavelet coefficient (x,y) is needed

0 accuracy on (x,y) can be sacrificed without affecting ROI



=
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are in the mask. Notice that X(2n) and X(2n+1) are even and odd indexed points respectively, related to the origin of the
reference grid. 

H.2.2 Region of Interest mask generation using the W9X7 filter (informative)

Successful decoding does not depend upon the selection of samples to be scaled. In order to get the optimal set of
quantized coefficients to be scaled the following equations described in this section should be used.

To see what coefficients need to be in the mask, the inverse transform is studied as in H.2.1. Figure H-2 shows this.
Notice that X(2n) and X(2n+1) are even and odd indexed points respectively, related to the related to the origin of the
reference grid 

The coefficients needed to reconstruct X(2n) and X(2n+1) losslessly can immediately be seen to be L(n-1) to L(n+2) and
H(n-2) to H(n+2). Hence if X(2n) or X(2n+1) are in the ROI, those Low and High sub-band coefficients are in the mask.

H.3 Remarks on Region of Interest coding

H.3.1 Multi-component remark

For the case of color images, the method applies separately in each color component. If some of the color components
are down-sampled, the mask for the down-sampled components is created in the same way as the mask for the non-
down-sampled components.

H.3.2 Disjoint regions remark

If the ROI consists of disjoint parts then all parts have the same scaling value s.

Figure H-1 — The inverse 5x3 transform

Figure H-2 — The inverse 9x7 transform
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H.3.3 Implementation Precision remark

This ROI coding method might in some cases create situations where the dynamic range is exceeded. This is however
easily solved by simply discarding the least significant bit planes that exceed the limit due to the down-scaling operation.
The effect will be that the ROI will have better quality than the background, even though the entire bit stream is decoded.
It might however create problems when the image is coded with ROI's in a lossless mode. Discarding least significant bit-
planes for the background might result in the background not being coded losslessly and in the worst case not being
reconstructed at all. This depends on the dynamic range available.

H.4 An example of the interpretation of the Maxshift method (Informative)

The Maxshift method, as described above, allows the user/application to specify multiple regions of arbitrary shape,
which will be assigned higher priority compared to the rest of the image. The method does not require encoding or
decoding of the ROI shape. 

The Maxshift method allows the implementers of an encoder to exploit a number of functionalities that are supported by
a compliant decoder. For example, it is possible to use the Maxshift method to encode an image with different quality for
the ROI and the Background. The image is quantized so that the ROI gets the desired quality (lossy or lossless) and then
the Maxshift method is applied. If the image is encoded in progressive by layer, not all of the layers of the wavelet
coefficients belonging to the background need be encoded. This corresponds to using different quantization steps for the
ROI and the Background.

If the ROI is to be encoded lossless the most optimal set of wavelet coefficients giving a lossless result for the ROI is
described by the mask generated using the algorithms described in section H.2. However, the Maxshift method supports
the use of any mask since the decoder does not need to generate the mask. Thus, it is possible for the encoder to include
an entire sub-band, e.g. the low-low sub-band, in the ROI mask and thus send a low-resolution version of the background
at an early stage of the progressive transmission. This is done by scaling all the quantized transform coefficients of the
entire sub-band. In other words, the user can decide in which sub-band he will start having ROI and thus, it is not
necessary to wait for the whole ROI before receiving any information for the background.
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Annex I

JP2 file format syntax

(This annex forms an integral part of this Recommendation | International Standard)

I.1 File format scope

This annex of this Recommendation | International Standard defines an optional file format that applications may choose
to use to contain JPEG 2000 compressed image data. While not all applications will use this format, many applications
will find that this format meets their needs. However, those applications that do implement this file format shall
implement it as described in this entire annex of this Recommendation | International Standard.

This annex of this Recommendation | International Standard 

— specifies a binary container for both image and metadata

— specifies a mechanism to indicate image properties, such as the tonescale or colourspace of the image

— specifies a mechanism by which readers may recognize the existence of intellectual property rights
information in the file

— specifies a mechanism by which metadata (including vendor specific information) can be included in
files specified by this Recommendation | International Standard

I.2 File format definitions

I.2.1 Glossary

Auxiliary component: A component from the codestream that is used by the application outside the scope of
colourspace conversion. For example, an opacity component or a depth component would be an auxiliary
component.

Box: A building block defined by a unique box type and length. Some particular boxes may contain other
boxes.

Box contents: Refers to the data wrapped within the box structure. The contents of a particular box are stored
within the DBox field within the Box data structure as defined in Annex I.6

Box type: Specifies the kind of information that shall be stored with the box. The type of a particular box is
stored within the TBox field within the Box data structure as defined in Annex I.6.

Colour component: A component from the codestream that functions as an input to a colour transformation
system. For example, a red component or a greyscale component would be a colour component.

Container box: An box that itself contains a contiguous sequence of boxes (and only a contiguous sequence
of boxes). As the JP2 file contains only a contiguous sequence of boxes, the JP2 file is itself considered a
superbox. When used as part of a relationship between two boxes, the term superbox refers to the box which
directly contains the other box.

JP2 file: The name of file in the file format described in this specification. Structurally, a JP2 file is a
contiguous sequence of boxes. 

\nnn: A three-digit number preceded by a backslash indicates the value of a single byte within a character
string, where the three digits specify the octal value of that byte.

I.2.2 Acronyms

ASCII: American Standard Code for Information Interchange

ICC: International Color Consortium

PCS: Profile Connection Space
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UCS: Universal Character Set

URL: Uniform Resource Locator

UTF-8: UCS Transformation Format 8

UUID: Universal Unique Identifier

XML: Extensible Markup Language

I.3 File format normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation |International Standard.At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation |International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendations and Standards listed below.Members of IEC and ISO maintain registers of currently valid
International Standards.The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid
ITU-T Recommendations.

— Coded character set—7 bit, American Standard Code for Information Interchange, ANSI X3.4–1986.

— International Color Consortium, ICC profile format specification. ICC.1:1998–09
<http://www.color.org/ICC-1_1998-09.PDF>

— International Electrotechnical Commission. Colour management in multimedia systems: Part 2: Colour
Management, Part 2–1: Default RGB colour space—sRGB. IEC 61966–2–1 199x. 9 October 1998
<http://w3.hike.te.chiba-u.ac.jp/IEC/100/ PT61966/parts/> or <http://www.sRGB.com/>.

— W3C, Extensible Markup Language (XML 1.0), Rec-xml-19980210,
<http://www.w3.org/TR/REC-xml>

— IETF RFC 2279 UTF–8, A transformation format of ISO 10646. January 1998.

— ISO/IEC 11578:1996 Information technology—Open Systems Interconnection—Remote Procedure
Call, <http://www.iso.ch/cate/d2229.html>

I.4 Introduction

The JPEG 2000 file format (JP2 format) provides a foundation for storing application specific data (metadata) in
association with a JPEG 2000 codestream, such as that information which is required to display the image. As many
applications require a similar set of information to be associated with the compressed image data, it is useful to define the
format of that set of data along with the definition of the compression technology and codestream syntax.

Conceptually, the JP2 format encapsulates the JPEG 2000 codestream along with other core pieces of information about
that codestream. The building-block of the JP2 format is called an box. All data is encapsulated in boxes. This
Recommendation | International Standard defines several types of boxes; the definition of each specific box type defines
the kinds of data that may be found within an box of that type. Some boxes will be defined to contain other boxes.

I.4.1 File identification

JP2 files can be identified using several mechanisms. When stored in traditional computer file systems, JP2 files should be
given the file extension “.jp2” (readers shall also recognize files with the extension “.JP2”). On Macintosh file systems,
JP2 files should be given the type code ‘jp2\040’.
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I.4.2 File organization

A JP2 file represents a collection of boxes. Some of those boxes are independent, and some of those boxes contain other
boxes. The binary structure of a file is a contiguous sequence of boxes. The start of the first box shall be the first byte of
the file, and the last byte of the last box shall be the last byte of the file.

The binary structure of an box is defined in Annex I.6.

Logically, the structure of a JP2 file is as shown in Figure I-1.

As shown in Figure I-1, a JP2 file contains a JP2 Signature box, JP2 header box, and one or more Contiguous codestream
boxes. A JP2 file may also contain other box as determined by the file writer. That JP2 header box contains other boxes,
such as the Image Header box and one or more Colour Specification boxes.

I.4.3 Greyscale/Colour/Palette/multi-component specification

The JP2 file format provides two methods to specify the colourspace of the image. The enumerated method specifies the
colourspace of an image by specifying a numeric value that represents a well-defined colourspace definition. In this
Recommendation | International Standard, images in the sRGB colourspace and greyscale images can be defined using
the enumerated method.

Figure I-1 — Conceptual structure of a JP2 file

JP2 file

JP2 header box (superbox) (I.7.3)

Contiguous codestream box (I.7.4) 0

Image Header box (I.7.3.1)

Colour Specification box 0 (I.7.3.3)

BitsPerComponent box (I.7.3.2)

IPR box (I.8)

JP2 Signature box (I.7.1)

Component Definition box (I.7.3.5)

XML boxes (I.9.1)

Colour Specification box n–1 (I.7.3.3)

…

UUID Info boxes (superbox) (I.9.3)

UUID List box (I.9.3.1)

Data Entry URL box (I.9.3.2)

UUID boxes (I.9.2)

Resolution box (superbox) (I.7.3.6)

Capture resolution box (I.7.3.6.1)

Default display resolution box (I.7.3.6.2)

Boxes with dashed borders are optional in
conforming JP2 files. However, an optional
box may define mandatory boxes within that
optional box. In that case, if the optional box
exists, those mandatory boxes within the
optional box shall exist. If the optional box
does not exist, then the mandatory boxes
within those boxes shall also not exist.

This illustration specifies only the
containment relationship between the boxes
in the file. A particular order of those boxes in
the file is not generally implied. However, the
Signature box shall be the first box in a JP2
file and the JP2 header box shall fall before
the Contiguous codestream box.

Note that the file is a strict sequence of boxes.
Other boxes may be found between the boxes
defined in this Recommendation |
International Standard. However, all such data
shall be in the box format; no other data shall
be found in the file.

Palette box (I.7.3.4)

…
Contiguous codestream box (I.7.4) m–1

Profile box (I.7.2)
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The JP2 file format also provides for the specification of the colourspace of an image by embedding an ICC profile in the
file. That profile shall be of either the Monochrome or Three-Channel Matrix-Based class of input profiles as defined by
the ICC Profile Format Specification, version 2.2.0. This allows for the specification of a wide range of greyscale and
RGB class colourspaces, as well as a few other spaces that can be represented by those two profiles classes. See Annex
J.5 for a more detailed description of the legal colourspace transforms, how those transforms are stored in the file, and
how to process an image using that transform without using an ICC colour management engine. Note though, that while
restricted, these ICC profiles are fully compliant ICC profiles and the image can thus be processed through any ICC
compliant engine that supports version 2.2.0 or greater profiles.

In addition to specifying the colourspace of the image, this Recommendation | International Standard provides a means
by which a single component palettized image can be decoded and converted back to multiple-component form by the
translation from index space to multiple-component space. Any such depalettization is applied before the colourspace of
is interpreted. In the case of palettized images, the specification of the colourspace of the image is applied to the multiple-
component values stored in the palette.

I.4.4 Inclusion of opacity and transparency components

The JP2 file format provides a means to indicate the presence of auxiliary components, such as opacity and transparency,
to define the type of those components, and to specify the ordering of all components. When a reader opens the JP2 file, it
will determine the ordering and type of each component. The application must then match the component definition and
ordering from the JP2 file with the component ordering as defined by the colourspace specification. Once the file
components have been mapped to the colour components, the decompressed image can be processed through any needed
colourspace transformations.

In many applications, components other than the colour components are required. For example, many images used on
web pages contain opacity information; the browser uses this information to blend the image into the background. It is
thus desirable to include both the colour and auxiliary components with a single codestream.

I.4.5 Metadata

One important aspect of the JP2 format is the ability to add metadata to a JP2 file. Because all data is encapsulated in
boxes, and all boxes have types, the format provides a simple mechanism for a reader to extract relevant information,
while ignoring any box that contains information that is not understood by that particular reader. In this way, new boxes
can be created, either through this or other Recommendations | International Standards or private implementation. Also,
any new box added to a JP2 file shall not change the visual appearance of the image.

I.4.6 Compliance

All conforming files shall contain all boxes required by this Recommendation | International Standard, and those boxes
shall be as defined in this Recommendation | International Standard. Also, all conforming readers shall correctly interpret
all boxes defined in this Recommendation | International Standard and thus shall correctly interpret all conforming files.

I.5 Greyscale/Colour/Palettized/multi-component specification architecture

One of the most important aspects of a file format is that it specifies the colourspace of the contained image data. In order
to properly display or interpret the image data, it is essential that the colourspace of that data is properly characterized.
The JP2 format provides a multi-level mechanism for characterizing the colourspace of an image. The format also
provides a mechanism to specify that an image is not photographic (such as multi-spectral data).

I.5.1 Enumerated method

The simplest method for characterizing the colourspace of an image is to specify an integer code representing the
colourspace in which the image is encoded. This method handles the specification of sRGB and greyscale images.
Extensions to this method can be used to specify other colourspaces, including the definition of multi-component images.
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For example, the image file may indicate that a particular image is encoded in the sRGB colourspace. To properly
interpret and display the image, an application must natively understand the definition of the sRGB colourspace. Because
an application must natively understand each specified colourspace, the complexity of this method is dependent on the
exact colourspaces specified. Also, complexity of this mechanism is proportional to the number of colourspaces that are
specified and required for conformance. While this method provides a high level of interoperability for images encoded
using colourspaces for which correct interpretation is required for conformance, this method is very inflexible. This
Recommendation | International Standard defines a specific set of colourspaces for which interpretation is required for
conformance.

I.5.2 Restricted ICC profile method

An application may also specify the colourspace of an image using a restricted set of ICC profiles. This method handles
the specification of a the most commonly used RGB and greyscale class colourspaces through a low-complexity method.

An ICC profile is a standard representation of the transformation required to convert one colourspace into another
colourspace. With respect to image file format, the ICC profile specification defines a type of profile that specifies how
samples in a particular colourspace are converted into a standard space (the Profile Connection Space (PCS)). Depending
on the original colourspace of the samples, this transformation may be either very simple or very complex.

The ICC Profile Format Specification does define a specific class of ICC profiles that are easy to implement. The ICC
Profile Format Specification defines Monochrome Input and Three-Color Matrix-Based Input Profiles for which the
transformation from the source colourspace to the PCS is limited to the application of a non-linearity curve and a 3x3
matrix. It is practical to expect all applications, including simple devices, to be able to process the image through the
specified transformation. Thus all conforming applications are required to correctly interpret the colourspace of any
image that specifies the colourspace using this subset of possible ICC profile types.

For this Recommendation | International Standard, the class of allowed profiles shall use the XYZ relative version of the
PCS.

For the JP2 file format, profiles shall conform to the ICC profile definition as defined by the ICC Profile Format
Specification, version 2.2.0, as well as the restrictions specified above. See Annex J.5 for a more detailed description of
the legal colourspace transforms, how those transforms are stored in the file, and how to process an image using that
transform without using an ICC colour management engine.

I.5.3 Using multiple methods

Architecturally, the format allows for multiple methods to be embedded in a file, providing the reader a choice as to what
image processing path should be used to interpret the colourspace of the image. For JP2 files, a conforming reader shall
use the first method found in the file (in the first colourspace specification box in the JP2 Header box) and ignore all other
methods (found in additional colourspace specification boxes) found in the file.

I.5.4 Palettized images

In addition to specifying the interpretation of the image in terms of colourspace, this Recommendation | International
Standard allows for the decoding of single component images where the value of that single component represents an
index into a palette of colours. Input of a decompressed sample to the palette converts the single value to a multiple-
component tuple. The value of that tuple represents the colour of that sample; that tuple shall then be interpreted
according to the other colour specification methods (Enumerated or Restricted ICC) as if that multiple-component
sample had been directly extracted from a multiple-component codestream.

I.5.5 Interactions with the decorrelating multiple component transform

The specification of colour within the JP2 file format is independent of the use of a multiple component transformation
within the codestream (the CSSiz parameter of the SIZ marker segment as specified in Annex A.5.1 and Annex G). The
colourspace transformations specified through the sequence of colour transformation boxes shall be applied to the image
samples after the reverse multiple component transformation has been applied to the decompressed samples. While the
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application of these decorrelating component transformations is separate, the application of an encoder-based multiple
component transformation will often improve the compression of colour image data.

I.6 Box definition

Physically, each object in the file is encapsulated within a binary structure called an box. That binary structure is as
follows:

LBox: Box Length. This field specifies the length of the box, stored as a 4-byte big endian unsigned integer.
This value includes all of the fields of the box, including the length and type. If the value of this field is
1, then the XLBox field shall exist and the value of that field shall be the actual length of the box. If the
value of this field is 0, then the length of the box was not known when the LBox field was written. In
this case, this box contains all data up to the end of the file. If an box of length 0 is contained within
another box (its superbox), then the length of that superbox shall also be 0. This means that this box is
the last box in the file. The values 2–7 are reserved for other use.

TBox: Box Type. This field specifies the type of data found in the DBox field. The value of this field is
encoded as a 32-bit big endian unsigned integer. However, boxes are generally referred to by a ASCII
character string translation of the integer value. For all box types defined within this Recommendation |
International Standard, box types will be indicated as both character string (normative) and as 32-bit
hexadecimal integers (informative). Also, a space character is shown in the character string translation
of the box type as “\040”.

XLBox:Box Extended Length. This field specifies the actual length of the box if the value of the LBox field is
1. This field is stored as an 8-byte big endian unsigned integer. The value includes all of the fields of the
box, including the LBox, TBox and XLBox fields.

DBox:Box Data. This field contains the data for the portion of the object contained within this box. The format
of that data is dependent on the box type and will be defined individually for each type.

Table I-1 — Binary structure of an box

Field name Size (bits) Value

LBox 32 0, 1, 8—(232–1)

TBox 32 Varies

XLBox LBox=1, 64
LBox≠1, 0

16—(264–1)
Not applicable

DBox Varies Varies

LBox TBox XLBox DBox

Figure I-2 — Organization of an Box
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For example, consider the following illustration of a sequence of boxes, including one box that contains other boxes:

As shown in Figure I-3, the length of each box includes any boxes contained within that box. For example, the length of
Box 1 includes the length of Boxes 2 and 3, in addition to the LBox and TBox fields for Box 1 itself. In this case, if the
type of Box 1 was not understood by a reader, it would not recognize the existence of boxes 2 and 3 because they would
be completely skipped by jumping the length of box 2 from the beginning of box 2.

The following table lists all boxes defined by this Recommendation | International Standard. Indentation within the table
indicates the hierarchical containment structure of the boxes within a JP2 file:

Table I-2 — Boxes defined within this Recommendation | International Standard

Box name Type
Container 

box
Required? Notes

JP2 Signature box ‘jP\032\032’
(X‘6A501A1A’)

No Required This box uniquely identifies the 
file as a JP2 file.

Profile box ‘prfl’
(X‘7072666C’)

No Required This box specifies profile and 
compatibility information

JP2 Header box ‘jp2h’
 (X‘6A703268’)

Yes Required This box contains a series of boxes 
that contain header-type informa-
tion about the file.

Image Header box ‘ihdr’
(X‘69686472’)

No Required This box contains the size of the 
image and other related fields.

BitsPerComponent box ‘bpcc’
(X‘62706363’)

No Optional This box specifies the bit depth of 
the components in the file in cases 
where the bit depth is not constant 
across all components.

Colour Specification ‘colr’
(X‘636F6C72’)

No Required This box specifies the colourspace 
of the image.

Palette ‘pclr’
(X‘70636C72’)

No Optional This box specifies the palette 
which maps a single component in 
index space to a multiple-compo-
nent image.

Component Definition 
box

‘cdef’
(X‘63646566’)

No Optional This box specifies the type and 
ordering of the components within 
the codestream.

Resolution box ‘res  ’
(X‘72657320’)

Yes Optional This box specifies the resolution of 
the image.

Figure I-3 — Illustration of box lengths

Box 0 Box 1 Box 4
Box 2 Box 3

LBox0

LBox1

LBox2 LBox3 LBox4
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I.7 Defined boxes

The following boxes shall properly be interpreted by all conforming readers. Each of these boxes conforms to the
standard box structure as defined in Annex I.6. The following sections define the value of the DBox field from Table I-1
(the contents of the box). It is assumed that the LBox, TBox and XLBox fields exist for each box in the file as defined in
Annex I.6.

I.7.1 JP2 Signature box

The JP2 signature box identifies that the format of this file was defined by the JPEG 2000 Recommendation |
International Standard, as well as provides a small amount of information which can help determine the validity of the
rest of the file. The JP2 signature box shall be the first box in the file, and all files shall contain one and only one JP2
signature box.

The type of the JP2 signature box shall be ‘jP\032\032’ (X‘6A501A1A’). The length of this box shall be 12 bytes. The
contents of this box shall be the 4-byte character string ‘<CR><LF><X’87’><LF>’ (X‘0D0A870A’). For file verification
purposes, this box can be considered a fixed-length 12-byte string which shall have the value:
X‘0000 000C 6A50 1A1A 0D0A 870A’.

Capture resolution 
box

‘resc’
(X‘72657363’)

No Optional This box specifies the resolution at 
which the image was captured.

Default Display res-
olution box

‘resd’
(X‘72657364’)

No Optional This box specifies the default reso-
lution at which the image should 
be displayed.

Contiguous Codestream 
boxes

‘jp2c’
(X‘6A703263’)

No Required This box contains the codestream 
as defined by Annex A of this Rec-
ommendation | International Stan-
dard

Intellectual Property box ‘jp2i’
(X‘6A703269’)

No Optional This box contains intellectual 
property information about the 
image.

XML box ‘xml\040’
(X‘786D6C20’)

No Optional This box provides a tool by which 
vendors can add XML formatted 
information to a JP2 file.

UUID box ‘uuid’
(X ‘75756964’)

No Optional This box provides a tool by which 
vendors can add additional data to 
a file without risking conflict with 
other vendors.

UUID Info box ‘uinf’
(X‘75696E66’)

Yes Optional This box provides a tool by which 
a vendor may provide access to 
additional information associated 
with a UUID

UUID list box ‘ulst’
(X‘75637374’)

No Optional This box specifies a list of 
UUID’s.

URL box ‘url\040’
(X‘75726C20’)

No Optional This box specifies a URL.

Table I-2 — Boxes defined within this Recommendation | International Standard

Box name Type
Container 

box
Required? Notes
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The combination of the particular type and contents for this box enable an application to detect a common set of file
transmission errors. The CR-LF sequence in the contents catches bad file transfers that alter newline sequences. The
control-Z character in the type stops file display under MS-DOS. The final linefeed checks for the inverse of the CR-LF
translation problem. The third character of the box contents has its high-bit set to catch bad file transfers that clear bit 7.

I.7.2 Profile box

The Profile box specifies information about the Recommendations | International Standards with which the file is
compatible, and allows the file creator to specify the Recommendations | International Standards representing the
intended purpose of the file. This box shall immediately follow the JP2 signature box. Also, all files shall contain one and
only one Profile box.

The type of the Profile Box shall be ‘prfl’ (X‘7072666C’). The contents of this box shall be as follows:

BR: Brand. This field specifies the governing Recommendation | International Standard on which the file is
based. This field is specified by a four byte string of ASCII characters. The value of this field for files
governed by this Recommendation | International Standard shall be ‘jp2\040’. 

This field only describes the governing Recommendation | International Standard for the file. Readers
must examine the CLi fields to determine if they can properly interpret the file.

Other values of the Brand field are reserved for ISO use.

CLi: Compatibility list. This field specifies a code representing this Recommendation | International
Standard, another standard, or a profile of another standard, to which the file conforms. This field is
encoded as a four byte string of ASCII characters. A file that conforms to this Recommendation |
International Standard shall have at least one CLi field in the Profile box, and shall contain the value
‘jp2\040’ in one of the CLi fields in the Profile box.

The number of CLi fields is determined by the length of this box.

I.7.3 JP2 header box (superbox)

The JP2 header box contains generic information about the file, such as number of samples, colourspace, and resolution.
This box is a superbox. The format of the Profile box is as follows:

Within a JP2 file (considered as a superbox), there shall be one and only one JP2 header box. The JP2 header box may be
located anywhere within the file after the JP2 signature box but before the contiguous codestream box. It also must be at
the same level as the JP2 signature box (it shall not be inside any other superbox within the file).

The type of the JP2 header box shall be ‘jp2h’ (X‘6A703268’).

Table I-3 — Format of the contents of the Profile box

Field name Size (bits) Value

BR 32 0—(232–1)

CLi 32 0—(232–1)

CL0 CLi

Figure I-4 — Organization of the contents of a Profile box

… … CLN-1BR
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This box contains several boxes. Other boxes may be defined in other standards and may be ignored by conforming
readers. Those boxes contained within the JP2 header box that are defined within this Recommendation | International
Standard are as follows:

ihdr: Image Header Box. This box specifies information about the image, such as its height and width. Its
structure is specified in Annex I.7.3.1. This box shall be the first box in the JP2 header box.

bpcc: BitsPerComponent box. This box specifies the bit depth of each component in the codestream after
decompression. Its structure is specified in Annex I.7.3.2. This box may be found anywhere in the JP2
header box provided that it comes after the Image Header box.

colri: Colour Specification boxes. These boxes specify the colourspace of the decompressed image. Their
structures are specified in Annex I.7.3.3. There shall be at least one Colour Specification box within the
JP2 header box. The use of multiple Colour Specification boxes provides the ability for a decoder to be
given multiple optimization or compatibility options for colour processing. These boxes may be found
anywhere in the JP2 header box provided that they come after the Image Header box.

pclr: Palette box. This box defines the palette to use to create multiple components from a single component.
Its structure is specified in Annex I.7.3.4. This box may be found anywhere in the JP2 header box
provided that it comes after the Image Header box.

cdef: Component Definition box. This box defines the components in the codestream. Its structure is
specified in Annex I.7.3.5. This box may be found anywhere in the JP2 header box provided that it
comes after the Image Header box.

res: Resolution box. This box specifies the capture and default display resolutions of the image. Its structure
is specified in Annex I.7.3.6. This box may be found anywhere in the JP2 header box provided that it
comes after the Image Header box.

I.7.3.1 Image Header box

This box contains fixed length generic information about the image, such as the image size and number of components.
The contents of the JP2 header box shall start with an Image Header box. Instances of this box in other places in the file
shall be ignored. The length of the Image Header box shall be 24 bytes, including the box length and type fields. Note that
much of the information within the Image Header box is redundant with information stored in the codestream itself.

The type of the Image Header box shall be ‘ihdr’ (X‘69686472’) and contents of the box shall have the following format:

VERS:Version. This parameter defines the version number of this JP2 specification for which the file
complies. The parameter is defined as a 2-byte big endian unsigned integer with the most significant
byte containing the major version number (currently defined as 1) and the least significant byte
containing a minor revision number (currently defined as 0).

The value of this field is X‘0100.’

A major version number increment (if there ever is one) represents an incompatible change in JP2 files.
Decoders should give up if they encounter an unrecognized major version number. Minor version

ihdr colr0 colri

Figure I-5 — Organization of the contents of a JP2 header box

… … colrn… …bpcc

…cdef res

…

pclr

VERS C

Figure I-6 — Organization of the contents of an Image Header box

BPCHEIGHT WIDTHNC UnkC IPR
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number increments represent backward compatible changes. Decoders should continue to process JP2
files even if the minor version number is unrecognized.

NC: Number of components. This parameter specifies the number of components in the image and is stored
as a 2-byte big endian unsigned integer.

HEIGHT:Image height. The value of this parameter indicates the number of lines of the rendered image. If
the file contains only one codestream, then this value shall be the same as the value of the Ysiz
parameter in the SIZ marker segment in that codestream. Otherwise, this field specifies the height of
the image into which the sequence of codestreams are rendered. This field is stored as a 4-byte big
endian unsigned integer.

WIDTH:Image width. The value of this parameter indicates the number of samples per line of the rendered
image. If the file contains only one codestream, then this value shall be the same as the value of the
Xsiz parameter in the SIZ marker segment in that codestream. Otherwise, this field specifies the width
of the image into which the sequence of codestreams are rendered. This field is stored as a 4-byte big
endian unsigned integer.

BPC: Bits per component. This parameter specifies the bit depth of the components in the image and is stored
as a 1-byte field.

If the bit depth is the same for all components, then this parameter specifies the actual bit depth. If the
components vary in bit depth, then the value of this field shall be zero and the JP2 header box shall also
contain a BitsPerComponent box defining the bit depth of each component (as defined in Annex
I.7.3.2).

The low 7-bits of the value indicate the bit depth of the components. The high-bit indicates whether the
components are signed or unsigned. If the high-bit is 1, then the components contain signed values. If
the high-bit is 0, then the components contain unsigned values.

C: Compression type. This parameter specifies the compression algorithm used to compress the image
data. The value of this field shall be 7. It is encoded as a 1-byte unsigned integer. If the value of this
field is not 7, then this file is not a conforming JP2 file.

UnkC:Colourspace Unknown. This field specifies if the actual colourspace of the image data is known. This
field is encoded as a 1-byte unsigned integer. Legal values for this field are 0, if the colourspace of the
image is known and correctly specified the colourspace boxes within the file, or 1, if the colourspace of
the image is not known. A value of 1 will be used in cases such as the transcoding of legacy images
where the actual colourspace of the image data is not known. In those cases, while the colourspace
interpretation methods specified in the file may not accurately reproduce the image with respect to
some original, the image should be treated as if the methods do accurately reproduce the image. Values
other than 0 and 1 are reserved for other use.

IPR: Intellectual Property. This parameter whether this JP2 file contains intellectual property rights
information. If the value of this field is 0, this file does not contain rights information, and thus the file
does not contain an IPR box. If the value is 1, then the file does contain rights information and thus
does contain an IPR box as defined in Annex I.8. Other values are reserved for ISO use.

Table I-4 — Format of the contents of the Image Header box

Field name Size (bits) Value

VERS 16 X‘0100’

NC 16 1—(216–1)

HEIGHT 32 1—(232–1)

WIDTH 32 1—(232–1)

BPC 8 -127—127
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I.7.3.2 BitsPerComponent box

The BitsPerComponent box specifies the bit depth of each component. If the bit depth is constant across all components
in the codestream, then this box shall not be found. Otherwise, this box specifies the bit depth of each component. The
order of bit depth values in this box is the actual order those components are enumerated within the codestream. The
exact location of this box within the JP2 header box may vary provided that it follows the Image Header box.

The type of the BitsPerComponent Box shall be ‘bpcc’ (X‘62706363’). The contents of this box shall be as follows:

BPCi: Bits per component. This parameter specifies the bit depth of component i, encoded as a 1-byte ones-
complement integer. The ordering of the components within the BitsPerComponent Box shall be the
same as the ordering of the components within the codestream. The number of BPCi fields shall be the
same as the value of the NC field from the Image Header box.

The low 7-bits of the value indicate the bit depth of this component. The high-bit indicates whether the
component is signed or unsigned. If the high-bit is 1, then the component contains signed values. If the
high-bit is 0, then the component contains unsigned values.

I.7.3.3 Colour Specification box

Each Colour Specification box defines one method by which an application can interpret the colourspace of the
decompressed image data. A JP2 file may contain multiple Colour Specification boxes, specifying different methods for
achieving “equivalent” results. Note that this colour specification is to be applied to the image data after it has been
decompressed and after any reverse decorrelating component transform has been applied to the data. A conforming JP2
shall ignore all Colour Specification boxes after the first.

The type of a Colour Specification box shall be ‘colr’ (X‘636F6C72’). The contents of a Colour Specification box is as
follows:

C 8 7

Unk 8 0—1

IPR 8 0—1

Table I-5 — Format of the contents of the BitsPerComponent box

Field name Size (bits) Value

BPCi 8 -127— -1, 1—127

Table I-4 — Format of the contents of the Image Header box

Field name Size (bits) Value

BPC0 BPCi

Figure I-7 — Organization of the contents of a BitsPerComponent box

… … BPCNC-1

Figure I-8 — Organization of the contents of a Colour Specification box

APPROXMETH PROFILEEnumCSPREC
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METH:Specification method. This field specifies the method used by this Colour Specification box to define
the colourspace of the decompressed image. This field is encoded as a 1-byte unsigned integer. Legal
values of this field are as follows:

PREC:Precedence. This field is reserved for ISO use and the value shall be set to zero; however, conforming
readers shall ignore the value of this field. This field is specified as a signed 1 byte integer.

APPROX:Colourspace approximation. This field specifies the extent to which this colour specification
method approximates the “correct” definition of the colourspace. The value of this field shall be set to
zero; however, conforming readers shall ignore the value of this field. Other values are reserved for
other ISO use. This field is specified as 1 byte unsigned integer.

EnumCS:Enumerated colourspace. This field specifies the colourspace of the image using integer codes. To
correctly interpret the colour of an image using an enumerated colourspace, the application must know
the definition of that colourspace internally. This field contains a 4-byte big endian unsigned integer
value indicating the colourspace of the image. If the value of the METH field is 2, then the EnumCS
field shall not exist. Valid EnumCS values for the first colourspace specification box in conforming files
are limited to 16 and 17 as defined in Table I-7:

PROFILE:ICC profile. This field contains a valid ICC profile, as specified by the ICC Profile Format
Specification, which specifies the transformation of the decompressed image data into the PCS. This
field shall not exist if the value of the METH field is 1. If the value of the METH field is 2, then the ICC

Table I-6 — Legal METH values

Value Meaning

1 Enumerated colourspace. This colourspace specification box contains the 
enumerated value of the colourspace of this image. The enumerated value is 
found in the EnumCS field in this box. If the value of the METH field is 1, 
then the EnumCS shall exist in this box immediately following the APPROX 
field, and the EnumCS field shall be the last field in this box

2 Restricted ICC profile.This Colour Specification box contains a Restricted 
ICC profile in the PROFILE field. This profile specifies the transformation 
needed to convert the decompressed image data into the PCS. If the value of 
METH is 2, then the ICC profile shall conform to the definition of either a 
Monochrome Input Profile or a Three-Component Matrix-Based Input Profile 
as defined in the ICC profile specification, version 2.2.0. In addition, the value 
of the Profile Connection Space field in the profile header in the embedded 
profile shall be ‘XYZ ’ (X‘58595A20’) indicating that the output colourspace 
of the profile is XYZ data.

Note that the components from the codestream may have a range greater than 
the input range of the tone reproduction curve (TRC) of the ICC profile. Any 
decoded values should be clipped to the limits of the TRC before processing 
the image through the ICC profile.

For the JP2 file format, profiles shall conform to the ICC profile definition as 
defined by the ICC Profile Format Specification, version 2.2.0, as well as the 
restrictions specified above. See Annex J.5 for a more detailed description of 
the legal colourspace transforms, how those transforms are stored in the file, 
and how to process an image using that transform without using an ICC 
colour management engine.

If the value of METH is 2, then the PROFILE field shall immediately follow 
the APPROX field and the PROFILE field shall be the last field in the box.

other values Reserved for other ISO use. If the value of METH is not 1 or 2, there may be 
fields in this box following the APPROX field. Those fields shall be ignored.
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profile shall conform to the Monochrome Input Profile class or the Three-Component Matrix-Based
Input Profile class as defined in the ICC profile specification.

I.7.3.4 Palette box

The colour palette specified in this box is applied to the single colour component to convert the single value to a tuple.
The colourspace of the generated tuple is then interpreted based on the values of the colour specification boxes in the JP2
Header box in the file.

The type of the palettized colour box shall be ‘pclr’ (X‘70636C72’). The contents of this box shall be as follows:

NE: Number of entries in the table. This value shall be in the range 1 to 1024.

NPC: Number of components created by the application of the palette. For example, if the palette turns a
single index component into a three-component RGB images, then the value of this field shall be 3.

Table I-7 — Legal EnumCS values

Value Meaning

16 sRGB as defined by IEC 61966–2–1

17 greyscale: A greyscale space where image luminance is related to code values 
using the sRGB non-linearity given in Eqs. (2) through (4) of IEC 61966–2–1 
(sRGB) specification:

I.1

I.2

where Ylin is the linear image luminance value in the range 0.0 to 1.0. The 
image luminance values should be interpreted relative to the reference condi-
tions in Section 2 of IEC 61966–2–1.

other values Reserved for other ISO uses

Table I-8 — Format of the contents of the Colr box

Field name Size (bits) Value

METH 8 1—2

PREC 8 0

APPROX 8 0

EnumCS 32 if METH=1
0 if METH=2

0—(232–1)
no value

PROFILE Varies Varies

Y ' Y 8bit 255⁄=

for Y ' 0.04045≤( ) Y lin, Y ' 12.92⁄=

for Y ' 0.04045>( ) Y lin, Y ' 0.055+
1.055

------------------------ 
  2.4

=

Figure I-9 — Organization of the contents of the Palette box

… BiNE NPC Cij…… PCiPI
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PI: Palette input. This field specifies the number of the component that should be used as the input to the
palette (the index component). This field is encoded as a 2 byte unsigned integer, and the value of this
field shall be less than the number of components specified by the NC field in the Image Header box

PCi: Component number of palette created component i. This field specifies a number by which the
component i of the palette table shall be referred. These values will be used by the Component
Definition box to specify the individual components of the palette. This value shall be greater than the
number of components specified in the Image Header Box, and shall not be the same as the value of
any other PCi field in this box. The number of PCi fields shall be the same as the value of the NPC field.

Bi: This parameter specifies the bit depth of generated component i, encoded as a 8-bit integer. The low 7-
bits of the value indicate the bit depth of this component. The high-bit indicates whether the component
is signed or unsigned. If the high-bit is 1, then the component contains signed values. If the high-bit is
0, then the component contains unsigned values. The number of Bi values shall be the same as the value
of the NPC field.

Cij: The generated component value for entry j for component i. Cij values are organized in component
major order; all of the component values for entry j are grouped together, followed by all of the entries
for component j+1. The size of Cij is the value specified by field Bi. The number of components shall be
the same as the NPC field. The number of Cij values shall be the number of created components (the
NPC field) x the number of entries in the palette (NE).

I.7.3.5 Component Definition box

The component definition box specifies the meaning of the data in each component in the codestream. The exact location
of this box within the JP2 header box may vary provided that it follows the Image Header box.

This box contains an array of component descriptions. For each description, three values are specified: the number of the
component described by that association, the type of that component, and the association of that component with
particular colours. This box may specify multiple descriptions for a single component; however, the type value in each
description for the same component shall be the same in all descriptions.

If the codestream contains only colour components and those components are ordered in the same order as the associated
colours (for example, an RGB images with three components in the order R, G, then B), then this box shall not exist. If
there are any auxiliary components or the components are not in the same order as the colour numbers, then the
Component Definition box shall be found within the JP2 header box with a complete list of component definitions.
However, if this file contains a Palette box, the component specified as input to the palette (in the PI field) shall not be
listed in the Component Definition box.

If a multiple component transform is specified within the codestream, the component ordering box shall specify the
existence of red, green and blue colours as components 0, 1 and 2 in the codestream, respectively.

Table I-9 — Format of the contents of the Palette box

Field name Size (bits) Value

NE 16 1—1024

NPC 8 1—255

PI 16 0—(216–1)

PCi 16 0—(216–1)

Bi 8 -127— -1, 1—127

Cij Varies Varies
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The type of the Component Definition box shall be ‘cdef’ (X‘63646566’). The contents of this box shall be as follows:

N: Number of component descriptions. This field specifies the number of component descriptions in this
box. This field is encoded as a 2-byte big endian unsigned integer.

Cni: Component number. This field specifies the number of the component for this description. The value of
this field represents the number of the component as defined within the codestream or created by the
application of a palette to a single component codestream. The numbers of components created by the
application of the palette are defined by the Palette box. This field is encoded as a 2-byte big endian
unsigned integer.

Typi: Component type. This field specifies the type of the component for this description. The value of this
field represents the type of data contained within the component. This field is encoded as a 2-byte big
endian unsigned integer. Legal values of this field are as follows:

Asoci: Component association. This field specifies the number of the colour for which this component is
directly associated (or a special value to indicate the whole image or the lack of an association). For
example, if this component is an opacity blending component for the red component in an RGB
colourspace, this field would specify the number of the colour red. Table I-11 specifies legal association
values. Table I-12 specifies legal colour numbers. This field is encoded as a 2-byte big endian unsigned
integer.

Table I-10 — Typi field values

Value Meaning

0 This component is the colour component for the associated colour

1 Opacity. A sample value of 0 indicates that the sample is 100% transparent, 
and the maximum value of the component (related to the bit depth of the com-
ponent) indicates a 100% opaque sample.

2 Premultiplied opacity. An opacity component as specified above, except that 
the value of the opacity component has been multiplied into the colour com-
ponents for which this component is associated. Premultiplication is defined 
as follows:

I.3

where S is the original sample, Sp is the premultiplied sample (the
sample stored in the image, α is the value of the opacity component,
and αmax is the maximum value of the opacity component as defined
by the bit depth of the opacity component.

3—(216–2) Reserved for ISO use

216–1 The type of this component is not specified

Typ0 Asoc0

Figure I-10 — Organization of the contents of a Component Definition box

Cn0 … TypN–1 AsocN–1CnN–1N

SP S
α

αmax
------------×=
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In this box, component numbers refer to the number of that particular component within the codestream. Colour numbers
specify how that component shall be interpreted based on the specification of the colourspace of the image.

For example, the green colour in an RGB image is specified by a {Cn, Typ, Asoc} value of {i, 0, 2}, where i is the
number of that component in the codestream (either directly or as generated by applying the reverse multiple component
transform). Applications that are only concerned with extracting the colour components can treat the Typ/Asoc field pair

Table I-11 — Asoci field values

Value Meaning

0 This component is associated as the image as a whole (for example, a compo-
nent independent opacity blending channel

1—(216–2) This component is associated with the a particular colour as indicated by this 
value. This value is used to associate a particular component with a particular 
aspect of the specification of the colourspace of this image. For example, indi-
cating that a component is associated with the red component of an RGB 
image allows the reader to associate that decoded component with the Red 
input to an ICC profile contained within a Colour Specification box. Colour 
indicators are specified in Table I-12

216–1 This component is not associated with any particular colour

Table I-12 — Colours indicated by the Asoci field

Class of 
colourspace

Colour indicated by the following value of the Asoci field

1 2 3 4

RGB R G B

Greyscale Y

The following colourspace classes are listed for future reference, as well as to aid in 
understanding of the use of the Asoci field

XYZ X Y Z

Lab L a b

Luv L u v

YCbCr Y Cb Cr

Yxy Y x y

HSV H S V

HLS H L S

CMYK C M Y K

CMY C M Y

Jab J a b

n colour 
colourspaces

1 2 3 4
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as a four-byte value where the combined value maps directly to the colour numbers (as the Typ field for a colour
component shall be 0).

In another example, the codestream may contain a component i that specifies opacity blending data for the red and green
components, and a component j that specifies opacity blending data for the blue component. In that file, the following
{Cn, Typ, Asoc} tuples would be found in the Component Definition box: {i, 1, 1}, {i, 1, 2} and {j, 1, 3}.

There shall not be more than one component in a JP2 file with a the same Typi and Asoci value pair, with the exception of
Typi and Asoci values of 216–1 (not specified). For example a JP2 file in an RGB colourspace shall only contain one green
component, and a greyscale image shall contain only one grey component. There also shall not be more than one opacity
component associated with a single colour component in an image.

I.7.3.6 Resolution box (superbox)

This box specifies the capture and default display resolution of this image. If this box exists, it shall contain either a
capture display resolution box, or a default display resolution box, or both.

The type of a Resolution box shall be ‘res ’ (X‘72657320’). The contents of the resolution box are as follows:

resc: Capture resolution box. This box specifies the resolution at which this image was captured. The format
of this box is specified in Annex I.7.3.6.1.

resd: Default display resolution box. This box specifies the default resolution at which this image should be
displayed. The format of this box is specified in Annex I.7.3.6.2

I.7.3.6.1 Capture resolution box

This box specifies the resolution at which the source was digitized to create the image samples specified by the
codestream. For example, this may specify the resolution of the flatbed scanner that captured a page from a book. The
capture resolution could also specify the resolution of an aerial digital camera or satellite camera.

The vertical and horizontal capture resolutions are calculated using the six parameters (Table I-14) stored in this box in
the following two equations, respectively:

I.4

I.5

Table I-13 — Component definition & ordering data structure values

Parameter Size (bits) Value

N 16 0—(216–1)

Cni 16 0—(216–1)

Typi 16 0—(216–1)

Asoci 16 0—(216–1)

resc

Figure I-11 — Organization of the contents of the Resolution box

resd

VRc
VRcN
VRcD
--------------- 10

VRcE×=

HRc
HRcN
HRcD
---------------- 10

HRcE×=
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The values VRc and HRc are always in samples/meter. If an application requires the resolution in another unit, then that
application must apply the appropriate conversion.

The type of a Capture resolution box shall be ‘resc’ (X‘72657363’). The contents of the Capture resolution box are as
follows:

VRcN:Vertical Capture resolution numerator. This parameter specifies the VRcN value in Equation I.4, which
is used to calculate the vertical capture resolution. This parameter is encoded as a 16-bit big endian
unsigned integer.

VRcD:Vertical Capture resolution denominator. This parameter specifies the VRcD value in Equation I.4,
which is used to calculate the vertical capture resolution. This parameter is encoded as a 16-bit big
endian unsigned integer.

HRcN:Horizontal Capture resolution numerator. This parameter specifies the HRcN value in Equation I.5,
which is used to calculate the horizontal capture resolution. This parameter is encoded as a 16-bit big
endian unsigned integer.

HRcD:Horizontal Capture resolution denominator. This parameter specifies the HRcD value in Equation I.5,
which is used to calculate the horizontal capture resolution. This parameter is encoded as a 16-bit big
endian unsigned integer.

VRcE:Vertical Capture resolution exponent. This parameter specifies the VRcE value in Equation I.4, which is
used to calculate the vertical capture resolution. This parameter is encoded as a twos-compliment 8-bit
signed integer.

HRcE:Horizontal Capture resolution exponent. This parameter specifies the HRcE value in Equation I.5,
which is used to calculate the horizontal capture resolution. This parameter is encoded as a twos-
compliment 8-bit signed integer.

I.7.3.6.2 Default display resolution box

This box specifies a default resolution at which the image should be displayed. For example, this may be used to
determine the size of the image on a page when the image is placed in a page-layout program. Note, however, that this
value is only a default. Each application must determine an appropriate display size for that application.

The vertical and horizontal display resolutions are calculated using the six parameters (Table I-15) stored in this box in
the following two equations, respectively:

Table I-14 — Format of the contents of the Capture resolution box

Field name Size (bits) Value

VRcN 16 1—(216–1)

VRcD 16 1—(216–1)

HRcN 16 1—(216–1)

HRcD 16 1—(216–1)

VRcE 8 -128—127

HRcE 8 -128—127

Figure I-12 — Organization of the contents of the Capture Resolution box

HRcN HRcDVRcN VRcD VRcE HRcE
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I.6

I.7

The values VRd and HRd are always in samples/meter. If an application requires the resolution in another unit, then that
application must apply the appropriate conversion.

The type of a Default display resolution box shall be ‘resd’ (X‘72657364’). The contents of the Default display resolution
box are as follows:

VRdN:Vertical Display resolution numerator. This parameter specifies the VRdN value in Equation I.6, which
is used to calculate the vertical display resolution. This parameter is encoded as a 16-bit big endian
unsigned integer.

VRdD:Vertical Display resolution denominator. This parameter specifies the VRdD value in Equation I.6,
which is used to calculate the vertical display resolution. This parameter is encoded as a 16-bit big
endian unsigned integer.

HRdN:Horizontal Display resolution numerator. This parameter specifies the HRdN value in Equation I.7,
which is used to calculate the horizontal display resolution. This parameter is encoded as a 16-bit big
endian unsigned integer.

HRdD:Horizontal Display resolution denominator. This parameter specifies the HRdD value in Equation I.7,
which is used to calculate the horizontal display resolution. This parameter is encoded as a 16-bit big
endian unsigned integer.

VRdE:Vertical Display resolution exponent. This parameter specifies the VRdE value in Equation I.6, which is
used to calculate the vertical display resolution. This parameter is encoded as a twos-compliment 8-bit
signed integer.

HRdE:Horizontal Display resolution exponent. This parameter specifies the HRdE value in Equation I.7,
which is used to calculate the horizontal display resolution. This parameter is encoded as a twos-
compliment 8-bit signed integer.

Table I-15 — Format of the contents of the Default display resolution box

Field name Size (bits) Value

VRdN 16 1—(216–1)

VRdD 16 1—(216–1)

HRdN 16 1—(216–1)

HRdD 16 1—(216–1)

VRdE 8 -128—127

HRdE 8 -128—127

VRd
VRdN
VRdD
--------------- 10

VRdE×=

HRd
HRdN
HRdD
---------------- 10

HRdE×=

Figure I-13 — Organization of the contents of the Default Display Resolution box

VRdE HRdEHRdN HRdDVRdN VRdD
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I.7.4 Contiguous codestream box

The Contiguous codestream box contains a valid and complete JPEG 2000 codestream, as defined in Annex A of this
Recommendation | International Standard. When displaying the image, a conforming reader shall ignore all codestreams
after the first codestream found in the file.

The type of a contiguous codestream box shall be ‘jp2c’ (X‘6A703263’). The contents of the box shall be as follows:

Code: This field contains a valid and complete JPEG 2000 codestream as specified by Annex A of this
Recommendation | International Standard.

I.8 Adding intellectual property rights information in JP2

This Recommendation | International Standard specifies an box type for an box which is devoted to carrying intellectual
property rights information within a JP2 file. Inclusion of this information in a JP2 file is optional for conforming files.
The definition of the format of the contents of this box is reserved for ISO. However, the type of this box is defined in this
Recommendation | International Standard as a means to allow applications to recognize the existence of IPR information.
Use and interpretation of this data is beyond the scope of this Recommendation | International Standard.

The type of the Intellectual Property Box shall be ‘jp2i’ (X‘6A703269’).

I.9 Adding vendor specific information to the JP2 file format

The following boxes provide a set of tools by which applications can add vendor specific information to the JP2 file
format. All of the following boxes are optional in conforming files and may be ignored by conforming readers.

I.9.1 XML boxes

An XML box contains vendor specific data (in XML format) other than that data defined within this Recommendation |
International Standard. There may be multiple XML boxes within the file, and those boxes may be found anywhere in the
file except before the JP2 signature box. 

The type of an XML box is ‘xml\040’ (X’786D6C20’). The contents of the box shall be as follows:

DATA:This field shall be valid XML as defined by REC-xml-19980210.

The existence of any XML boxes is optional for conforming files. Also, any XML box shall not contain any information
necessary for decoding the image to the extent that is defined within this part of this Recommendation | International
Standard, and the correct interpretation of the data in any XML box shall not change the visual appearance of the image.
All readers may ignore any XML box in the file.

Table I-16 — Format of the contents of the Contiguous codestream box

Field name Size (bits) Value

Code Varies Varies

Code

Figure I-14 — Organization of the contents of the Contiguous codestream box

DATA

Figure I-15 — Organization of the contents of the XML box
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I.9.2 UUID boxes

A UUID box contains vendor specific data other than that data defined within this Recommendation | International
Standard. There may be multiple UUID boxes within the file, and those boxes may be found anywhere in the file except
before the JP2 signature box.

The type of a UUID box shall be ‘uuid’ (X‘75756964’). The contents of the box shall be as follows:

ID: This field contains a 16-byte UUID as specified by ISO/IEC 11578:1996. The value of this UUID
specifies the format of the vendor specific data stored in the DATA field and the interpretation of that
data.

DATA:This field contains the vendor specific data. The format of this data is defined outside of the scope of
this standard, but is indicated by the value of the UUID field.

The existence of any UUID boxes is optional for conforming files. Also, any UUID box shall not contain any information
necessary for decoding the image to the extent that is defined within this part of this Recommendation | International
Standard, and the interpretation of the data in any UUID box shall not change the visual appearance of the image. All
readers may ignore any UUID box.

I.9.3 UUID Info boxes (superbox)

While it is useful to allow vendors to extend JP2 files by adding binary data using UUID boxes, it is also useful to provide
information in a standard form which can be used by non-extended applications to get more information about the
extensions in the file. This information is contained in UUID Info boxes. A JP2 file may contain zero or more UUID Info
boxes. These boxes may be found anywhere in the top level of the file (the superbox of a UUID Info box shall be the JP2
file itself) except before the signature box.

Note that these boxes, if present, may not provide a complete index for the UUID’s in the file, may reference UUID’s not
used in the file, and possibly may provide multiple references for the same UUID.

The type of a UUID Info box shall be ‘uinf’ (X‘75696E66’). The contents of a UUID Info box are as follows:

UList:UUID List box. This box contains a list of UUID’s for which this UUID Info box specifies a link to
more information. The format of the UUID List box is specified in Annex I.9.3.1.

DE: Data Entry URL box. This box contains a URL. An application can acquire more information about the
UUID’s contained in the UUID list box. The format of a Data Entry URL box is specified in Annex
I.9.3.2

Table I-17 — Format of the contents of a UUID box

Field name Size (bits) Value

UUID 128 Varies

DATA Varies Varies

ID

Figure I-16 — Organization of the contents of the UUID box

DATA

UList

Figure I-17 — Organization of the contents of a UUID Info box

DE
158 ITU-T Rec. T.800 (1999 CDV1.0)



ISO/IEC CD15444-1 : 1999 (V1.0, SDRA 1 March 2000)
I.9.3.1 UUID List box

This box contains a list of UUID’s. The type of a UUID List box shall be ‘ulst’ (X‘75637374’). The contents of a UUID
List box shall be as follows:

NU: Number of UUID’s. This field specifies the number of UUID’s found in this UUID List box. This field
is encoded as a 16-bit big endian unsigned integer.

IDi: ID. This field specifies one UUID, as specified in ISO/IEC 11578:1996, which shall be associated with
the URL contained in the URL box within the same UUID Info box. The number of UUIDi fields shall
be the same as the value of the NU field. The value of this field shall be a 16-byte UUID.

I.9.3.2 Data Entry URL box

This box contains a URL which can use used by an application to acquire more information about the associated vendor
specific extensions. The format of the data acquired through the use of this URL is not defined in this Recommendation |
International Standard. The URL type should be of a service which delivers a file (e.g. URL’s of type file, http, ftp, etc.),
which ideally also permits random access. Relative URL’s are permissible and are relative to the file containing this data
reference.

The type of a Data Entry URL box shall be ‘url\040’ (X’75726C20’). The contents of a Data Entry URL box shall be as
follows:

VERS:Version number. This field specifies the version number of the format of this box. The value of this
field shall be 0.

FLAG:Flags. This field is reserved for other use to flag particular attributes of this box. The value of this field
shall be 0.

LOC: Location. This field specifies the URL of the additional information associated with the UUID’s
contained in the UUID List box within the same UUID Info superbox. The URL is encoded as a null
terminated string of UTF-8 characters

Table I-18 — UUID List box contents data structure values

Parameter Size (bits) Value

NU 16 0—(216–1)

UUIDi 128 0—(2128–1)

Table I-19 — URL box contents data structure values

Parameter Size (bits) Value

VERS 8 0

FLAG 24 0

LOC varies varies

NU

Figure I-18 — Organization of the contents of a UUID Info box

ID0 … IDNU–1

VERS

Figure I-19 — Organization of the contents of a URL box

FLAG LOC
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I.10 Dealing with unknown boxes

A valid codestream may contain boxes not known to applications based solely on this Recommendation | International
Standard. If a conforming reader finds an box that it does not understand, it shall skip and ignore that box.
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Annex J

Examples and Guidelines

This Annex includes a number of examples intended to indicate how the encoding process works, and how the resulting
data stream should be output. This Annex is entirely informative.

J.1 Software Conventions Adaptive Entropy Decoder

This annex provides some alternative flowcharts for a version of the adaptive entropy decoder. This alternative version
may be more efficient when implemented in software, as it has fewer operations along the fast path. This annex is strictly
informative.

The alternative version is obtained by making the following substitutions. 

Replace the flowchart in Figure C-20 with the flowchart in Figure J-1.

Replace the flowchart in Figure C-15 with the flowchart in Figure J-2.

Replace the flowchart in Figure C-19 with the flowchart in Figure J-3. 

Figure J-1 — Initialisation of the software-conventions decoder
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Figure J-2 — Decoding an MPS or an LPS in the software-conventions decoder
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J.2 Row-based wavelet transform

Described here is an example of a row-based wavelet transform for the 9-7 filter well suited for compression devices
which received and transferred image data in a serial manner. Traditional wavelet transform implementations require the
whole image to be buffered and filtering to be performed in vertical and horizontal directions. While filtering in the
horizontal direction is very simple, filtering in the vertical direction is more involved. Filtering along a row requires one
row to be read; filtering along a column requires the whole image to be read. This explains the huge bandwidth
requirements of the traditional wavelet transform implementation. The row-based wavelet transform overcomes the
previous limitation while providing the exact same transformed coefficients as traditional wavelet transform
implementation. However, the row-based wavelet transform alone does not provide a complete row-based encoding
paradigm. A complete row-based coder has to take also into account all the following coding stage up to the entropy
coding stage.
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Figure J-3 — Inserting a new byte into the C register in the software-conventions decoder
ITU-T Rec. T.800 (2000 FCDV1.0) 163



ISO/IEC FCD15444-1 : 2000 (V1.0, 16 March 2000)
 

J.2.1 The FDWT_ROW procedure

The FDWT_ROW procedure uses one buffer buf(i,j) of five lines, , for performing a one level wavelet
decomposition on one row of length tcy1-tcy0+1 in the vertical direction for the 9-7 wavelet filter. Each line of the buffer
buf(i,j) is of size tcx1-tcx0+1. The general description of the FDWT_ROW applied to one image tile component is
illustrated in Figure J-4 for the first level of decomposition. The FDWT_ROW takes as input level shifted image tile
component line of samples and produces as output one line of transform coefficients. In this example, it is assumed
throughout this section that the image tile component has at least five rows.

FDWT_ROW

INIT(y,buf)

START_VERT(buf)

buf(0)=1D_SD(buf(0),i0,i1)

No

Done

GET_ROW(y,buf)

RB_VERT_1(buf)

buf(i)=1D_SD(buf(i),i0,i1)

GET_ROW(y,buf)

RB_VERT_2(buf)

END_1(y,buf)

Yes

Yes

No

OUTPUT_ROW(buf(i))

y y 1+←

OUTPUT_ROW(buf(0))

y tcx1 tcx0–<

y tcx1 tcx0–<

i mod y 4– 5,( )←

i0 mod tcx0 2,( )←
i1 tcx1 i0+←

y y 1+←
i mod y 4– 5,( )←

buf(i)=1D_SD(buf(i),i0,i1)

OUTPUT_ROW(buf(i))

Done

END_2(y,buf)

y 0←

Figure J-4 — The FDWT_ROW procedure

0 i 4≤ ≤
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J.2.1.1 The GET_ROW procedure

In this description, the level shifted image tile component is assumed to be stored in an external memory . As
illustrated in Figure J-5, the GET_ROW procedure reads one line of samples of the level shifted image tile component
and transfer this line of samples in the buffer buf.

J.2.2 The INIT procedure

As illustrated in Figure J-6, the INIT procedure reads five lines of samples of the level shifted image tile component and
transfer these lines of samples in the buffer, buf.

I x y,( )

GET_ROW

i mod y 5,( )←

No

Yes

Done

mod tcy0 2,( ) 0= d 1←

d 0←

buf i d j+,( ) I x y tcy0+,( )←

x tcx0←
j 0←

x x 1+←
j j 1+←

No
x>=tcx1

Yes

Figure J-5 — The GET_ROW procedure

INIT

i 0←

i i 1+←
y y 1+←

i 5≥No

Yes

Done

GET_ROW(y,buf)

Figure J-6 — The INIT procedure
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J.2.3 The START_VERT procedure

As illustrated in Figure J-7, the START_VERT procedure modifies the coefficients in the buffer buf(i,j). In this Figure as
well as in all the following Figure of this section, the expression  is equivalent to

 for tcx1-tcx0

J.2.3.1 The RB_VERT_1 procedure

As illustrated in Figure J-8, the RB_VERT_1 procedure modifies the coefficient in buf(i,j). 

buf i( ) buf← i( ) α buf i2( )⋅+
buf i j,( ) buf← i j,( ) α buf i2 j,( )⋅+

START_VERT

No

Done

mod tcy0 2,( ) 0=

y tcy1 tcy0–<

buf 1( ) buf← 1( ) α buf 0( )⋅+

buf 1( ) buf← 1( ) α buf 2( )⋅+

buf 0( ) buf← 0( ) 2β buf 1( )⋅+

buf 3( ) buf← 3( ) α buf 2( )⋅+

buf 2( ) buf← 2( ) β buf 1( )⋅+

buf 1( ) buf← 1( ) γ buf 0( )⋅+

buf 3( ) buf← 3( ) α buf 4( )⋅+

buf 2( ) buf← 2( ) β buf 3( )⋅+

buf 1( ) buf← 1( ) γ buf 2( )⋅+

buf 0( ) buf 0( )← 2δ buf 1( )⋅+

buf 0( ) 1
K----

buf 0( )←

Yes

Done

buf 0( ) buf← 0( ) 2α buf 1( )⋅+

buf 2( ) buf← 2( ) α buf 1( )⋅+

buf 1( ) buf← 1( ) β buf 0( )⋅+

buf 2( ) buf← 2( ) α buf 3( )⋅+

buf 1( ) buf← 1( ) β buf 2( )⋅+

buf 0( ) buf← 0( ) 2γ buf 1( )⋅+

buf 4( ) buf← 4( ) 2α buf 3( )⋅+

buf 3( ) buf← 3( ) β buf 2( )⋅+

buf 2( ) buf← 2( ) γ buf 1( )⋅+

buf 1( ) buf 1( )← δ buf 0( )⋅+

buf 0( ) Kbuf 0( )←

No

Yes

Done

buf 0( ) buf← 0( ) 2α buf 1( )⋅+

buf 2( ) buf← 2( ) α buf 1( )⋅+

buf 1( ) buf← 1( ) β buf 0( )⋅+

buf 2( ) buf← 2( ) α buf 3( )⋅+

buf 1( ) buf← 1( ) β buf 2( )⋅+

buf 0( ) buf← 0( ) 2γ buf 1( )⋅+

buf 4( ) buf← 4( ) α buf 3( )⋅+

buf 3( ) buf← 3( ) β buf 2( )⋅+

buf 2( ) buf← 2( ) γ buf 1( )⋅+

buf 1( ) buf 1( )← δ buf 0( )⋅+

buf 0( ) Kbuf 0( )←

Figure J-7 — The START_VERT procedure
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J.2.3.2 The RB_VERT_2 procedure

As illustrated in Figure J-9, the RB_VERT_2 procedure modifies the coefficient in buf(i,j).

RB_VERT_1

Yes

mod tcy0 2,( ) 0=
No

Done

buf mod y 5,( )( ) buf← mod y 5,( )( ) α buf mod y 1– 5,( )( )⋅+

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) α buf mod y 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) β buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) γ buf mod y 2– 5,( )( )⋅+

buf mod y 4– 5,( )( ) buf← mod y 4– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 4– 5,( )( ) 1
K----

buf mod y 4– 5,( )( )⋅←

Figure J-8 — The RB_VERT_1 procedure

y tcy1 tcy0– 1–<

Done

buf mod y 5,( )( ) buf← mod y 5,( )( ) 2α buf mod y 1– 5,( )( )⋅+

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

Done

Yes

No

RB_VERT_2

No

mod tcy0 2,( ) 0=
Yes

Done

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) α buf mod y 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) β buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) γ buf mod y 2– 5,( )( )⋅+

buf mod y 4– 5,( )( ) buf← mod y 4– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 4– 5,( )( ) 1
K----

buf mod y 4– 5,( )( )⋅←

Done

buf mod y 5,( )( ) buf← mod y 5,( )( ) α buf mod y 1– 5,( )( )⋅+

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

buf mod y 5,( )( ) buf← mod y 5,( )( ) 2α buf mod y 1– 5,( )( )⋅+

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

y tcy1 tcy0–< Yes

No

Figure J-9 — The RB_VERT_2 procedure
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J.2.3.3 The END_1 procedure

The END_1 procedure is detailed in Figure J-10. 

END_1

No

mod tcy0 2,( ) 0=
Yes

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

Done

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 2– 5,( )( )⋅+

buf mod y 3– 5,( )( ) 1
K----

buf mod y 3– 5,( )( )⋅←

OUTPUT_ROW(buf(i))

i mod y 4– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 3– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 4– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 2– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 1– 5,( )←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2δ buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) K buf mod y 2– 5,( )( )⋅←

buf mod y 1– 5,( )( ) 1
K----

buf mod y 1– 5,( )( )⋅←OUTPUT_ROW(buf(i))

i mod y 3– 5,( )←

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) β buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) γ buf mod y 2– 5,( )( )⋅+

buf mod y 4– 5,( )( ) buf← mod y 4– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 4– 5,( )( ) 1
K----

buf mod y 4– 5,( )( )⋅←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2γ buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) K buf mod y 3– 5,( )( )⋅←

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) δ buf mod y 1– 5,( )( )⋅+

buf mod y 2– 5,( )( ) K buf mod y 2– 5,( )( )⋅←

buf mod y 1– 5,( )( ) 1
K----

buf mod y 1– 5,( )( )⋅←

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

Figure J-10 — The END_1 procedure

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)
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J.2.3.4 The END_2 procedure

The END_2 procedure is detailed in Figure J-11

END_2

No

mod tcy0 2,( ) 0=
Yes

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) β buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) γ buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 4– 5,( )( ) 1
K----

buf mod y 4– 5,( )( )⋅←

Done

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2γ buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) δ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) K buf mod y 3– 5,( )( )⋅←

OUTPUT_ROW(buf(i))

i mod y 4– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 3– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 4– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 2– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 1– 5,( )←

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) δ buf mod y 1– 5,( )( )⋅+

buf mod y 2– 5,( )( ) K buf mod y 2– 5,( )( )⋅←

buf mod y 1– 5,( )( ) 1
K----

buf mod y 1– 5,( )( )⋅←OUTPUT_ROW(buf(i))

i mod y 3– 5,( )←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2β buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 3– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 4– 5,( )( )⋅+

buf mod y 4– 5,( )( ) K buf mod y 4– 5,( )( )⋅←

buf mod y 2– 5,( )( ) buf← mod y 2– 5,( )( ) γ buf mod y 1– 5,( )( )⋅+

buf mod y 3– 5,( )( ) buf← mod y 3– 5,( )( ) δ buf mod y 2– 5,( )( )⋅+

buf mod y 3– 5,( )( ) 1
K----

buf mod y 3– 5,( )( )⋅←

buf mod y 1– 5,( )( ) buf← mod y 1– 5,( )( ) 2δ buf mod y 2– 5,( )( )⋅+

buf mod y 2– 5,( )( ) 1
K----

buf mod y 2– 5,( )( )⋅←

buf mod y 1– 5,( )( ) K buf mod y 1– 5,( )( )⋅←

OUTPUT_ROW(buf(i))

i mod y 2– 5,( )←

OUTPUT_ROW(buf(i))

i mod y 1– 5,( )←

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

buf(i)=1D_SD(buf(i),i0,i1)

Figure J-11 — The END_2 procedure
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J.2.4 OUTPUT_ROW procedure

This procedure returns a line buf(i) of transformed coefficients, which correspond either to the 1LL and 1HL sub-band or
to the 1LH and 1HH sub-band. This line of transform coefficient can be either store in an external memory or processed
immediately.

J.3 Scan-Based Coding

Some applications use scanning sensors that create images (possibly unconstrained in length) line by line and have
limited amounts of memory available for processing purposes. These applications need a full scan-based coding where
only the minimum required number of bytes is retained in memory at any given time without significant loss in
performance. Example implementations of such a scan-based coding system have been demonstrated [34][35]. The
recommended procedure is outlined below.

Traditional JPEG2000 encoding requires all the wavelet coefficients to be buffered before quantization and coding.
Alternatively, a scan-based approach can be used where the row-based wavelet transform (see Annex J.2) is followed by
a scan-based rate allocation and coding procedure to ensure that wavelet coefficients are compressed soon after they have
been generated. For this purpose, a limited memory buffer (the scan buffer) is introduced after the wavelet transform. The
discrete data segments within it are called “scan elements.” A scan element consists of a localized set of wavelet
coefficients. It may be a tile or a packet partition location, and corresponds to a small number of lines in image space. The
scan buffer may contain one or more scan elements.

The rate control algorithm is applied to the data in the scan buffer and the first scan element is released to the bit stream.
In case there is more than one scan element in the scan buffer, a sliding window rate control mechanism is implemented.
This approach may give better compression results at the expense of a slight increase in complexity and memory
requirements.

This scan-based approach does not affect the JPEG2000 decoding process.

J.4  Error resilience

This section describes a method for decoding images, which have been coded using an error resilient syntax.

Many applications require the delivery of image data over different types of communication channels. Typical wireless
communications channels give rise to random and burst bit errors. Internet communications are prone to loss due to traffic
congestion. To improve the performance of transmitting compressed images over these error prone channels, error
resilient bit stream syntax and tools are included in this specification.

The error resilience tools in this specification deal with channel errors using the following approaches: data partitioning
and resynchronization, error detection and concealment, and Quality of Service (QoS) transmission based on priority.
Error resilience tools are described in each category.

Table J-1 — Error resilience tools

Type of tool Name Reference

Entropy coding level code-blocks
termination of the arithmetic coder for each pass

reset of contexts after each coding pass
selective arithmetic coding bypass

segmentation symbols

Annex D

Packet level short packet format
packet with resynchronization marker

Annex B
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The entropy coding of the quantized coefficients is done within code-blocks. Since encoding and decoding of the code-
blocks are independent, bit errors in the bit stream of a code-block will be contained within that code-block (see Annex
D).

Termination of the arithmetic coder is allowed after every coding pass. Also, the contexts may be reset after each coding
pass. This allows the arithmetic to coder continue to decode coding passes after errors (see Annex D.4).

The optional arithmetic coding bypass style puts raw bits into the bit stream without arithmetic coding. This prevents the
types of error propagation to which variable length coding is susceptible (see Annex D.6).

Short packets are achieved by moving the packet headers to the PPM or PPT marker segments (see Annex A.7.4 and
Annex A.7.5). If there are errors, the packet headers in the PPM or PPT marker segments can still be associated with the
correct packet by using the sequence number in the SOP.

A segmentation symbol is a special symbol. The correct decoding of this symbol confirms the correctness of the
decoding of this bit-plane which allows error detection. See Annex D.5.

A packet with a resynchronization marker SOP (see Annex A.8.1) allows spatial partitioning and resynchronization. This
is placed in front of every packet in a tile with a sequence number starting at zero. It is incremented with each packet.
Packet ordering is described in Annex B.9.

J.5 Implementing the Restricted ICC method outside of a full ICC colour management engine

This Annex describes the Restricted ICC method for specifying the colourspace of a JP2 file using ICC profiles based on
version 2.2.0 of the ICC Profile Format Specification. This annex is specifically targeted at developers who are not using
a full ICC colour management engine and thus must extract the transformation parameters from the ICC profile and
process the image using application specific code.

J.5.1 Colour processing equations for three-component RGB images

The goal of the Restricted ICC profile method is to restrict the set of all ICC profiles down to a set which can be
described using a simple set of colour processing equations. The ICC specification1 defines this class of profile as Three-
Color Matrix-Based Input Profiles (defined in Section 6.3.1.2 of the ICC profile format specification) and Monochrome
Input Profiles (defined in Section 6.3.1.1 of the ICC profile format specification). Profiles in the Three-Color Matrix-
Based Input Profile class can be described using the following equations:

J.1

J.2

where decompressedrgb is the original decompressed pixel and connectionxyz is the pixel converted into the XYZ form of
the Profile Connection Space (XYZPCS). In Equation J.1, the three look-up tables are loaded from the Restricted ICC
profile from the redTRCTag, greenTRCTag and blueTRCTag tags respectively, as defined in Sections 6.4.38, 6.4.18 and
6.4.4, respectively, in the ICC Profile Format Specification. The common data format of those tags is defined in Section
6.5.25 of the profile specification. In Equation J.2, the rows of the matrix are loaded from the redColorantTag,
greenColorantTag and blueColorantTag tags respectively, as defined in Sections 6.4.39, 6.4.19 and 6.4.5, respectively, in
the ICC Profile Format Specification. The common data format of those tags is defined in Section 6.5.2 of the profile
specification.

linearr redTRC decompressedr[ ]=

linearg greenTRC decompressedg[ ]=

linearb blueTRC decompressedb[ ]=

connectionx

connectiony

connectionz

redColorantx greenColorantx blueColorantx

redColoranty greenColoranty blueColoranty

redColorantz greenColorantz blueColorantz

linearr

linearg

linearb

=
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The Monochrome Input Profile class can be described with the following equations:

J.3

where device is the original decompressed pixel and connection is the achromatic channel of the profile connection space.
In Equation J.3, the look-up table is loaded from the Restricted ICC profile from the grayTRCTag, as specified in Section
6.3.17. The data format of that tag is defined in Section 6.5.2 of the profile specification.

J.5.2 Converting images to sRGB2

One of the most common application scenarios will be the situation where an image specified using the Restricted ICC
profile method must be converted to the sRGB colourspace for softcopy display (for example desktop editing and web
browsers). 

This transform7is used in conjunction with the Restricted ICC method to create resulting sRGB values from original
source colour values. Where applicable, like transforms (1D look-up tables or matrices) may be combined to enhance
processing performance. For this example, only the transform from the Profile Connection Space (XYZPCS) will be
shown. It may later be combined with the transforms in Equation J.1 and Equation J.2

To move colours encoded in the XYZPCS to colours encoded in the sRGB colour space, there are three pieces necessary
to complete the transformation. These pieces are embodied in two 3x3 matrices and a per channel, linear to non-linear
conversion equation which may be applied in practice through three one dimensional look-up tables. 

The first matrix in the transformation is required to perform a chromatic adaptation transform between the defined
adaptive white point of the ICC Profile Connection Space (chromaticities of CIE D50) and the defined adaptive white
point of sRGB (chromaticities of CIE D65). There are several different choices of transform which can be used. For this
example transformation, the Bradford chromatic adaptation transform3 (BFD) will be used. The Bradford transform has
been shown to produce accurate results4,5and has been adopted as part of the CIE recommended colour appearance
model4 (CIECAM97s). The BFD transform typically includes a linear and a non-linear portion. In the case of this
example transform, the non-linear portion of the Bradford transform has been left out to allow for simple 3x3 matrix
processing. It has been shown that the Bradford transform’s performance is still very good even with this omission6. 

The second matrix in the transformation is a primary transformation matrix required to move colours from the primaries
of the XYZPCS to the ITU-R BT.709-2 primary set as defined in the sRGB standard, IEC/TC100/PT61966-2.1.

Separate, the transform looks as follows with the primary transformation denoted by a PT and the Bradford chromatic
adaptation matrix denoted by a BFD:

J.4

However, the matrices can be combined to form a single matrix as shown in the following equation:

J.5

It is then necessary to transform the slinear rgb’s to non-linear sRGB values. This is done through the following two
equations:

connection grayTRC device[ ]=

slinearr

slinearg

slinearb

3.2406PT 1.5372PT– 0.4986PT–

0.9689PT– 1.8758PT 0.0415PT

0.0557PT 0.2040PT– 1.0570PT

0.9554BFD 0.0231BFD– 0.0633BFD

0.0284BFD– 1.0100BFD 0.0211BFD

0.0123BFD 0.0205BFD– 1.3305BFD

connectionx

connectiony

connectionz

=

slinearr

slinearg

slinearb

3.1337 1.6173– 0.4907–

0.9785– 1.9162 0.0334

0.0720 0.2290– 1.4056

connectionx

connectiony

connectionz

=
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If 

J.6

If 

J.7

where sRGBrgb is the pixels converted into the sRGB colourspace, and again slinearrgb is the pixel in the linear RGB
form of sRGB.

Note that this processing can be optimized by combining the colourant matrix described in Equation J.2 with the XYZ to
sRGB conversion matrix described in Equation J.5 as follows:

J.8

This optimization reduces the colourspace processing from PCS XYZ to sRGB to the application of a 1D look-up table,
a single 3x3 matrix and another 1D look-up table.

The transforms shown above for sRGB can be generalized for use in converting to many other target colour spaces other
than sRGB. In many cases, the steps taken will match exactly those needed for the conversion to sRGB. However, in
other cases, fewer steps may be required such as when the adaptive white point of the target colour space matches that of
the PCS XYZ thus removing the need for a chromatic adaptation transform. It is also possible that some cases may
require additional steps to compensate for different factors such as viewing condition differences. The actual viewing
condition transforms are beyond the scope of this annex, but have been covered in other publications1,2,6,8. 

J.5.3 Input and output ranges and quantization

The input code values to the look-up tables in Equation J.1 (redTRC, greenTRC and blueTRC) shall be integers of the
same precision as the decompressed code values, and indexed such that TRC[i] produces the correct linear intensity value
for an input code value of i. Input code values that are larger than the number of elements of the look-up table – 1 should
be clipped to the number of elements of the look-up table – 1.

The output pixel from Equation J.1 shall be real linear intensity values nominally in the range (0.0, 1.0).

The input to the colourant matrix in Equation J.2 shall also be real linear intensity values in the range (0.0, 1.0). The
output of that equation (the XYZPCS values) is scaled such that the Y value will be in the range (0.0, 1.0). Neutral values
in the image should map to XYZ values having the chromaticity of the PCS whitepoint (this implies that X/Y = 0.9642,
and Z/Y = 0.8250). If the application is converting the input code values to the sRGB colourspace, this output range
allows direct concatenation of the matrices as in Equation J.8.

The ranges and quantization of the XYZPCS to sRGB transformation are similar. The input and output of Equation J.4,
and thus the input to Equations R.4 and J.7 are also real values in the range (0.0, 1.0).

slinearr slinearg slinearb, , 0.0031308≤

sRGBr 12.92 slinearr×=

sRGBg 12.92 slinearg×=

sRGBb 12.92 slinearb×=

slinearr slinearg slinearb, , 0.0031308>

sRGBr 1.055 slinearr
1.0 2.4⁄( )× 0.055–=

sRGBg 1.055 slinearg
1.0 2.4⁄( )× 0.055–=

sRGBb 1.055 slinearb
1.0 2.4⁄( )× 0.055–=

slinearr

slinearg

slinearb

3.1337 1.6173– 0.4907–

0.9785– 1.9162 0.0334

0.0720 0.2290– 1.4056

redColorantx greenColorantx blueColorantx

redColoranty greenColoranty blueColoranty

redColorantz greenColorantz blueColorantz

linearr

linearg

linearb

=
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The output of Equations R.4 and J.7 are values in the range (0.0, 1.0). However, those values will generally be scaled by
255 to produce 8-bit sRGB values. This is highly application dependent and depends on what, if any, additional
processing will be performed. However, it is strongly suggested that any colour processing be performed on the source
image data (decompressedr, decompressedg, decompressedb) before it is converted to sRGB, as the possibility of
significantly decreased quantization exists.

J.5.4 Taking advantage of multiple colourspace specifications

The JP2 format allows for a file to specify multiple methods to interpret the colourspace of an image. For example, one
application may write images in which the pixel values have already been converted to the signals necessary for driving a
particular output device. In that situation, it is useful for the application to provide a simple mechanism for the device to
determine that additional colour processing is not required. This can be accomplished by specifying the name of the
device colourspace using the Enumerated Colourspace method in one Colour specification atom in the file.

However, other applications, such as web browsers, must convert the image to signals suitable for display on other
devices; it is very likely that those applications will not know the definition of this vendor specific colourspace. It is thus
very useful for the original file writer to write a second Colour specification atom in the file that uses the Restricted ICC
profile method or the Generic ICC profile method. By providing a secondary mechanism, the number of applications that
have the ability to properly interpret the colourspace of the image is dramatically increased.

J.6 An example of the interpretation of multiple components

An example of a non-traditional interpretation is the coding of Regions of Interest (ROIs) in a complex SAR data set.
Each ROI may be thought of as a set of two image chips representing the real (I) and imaginary (Q) parts of the data. The
ensemble of I and Q chips may be assembled into a set of “multiple components,” even though the individual chips are
disjoint and may have different spatial dimensions. By-passing the colour space transform, the ensemble of chips may
then be subjected to lossless or lossy compression. This procedure has two advantages: all the ROIs in a given data set can
be compressed in a single pass; and bit allocation can be optimized across the ensemble of ROIs rather than on a chip-by-
chip basis.

J.7 An example of decoding showing intermediate steps

Consider the following compressed bit stream where the offset from the beginning of the file is given in octal on the left,
and the values in the file are given in Hexidecimal.

0000000 ff4f ff51 002a 0000 0000 0001 0000 0009
0000020 0000 0000 0000 0000 0000 0001 0000 0009
0000040 0000 0000 0000 0000 0001 0008 0101 ff5c
0000060 0007 4008 0909 0aff 5200 0b00 0100 0001
0000100 0404 0001 ff90 000a 0000 0000 001e 0001
0000120 ffda c7d4 0c01 8f0d c875 5da0 3e10 c00f
0000140 b176 ffd9

This bit stream contains the marker segments listed below.

Main header:
0000000 ff4f SOC marker
0000002 ff51 SIZ marker
0000004 002a   Lsiz SIZ marker length
0000006 0000   Rsiz
0000010 0000 0001 Xsiz
0000014 0000 0009 Ysiz
0000020 0000 0000 XOsiz
0000024 0000 0000 YOsiz
0000030 0000 0001 XTsiz
0000034 0000 0009 YTsiz
0000040 0000 0000 XTOsiz
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0000044 0000 0000 YTOsiz
0000050 0001 Csiz
0000052 00   CSsiz
0000053 08   Ssiz
0000054 01   XRsiz
0000055 01   YRsiz

Thus the “image” is one component, with 8 bits/sample unsigned, 1 sample horizontally, and 9 samples vertically, an all
samples are in a single tile.

0000056 ff5c QCD marker
0000060 0007   Lqcd QCD marker length
0000062 40     Sqcd
0000063 08 0909 0a SPqcd

There are 2 guard bits, no quantization is done (other than possible truncation), and the quantizer step size exponents εb
are {8,9,9, 10}.

0000067 ff52 COD marker
0000071 000b   Lcod COD marker length
0000073 00     Scod
0000074 01     Decomposition level
0000075 00     Progression style
0000076 0001   Number of layers
0000100 04    Code block width exponent value
0000101 04    Code block height exponent value
0000102 00    Code block coding pass style
0000103 01    Transform

No packet partitions are used. There is one level of wavelet transform. Progression is layer-resolution-component-
position, but there is only one layer. Code-blocks are 64x64 samples (note the size is 26 while the value in the bit stream
is 4). There is no selective arithmetic coding bypass, no reset of context probabilities or termination at each coding pass,
no vertical stripe causal contexts, no predictable termination, and no segmentation symbols. The 5,3 wavelet transform is
used.

Tile-part header:
0000104 ff90 SOT marker
0000106 000a   Lsot SOT marker length
0000110 0000   Isot
0000112 0000 001e   Psot
0000116 00    TPsot
0000118 01   TNsot

This is tile number 0. The length is 30 bytes (octal 142 - 104). This is tile-part 0. There is only one tile-part for this tile.
0000120 ffda SOS marker

Coded Data (Packet headers and packet bodies)
0000122 c7d4 0c01 8f0d c875 5da0 3e10 c00f
0000140 b176 

End of Image
0000142 ffd9 EOI marker

Because the image is 1x9, and there is one level of transform, (and the code-blocks, partitions, and tiles are two large to
have an effect), there will be 5 low pass wavelet coefficients, and 4 horizontal low pass vertical high pass coefficients.
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The LL sub-band is decoded as follows. The first item is the context label from Annex C (which could be completely
different for each implementation). The second item is the type of context. Finally the bit returned from the arithmetic
coder is listed.

17 C4(ZERO_RUN) Bit 1

No zero run occurred.
18 C5(UNIFORM) Bit 1
18 C5(UNIFORM) Bit 1

First nonzero coefficient is the 4th (numbered from 1).
9 C2(SIGN)      Bit 1

Negative.
3 C1(NEW_SIGNIFICANT)   Bit 0

Fifth coefficient is not significant.
3 C1(NEW_SIGNIFICANT)   Bit 1

Third coefficient is significant (first coefficient which is in the significance pass).
10 C2(SIGN)     Bit 0

Negative (XOR bit is 1).
3 C1(NEW_SIGNIFICANT)   Bit 1

Fifth coefficient is significant now.
 10 C2(SIGN)     Bit 0

Negative (XOR bit is 1).
15 C3(REFINE)   Bit 0

Next bit of 4th coefficient is 0.
 0 C1(NEW_SIGNIFICANT)   Bit 1

First coefficient is significant.
9 C2(SIGN)      Bit 1

Negative.
4 C1(NEW_SIGNIFICANT)   Bit 1

Second coefficient is significant.
10 C2(SIGN)     Bit 0

Negative.

Now all coefficients are in the refinement pass. Decoded bit is the next bit of the coefficient in order from 1st to fifth.
15 C3(REFINE)   Bit 1
15 C3(REFINE)   Bit 0
15 C3(REFINE)   Bit 1
16 C3(REFINE)   Bit 0
15 C3(REFINE)   Bit 0

Next bit-plane.
16 C3(REFINE)   Bit 0
16 C3(REFINE)   Bit 1
16 C3(REFINE)   Bit 1
16 C3(REFINE)   Bit 0
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16 C3(REFINE)   Bit 0

Next bit-plane.
16 C3(REFINE)   Bit 1
16 C3(REFINE)   Bit 1
16 C3(REFINE)   Bit 1
16 C3(REFINE)   Bit 0
16 C3(REFINE)   Bit 1

Last bit-plane.
16 C3(REFINE)   Bit 0
16 C3(REFINE)   Bit 0
16 C3(REFINE)   Bit 0
16 C3(REFINE)   Bit 0
16 C3(REFINE)   Bit 1

Thus the decoded coefficients are:
-26, -22, -30, -32, -19

For the vertical high pass horizontal lowpass sub-band the following contexts and bits occur.
17 C4(ZERO_RUN) Bit 1
18 C5(UNIFORM) Bit 0
18 C5(UNIFORM) Bit 1
9 C2(SIGN)      Bit 0
3 C1(NEW_SIGNIFICANT)   Bit 0
0 C1(NEW_SIGNIFICANT)   Bit 0
3 C1(NEW_SIGNIFICANT)   Bit 0
3 C1(NEW_SIGNIFICANT)   Bit 0
14 C3(REFINE)   Bit 0
0 C1(NEW_SIGNIFICANT)   Bit 0
3 C1(NEW_SIGNIFICANT)   Bit 1
10 C2(SIGN)     Bit 0
3 C1(NEW_SIGNIFICANT)   Bit 1
10 C2(SIGN)     Bit 0
3 C1(NEW_SIGNIFICANT)   Bit 0
16 C3(REFINE)   Bit 1

The decoded vertical high pass horizontal low pass coefficients are:
1, 5, 1, 0

After the inverse 5,3 wavelet transform and level shifting, the component samples in decimal are:
 101,103,104,105,96,97,96,102,109

J.8 Visual Frequency Weighting 

The human visual system plays an important role in the perceived image quality of compressed images. It is therefore
desirable to allow system designers and users to take advantage of the current knowledge of visual perception, e.g., to
utilize models of the visual system’s varying sensitivity to spatial frequencies, as measured in the contrast sensitivity
function (CSF). Since the CSF weight is determined by the visual frequency of the transform coefficient, there will be
one CSF weight per sub-band in the wavelet transform. The design of the CSF weights is an encoder issue and depends
on the specific viewing condition under which the decoded image is to be viewed. Please refer to [29][30] for more
details of the design of the CSF weights. 

In many cases, only one set of CSF weights is chosen and applied according to the viewing condition.   This application
of visual frequency weighting is referred to as fixed visual weighting. In the case of embedded coders, as the coding bit
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stream may be truncated later, the viewing conditions at different stages of embedding may be very different. At low bit
rates, the quality of the compressed image is poor and the detailed features of the image are not available. The image is
usually viewed at a relatively large distance and the observers are more interested in the global features. As more and
more bits are received, the image quality improves, and the details of the image are revealed. The image is usually
examined at a closer distance, or is even magnified for close examination, which is equivalent to decreasing the viewing
distance. Thus, different sets of CSF weights are called for at different stages of the embedding. This adjustable
application of visual frequency weighting is referred to as visual progressive coding. It is clear that fixed visual weighting
can be viewed as a special case of visual progressive coding.

J.8.1 Fixed Visual Weighting

In fixed visual weighting, a set of CSF weights, {wi}, is chosen according to the final viewing condition, where wi is the
weight for the ith sub-band. The set of CSF weights can be incorporated in one of the following two ways.

J.8.1.1 Modify Quantization Step Size

At the encoder, the quantization step size qi of the transform coefficients of the ith sub-band is adjusted to be inversely
proportional to the CSF weight wi. The smaller the CSF weight, the larger the quantization step size. The CSF-
normalized quantization indices are then treated uniformly in the R-D optimization process, which is not modified to take
into account any changes in the quantization step size. The CSF weights do not need to be transmitted to the decoder. The
information is included in the quantization step sizes, which are explicitly transmitted for each sub-band. This approach
needs to explicitly specify the quantizer. Therefore, it may not be very suitable for embedded coding, especially for
embedded coding from lossy all the way to lossless.

J.8.1.2 Modify the embedded coding order 

The quantization step sizes are not modified but the distortion weights fed into the R-D optimization are altered instead.
This effectively controls the relative significance of including different numbers of bit-planes from the embedded bit
stream of each code-block. The frequency-weighting table does not need to be transmitted explicitly. This approach is
recommended since it produces similar results in Annex J.8.1.1 and is compatible with lossless compression. This
approach affects only the compressor and it is compatible with all quantization strategies, including implicit quantization.

J.8.2 Visual progressive coding (VIP)

If the visual frequency weights are to be changed during the embedded coding process, it is very clumsy to change the
coefficient values or quantization step sizes. Furthermore, the performance of the subsequent entropy coder may degrade
due to the changing statistics of the binary representation. An elegant way to implement the visual progressive coding
(VIP) is to change, on the fly, the order in which code-block sub-bit-planes should appear in the overall embedded bit
stream based on the visual weights, instead of changing the coefficient values or quantization step sizes. In other words,
the coding order rather than the coding content is affected by the visual weights. 

A series of visual weighting sets for different bit rate ranges are denoted as follows:

Weighting set 0: r(0), with W(0) = {w0(0), w1(0),. . . , wn(0)}; J.9

Weighting set 1: r(1), with W(1) = {w0(1), w1(1), . . . , wn(1)};

...

Weighting set m: r(m), with W(m) = {w0(m), w1(m), . . . , wn(m)},

where r(j) represents a bit-rate at which the weighting factors are changed, r(0) < r(1) < ... < r(m), and wi(j) is the weight
applied to sub-band i over the bit rate range from r(j) to r(j+1). Each set of visual weights will take effect within a certain
bit rate range. If m=0, i.e., there is only one set of visual weights, it degenerates to the fixed visual weighting case. The
sets of visual weights, W(0) to W(m), will be used to determine the embedding order in their corresponding bit rate
ranges. For high bit rate embedding, especially embedded coding from lossy all the way to lossless, the final visual
weights W(m) need to be all ones (as no weighting for lossless coding). Visual progressive coding can adjust the visual
weights to achieve good visual quality for all bit rates. 
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The VIP weighting affects only the encoder and no signaling is required at the decoder.

The encoder is expected to compute the order in which code-block sub-bit-planes should appear in the layered hierarchy
of the overall bit stream, based upon rate-distortion criteria. A simple implementation of progressive visual weighting
changes the distortion metric progressively based on the visual weights during bit stream formation. Since bit stream
formation is driven by post-compression R-D optimization, the progressively changing visual weights effectively control
the embedding order of code-block sub-bit-planes on the fly. 

J.8.3 Recommended frequency weighting tables

The following table specifies three sets of CSF weights which were designed for the luminance component based on the
CSF value at the mid-frequency of each sub-band. The viewing distance is supposed to be 1000, 2000, and 4000 pixels
(e.g., corresponding to 10 inches for 100 dpi, 200 dpi, and 400 dpi print or display), respectively. Note that the tables are
intended for a 5-level wavelet decomposition. 

The table does not include the weight for the lowest frequency sub-band, nLL, which is always 1. Levels 1, 2, …, 5
denote the sub-band levels in low to high frequency order. (HL, LH, HH) denotes the three frequency orientations within
each sub-band.

For color images, the frequency weighting tables of the Y, Cr, and Cb components should differ in order to take
advantage of the properties of the human visual system. For example, it is usually desirable to emphasize the luminance
component more than the chrominance components.

J.9 Encoder sub-sampling of components

It has become common practice in some compression applications to utilize component sub-sampling in conjunction
with certain decorrelating transforms. A typical example is the use of an RGB to YCrCb decorrelation transform
followed by sub-sampling of the chrominance (Cr, Cb) components. While this is an effective way to reduce the amount
of data to encode for DCT-based compression algorithms (ITU-T Recommendation T.81 | ISO/IEC 10918-1:1994), it is
not recommended for use in this Recommendation | International Standard.

The multi-resolution nature of the wavelet transform described in this Recommendation | International Standard may be
used to achieve the same effect as that obtained from component sub-sampling. For example, if the 1HL, 1LH, and 1HH
sub-bands of a component's wavelet decomposition are discarded and all other sub-bands retained, a 2:1 sub-sampling
has been achieved in the horizontal and vertical dimensions of the component. This technique provides the same benefits
as explicitly sub-sampling the component prior to any wavelet transform.

Furthermore, it frequently proves beneficial in terms of image quality to retain a few of the wavelet coefficients in the
1HL, 1LH, 1HH sub-bands, while still discarding the vast majority. In such cases the number of coefficients is still

Table J-2 — Recommended frequency weighting

level
Viewing distance (pixels) 1000 Viewing distance (pixels) 2000 Viewing distance (pixels) 4000

HL LH HH HL LH HH HL LH HH

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 0,731 668

3 1 1 1 1 1 0,727 203 0,564 344 0,564 344 0,285 968

4 1 1 0,727 172 0,560 841 0.560 841 0,284 193 0,179 609 0,179 609 0,043 903

5 0,560 805 0,560 805 0,284 173 0,178 494 0,178 494 0,043 631 0,014 774 0,014 774 0,000 573
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approximately reduced 2:1, but the resultant decoded imagery will exhibit better quality with fewer compression artifacts.
Using a sub-sampling technique denies encoders from making such choices and can impair decoded image quality.

J.10 Rate control

Rate control is useful for meeting a particular target bit-rate or transmission time. Rate control assures that the desired
number of bytes is used by the codestream while assuring the highest image quality possible.

J.10.1 Introduction to key concepts for rate control

Divide each sub-band into code-blocks of samples which are coded independently. Since every code-block is coded
completely independently using exactly the same algorithm in every sub-band, the association between sub-bands and
code-blocks can be ignored for the moment and let  denote the set of all code-blocks which represent the
image. For each code-block, , a separate bit-stream is generated without utilizing any information from any of the
other code-blocks. Moreover, the bit-stream has the property that it can be truncated to a variety of discrete lengths ,

, ,and the distortion incurred when reconstructing from each of these truncated subsets is estimated and denoted
by   , , ,... The Mean Squared Error distortion metric is used, but this is not necessary. During the encoding
process, the lengths, , and the distortions, , are computed and temporarily stored in a compact form with the
compressed bit-stream itself. 

Once the entire image has been compressed, a post-processing operation passes over all the compressed code-blocks and
determines the extent to which each code-block's embedded bit-stream should be truncated in order to achieve a
particular target bit-rate, distortion bound or other quality metric. More generally, the final bit-stream is composed from a
collection of so-called “layers,” where each layer has an interpretation in terms of overall image quality. The first, lowest
quality layer, is formed from the optimally truncated code-block bit-streams in the manner described above. Each
subsequent layer is formed by optimally truncating the code-block bit-streams to achieve successively higher target bit-
rates, distortion bounds or other quality metrics, as appropriate, and including the additional code words required to
augment the information represented in previous layers to the new truncation points. These layered bit-stream concepts
are discussed further in Annex J.10.2.

J.10.2 Layered Bit-Stream Abstraction

An important aspect is the manner by which it forms a final bit-stream from the independent embedded bit-streams
generated for every code-block. The bit-stream formation problem is very much simplified when the coder operates on
entire sub-bands at a time, since the additional spatial organization imposed by independent code-blocks does not exist. 

Basically, the bit-stream is organized as a succession of layers, where each layer contains the additional contributions
from each code-block (some contributions may be empty), as illustrated in Figure 1. The code-block truncation points
associated with each layer are optimal in the rate-distortion sense, which means that the bit-stream obtained by discarding
a whole number of least important layers will always be rate-distortion optimal. If the bit-stream is truncated part way
through a layer then it will not be strictly optimal, but the departure from optimally can be small if the number of layers is
large. As the number of layers is increased so that the number of code bytes in each layer is decreased, the rate-distortion
slopes associated with all code-block truncation points in the layer will become increasingly similar; however, the
number of code-blocks which do not contribute to the layer will also increase so that the overhead associated with
identifying the code-blocks which do contribute to the layer will increase. In practice, it is found that optimal
compression performance for SNR progressive applications is achieved when the number of layers is approximately
twice as large as the number of sub-bit-plane passes made by the entropy coder (that is, the bit-stream contains twice as
much granularity as that provided by previous verification models). The boundaries of the sub-bit-plane passes are also
the truncation points for each code-block’s embedded bit-stream. Consequently, on average each layer contains
contributions from approximately half the code-blocks so that the cost of identifying whether or not a code-block
contributes to any given layer (about 2 bits per code-block) is much less than the cost of identifying a strict order on the
code-block contributions. Moreover, the relative contribution of this overhead to the overall bit-rate is independent of the
size of the image.
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Figure 1 is an illustration of code-block contributions to bit-stream layers. Only five layers are shown with seven code-
blocks, for simplicity. Notice that not all code-blocks need contribute to every layer and that the number of bytes
contributed by code-blocks to any given layer is generally highly variable. Notice also that the code-block coding
operation proceeds vertically through each code-block independently, whereas the layered bit-stream organization is
horizontal, distributing the 

J.10.3 Rate-Distortion Optimization

The rate-distortion algorithm described here is justified strictly only provided the distortion measure adopted for the
code-blocks is additive. That is, the distortion, , in the final reconstructed image should satisfy

 , J.10

where  is the truncation point for code-block . Subject to suitable normalization, this additive property is satisfied
by Mean Squared Error (MSE) and Weighted MSE (e.g. visually weighted MSE), provided the Wavelet transform is
orthogonal. Additivity also holds if the quantization errors for individual sample values are uncorrelated, regardless of
whether or not the transform is orthogonal. In practice, the transform is usually only approximately orthogonal and the
quantization errors are not completely uncorrelated, so even squared error metrics are only approximately additive, but
this is usually good enough. Let  denote the number of code bytes associated with some layer in the bit-stream (and all
preceding layers). Then, for some set of truncation points,  

 J.11

The need is to find the set of ni values which minimizes D subject to the constraint . The solution to this
constrained optimization problem by the method of Lagrange multipliers is well known. Specifically, the problem is
equivalent to minimizing
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 J.12

where the value of  must be adjusted until the rate yielded by the truncation points which minimize Equation J.12
satisfies . There is no simple algorithm which can yield a globally optimal set of truncation points in general.
However, any set of truncation points, , which minimizes Equation J.12 for some  is guaranteed to be optimal in the
sense the minimum distortion is achieved at the corresponding bit-rate. If the largest value of ,is found such that the set
of truncation points, , obtained by minimizing Equation J.12, yields a rate , then it is not possible to find
any set of truncation points which will yield a smaller overall distortion and a rate which is less than or equal to . In
practice, it is found that it is usually possible to find values of _, such that  is very close to  (almost always within
100 bytes), so that any residual sub-optimally is of little concern.

Returning now to the problem of minimizing the expression in Equation J.12, it is a separate optimization problem for
each individual code-block. Specifically, for each code-block, , the truncation point, ,need to be found which
minimizes . A simple algorithm to do this is as follows:

Set  (i.e. no information included for the code-block)

For k = 1,2,3,...

Set  and 

If  then set 

Since this algorithm might need to be executed for many different values of , it makes sense to first identify the subset,
Ni, of thresholds such that the rate-distortion slope values, , are monotonically decreasing with k,
for all k in . Specifically, a suitable algorithm for determining  is as follows:

1) Set  = {n}, i.e. the set of all truncation points.

2) Set p = 0

3) For k = 1, 2, 3, 4,...

If k belongs to  

Set  and 

Set 

If  and  then remove p from Ni and go to step (2)

Otherwise, set p = k

Once this information has been pre-computed, the optimization task for any given   is simply to set   equal to the largest k
in such that . Clearly,  may be interpreted as a quality parameter, since larger values of , correspond to
less severe truncation of the code-block bit-streams; its inverse may be identified as a rate-distortion slope threshold.

The set  and the slopes are computed immediately after code-block is coded, and enough information to later
determine the truncation points which belong to  and the corresponding  and  values during the rate-distortion
optimization phase is stored. This information is generally very much smaller than the bit-stream itself which is stored for
the code-block.

J.10.4 Efficient Distortion Estimation for R-D Optimal Truncation

The candidate truncation points for the embedded bit-stream representing each code-block correspond to the conclusion
of each coding pass. During compression, the number of bytes, , required to represent all coded symbols up to each
truncation point, n, as well as the distortion, , incurred by truncating the bit-stream at each point, n, must be assessed.
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Actually, distortion estimation is not strictly necessary to generate a legal decompressible bit-stream, but it is important
to the success of the rate-distortion optimization algorithm described in the previous chapter, which is exploited in all our
experimental investigations. 

J.10.4.1 Considerations for Non-Reversible Transforms

The rate-distortion optimization algorithm described in the previous chapter depends only on the amount by which each
coding pass reduces the distortion. Specifically, if  denotes the distortion incurred by skipping the code-block
altogether (i.e. setting all samples to zero), then only compute the differences, , need to be computed for n
= 1, 2, 3,... It turns out that this computation can be performed with the aid of two small lookup tables which do not
depend upon the coding pass, bit-plane or sub-band involved. To see this, let  denote the contribution to distortion
in the reconstructed image which would result from an error of exactly one step size in a single sample from code-block

. Here  is a positive weight, which is computed from the L2 norm of the relevant sub-band’s Wavelet synthesis
waveform and may, additionally be modified to reflect visual weighting or other criteria. Now define

 J.13

Thus,  holds the normalized difference between the magnitude of sample  and the largest quantization
threshold in the previous bit-plane which was not larger than the magnitude. It is easy to verify that .
Although  is actually a quantized integer quantity, we will allow for the fact that the quantizer can supply
fractional bits for  and hence , which can be used in Equation J.13 to produce accurate estimates of the
distortion associated with coding passes in the less significant bit-planes. Now when a single sample first becomes
significant in a given bit-plane, p, we must have  and hence  and the reduction in distortion
may be expressed as

 J.14

provided the representation levels used during inverse quantization are midway between the quantization thresholds,
which is the case in our implementation. Also, the reduction in distortion which may be attributed to magnitude
refinement of a sample in bit-plane p may be expressed as

 J.15

Thus, the reduction in distortion incurred during a single coding pass may be computed by summing the outputs of one of
two different functions,  or  as appropriate, whenever a sample becomes significant or its magnitude is
refined and then scaling the result at the end of the coding pass by a constant value which is easily computed from the bit-
plane index and the value of . The argument to these functions, , has a binary representation of the form

, where , the only bit before the binary point, is simply the value of magnitude bit p, i.e. . In the
implementation, exactly 6 extra bits beyond the binary point are used to index a 7-bit lookup table for  and a 6-bit
lookup table for  (recall that we must have  when a sample first becomes significant). Each
entry of these lookup tables holds a 16-bit fixed point representation of  or , as
appropriate, which means that the total distortion reduction associated with any given coding pass may be computed by
accumulating these integer values into a 32-bit accumulator, without any risk of overflow.

J.10.4.2 Considerations for Reversible Transforms

By and large the process for estimating distortion whilst encoding the coefficients produced by a reversible transform is
no different to that for a non-reversible transform. There are, however, two subtle differences which must be pointed out
here. Equation J.14 and Equation J.15 are based upon the assumption that the dequantizer will represent each coefficient
with the mid-point of the relevant quantization interval. This is the most likely behavior for the quantizer most of the
time, except for the least significant bit-plane in the reversible mode. In this case  and there is no quantization
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error; midpoint reconstruction makes no sense here and the dequantizer represents the transform coefficients using the
lower (in magnitude) threshold of the relevant quantization interval. Accordingly, Equation J.14 and Equation J.15 should
be modified to

 J.16

and

 J.17

respectively.
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p

m n[ , ]( )⋅=

2
2 pωi∆i

2
ṽi
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