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Abstract 

XML is rapidly emerging as a standard for exchanging business data on the World Wide 
Web. For the foreseeable future, however, most business data will continue to be stored 
in relational database systems. Consequently, if XML is to fulfill its potential, some 
mechanism is needed to publish relational data as XML documents. A major challenge 
here is finding a way to efficiently structure and tag data from one or more tables as a 
hierarchical XML document. Different alternatives are possible depending on when this 
processing takes place and how much of it is done inside the relational engine. In this 
paper, we characterize and study the performance of these alternatives. Among other 
things, we explore the use of new scalar and aggregate functions in SQL for constructing 
complex XML documents directly in the relational engine. We also explore different 
execution plans for generating the content of an XML document. Our performance results 
show that constructing XML documents in the relational engine can have a significant 
performance benefit. Our results also show the superiority of having the relational engine 
use what we call an "outer union plan" to generate the content of an XML document. 
 

1 Introduction 

XML is rapidly emerging as a standard for exchanging business data on the World Wide Web. Its 
nested, self-describing structure provides a simple yet flexible means for applications to exchange 
data. In fact, there are already several industry proposals to standardize Document Type 
Descriptors (DTDs) [1], which are essentially schemas for XML documents. These DTDs are 
being developed for domains as diverse as electronic commerce [5][6] and real estate [15]. 
Despite the excitement surrounding XML, it is important to note that most operational business 
data, even for new web-based applications, continues to be stored in relational database systems. 
This is unlikely to change in the foreseeable future because of the reliability, scalability, tools, 
and performance of relational database systems. Consequently, if XML is to fulfill its potential, 
some mechanism is needed to publish relational data in the form of XML documents.  

There are two main requirements for publishing relational data as XML documents. The first 
is the need for a language to specify the conversion from relational data to XML documents. The 
second is the need for an implementation to efficiently carry out the conversion. The language 
specification describes how to structure and tag data from one or more tables as a hierarchical 
XML document. One of this paper’s contributions is a language specification based on SQL 
enhanced with new scalar and aggregate functions for XML construction. These extensions can 
be easily added to existing relational systems without departing from existing SQL semantics. 
Also, as a result of extending SQL in this manner, standard APIs like ODBC can be used to query 
and retrieve XML documents. This allows existing tools and applications to easily integrate 
relational data and XML documents. Other recent proposals, based on a combination of SQL and 
XML query languages [12], do not share these advantages.  
                                                        
+ Currently visiting the IBM Almaden Research Center from the University of Wisconsin-Madison. 
* Currently at Cornell University, Ithaca, New York. 



 2

Given a language specification for converting relational tables to XML documents, an 
implementation to carry out the conversion raises many challenges. Relational tables are flat, 
while XML documents are tagged, hierarchical and graph-structured. What is the best way to go 
from the former to the latter? In order to answer this question, we characterize the space of 
alternatives based on whether tagging and structuring are done early or late in query processing. 
We then refine this space based on how much processing is done inside the relational engine. 
Based on this characterization, we explore various alternatives, classifying existing techniques 
and proposing new ones. Our performance comparison of the alternatives using a commercial 
database system (DB2) shows that a new “unsorted outer union” approach – based on late tagging 
and late structuring – is attractive when the resulting XML document fits in main memory, while 
a “sorted outer union” approach – based on late tagging and early structuring – performs well 
otherwise. Our results also show that constructing an XML document inside a relational engine is 
far more efficient than doing so outside the engine. Thus, constructing an XML document inside 
the relational engine has a two-fold advantage – not only does it allow existing SQL APIs to be 
reused for XML documents, but it is also much more efficient.  

1.1 Relationship to Related Work 

There has been significant recent interest in using relational database systems to store and query 
XML documents [10][13][18]. The focus of this paper, however, is on efficiently publishing 
existing relational data as XML documents and addressing several of the key difficulties 

encountered earlier in constructing complex XML documents [18]. Another goal of this paper is 
to classify existing approaches for publishing relational data as XML documents. Thus, 
approaches used by vendors such as Oracle [14] and Bluestone [1] will be discussed in the paper. 

As mentioned earlier, there have been other language proposals for specifying the 
construction of relational data as XML documents [12]. One distinguishing feature of our 
approach is that it extends SQL naturally, thus allowing the existing APIs and processing 
infrastructure of relational database systems to be reused. This is in contrast to the approach 
proposed in [12], where standard APIs cannot be reused and some join/merge processing has to 
be done outside the relational engine for complex queries. 

The content of this paper bears some relation to work done on object-relational databases 
with set-valued attributes [20] and nested non-first normal form data models [16]. They each deal 
with nested structures, much like we deal with nested XML elements. There are, however, several 
important differences. First, much of that work has been on special-purpose engines to process 
nested structures. In contrast, our goal is to ride on an underlying relational DBMS. Second, 
tagging adds an extra dimension to the XML problem that is not present in the O-R set world. 
Finally, our output is a single static XML document rather than a structure accessible through 
nested cursors. This allows more optimizations to be performed inside the relational engine. 

1.2 Roadmap 

The rest of this paper is organized as follows. In Section 2 we provide a brief overview of XML, 
and in Section 3 we present our SQL-based language approach for publishing relational data as 
XML. In Section 4 we explore a range of implementation alternatives based on whether tagging 
and structuring are done early or late during query processing. In Section 5 we evaluate the 
performance of the alternatives. Finally, Section 6 concludes the paper. 
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2 An XML Primer 

Extensible Markup Language (XML) [3] is a hierarchical format for information exchange in the 
World Wide Web. An XML document consists of nested element structures starting with the root 
element. Each element has a tag associated with it. In addition to nested elements, an element can 
have attributes and values or sub-elements. Figure 1 shows an XML document representing a 
customer in a simple e-commerce application, where each customer has a set of accounts and a 
set of purchase orders, and each purchase order in turn has a set of items and a set of payments. 
The customer is represented by the <customer> element, which appears at the root of the 

document. The customer has an id attribute, which is a special kind of attribute that uniquely 
identifies an element in an XML document. Each customer has a name, represented by the 
<name> sub-element nested under customer. A customer element also has nested sub-elements 
representing the accounts and purchase orders associated with the customer. Each of these has 
other attributes and sub-elements. Note how XML elegantly models nested structures. 

An interesting feature to note in Figure 1 is that the purchase order elements have an 
attribute called “acct” . This is a field that is of type IDREF (such typing information is specified 
in a Document Type Descriptor [2] – not shown here – associated with an XML document), and it 
logically points to an element having the same value as its ID. Thus, the first purchase order 
points to the second account, while the second purchase order points to the first account. Another 
key feature of the XML model is that elements can be ordered. For example, purchase orders 
could be ordered by date to make the most recent purchases appear first in the document. More 
details on XML can be found in [3][7]. 

<customer id=”C1”> 
    <name> John Doe </name> 
 
    <accounts> 
        <account id=”A1”> 1894654 </account> 
        <account id=”A2”> 3849342 </account> 
    </accounts>       
 
    <porders> 
        <porder id=”PO1” acct=”A1”>     // first purchase order          
            <date>1 Jan 2000</date> 
 
            <items> 
                <item id=”I1”> Shoes </item> 
                <item id=”I2”> Bungee Ropes </item> 
            </items> 
 
            <payments> 
                <payment id=”P1”> due January 15 </payment> 
                <payment id=”P2”> due January 20 </payment> 
                <payment id=”P3”> due February 15 </payment> 
            </payments> 
        </porder> 
        <porder id=”PO2” acct=”A2”>     // second purchase order  
             … 
        </porder>                   
    </porders> 
</customer> 

Figure 1: An XML Document Describing a Customer 
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3 A SQL-Based Language Specification 

A key requirement for converting relational data to XML documents is a language to specify the 
conversion. One approach is to invent a new language specifically for this purpose [12], but this 
approach has the disadvantage of failing to fully leverage existing SQL technology and 
infrastructure. Instead, it introduces yet another language to develop, support, and mature. Our 
approach is to harness and extend the power of SQL to specify the conversion of relational data to 
XML documents. Nested SQL statements are used to specify nesting, and SQL functions are used 
to specify XML element construction. 

Consider the relational schema shown in Figure 3, which models the customer information 
of Figure 1 in relational form. As shown, there are customer, account, purchase order, item and 
payment tables. Each table has an id and other attributes associated with it, and there are foreign 
key relationships (shown by means of arrows) relating the tables. To convert data in this 
relational schema to the XML document in Figure 1, we can write a SQL query that follows the 
nested structure of the document, as shown in Figure 2. 

01. Select  cust.name, CUST(cust.id, cust.name, 
02.                                           (Select  XMLAGG(ACCT(acct.id, acct.acctnum)) 
03.                                            From   Account acct 
04.                                            Where acct.custId = cust.id), 
05.                                           (Select   XMLAGG(PORDER(porder.id, porder.acct, porder.date, 
06.                                                                                              (Select   XMLAGG(ITEM(item.id, item.desc)) 
07.                                                                                               From   Item item 
08.                                                                                               Where item.poId = porder.id), 
09.                                                                                              (Select  XMLAGG(PAYMENT(pay.id, pay.desc)) 
10.                                                                                                From   Payment pay 
11.                                                                                                Where pay.poId = porder.id))) 
12.                                            From    PurchOrder porder 
13.                                            Where  porder.custId = cust.id)) 
14. From  Customer cust 

Figure 2: SQL Query to Construct XML Documents from Relational Data 

  Customer (id        in teger ,
                    name  varchar(20))

  A ccount (id          varchar(20),
                 custId     integer,
                 acctnum integer)

  PurchOrder (id           in teger,
                       custid    in teger,
                       acctId   varchar(20),
                       date      varchar(10))

  I tem (id          in teger,
            poId     in teger,
            desc     varchar(10))

  Payment (id          in teger,
                  poId     in teger,
                  desc    varchar(10))

 

Figure 3: Relational Schema Representing Customer Information 
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The query in Figure 2 produces both SQL and XML data – each result tuple contains a 
customer’s name together with the XML representation of the customer. The overall query 
consists of several correlated sub-queries. The easiest way to understand the query is to look at it 
from the top down. The top-level query retrieves each customer from the customer table. For each 
customer, a correlated sub-query is used to retrieve the customer’s accounts (lines 2-4) and 
purchase orders (lines 5-13). Assume for the moment that each correlated sub-query returns an 
XML document fragment. The next step then is to create the customer XML elements. This is 
done by calling the CUST XML constructor (lines 1-13), which takes a customer name, account 
information (in XML form), and purchase order information (in XML form) as input and 
produces a customer XML element as output. The definition of the CUST XML constructor is 
shown in Figure 4. Conceptually, it should be viewed as a scalar function returning XML. For 
each input tuple, CUST tags the columns as specified and produces an XML document fragment. 

The correlated sub-queries can be interpreted similarly, with the ACCT, PORDER, ITEM 
and PAYMENT constructors defined much like CUST. Each nested query finally has to return 
one XML fragment. This is done using the aggregate function XMLAGG, which concatenates the 
XML fragments (e.g., ITEM fragments) produced by XML constructors. To order XML 
fragments, each sub-query can have an “order by” clause. Although ordered aggregate sub-
queries are not currently supported by SQL, recent amendment proposals [8] make this possible. 

This section has presented one possible language specification for converting relational data 
to XML documents. The rest of the paper is more general in scope – it examines different 
implementations to carry out the conversion, independently of the language used to provide the 
specification. 

4 Implementation Alternatives  

In order to understand the various alternatives for publishing relational data as XML documents, 
we characterize the solution space based on the main differences between relational tables and 
XML documents, namely, XML documents have tags and nested structure, while relational 

tables do not. Thus, in converting from relational tables to XML documents, tags and structure 
have to be added somewhere along the way. One approach is to do tagging as the final step of 
query processing (late tagging), while another approach is to do it earlier in the process (early 

tagging). Similarly, structuring can be done as the final step of query processing (late structuring) 
or it can be done earlier (early structuring). These two dimensions of tagging and structuring give 

rise to a space of alternatives shown pictorially in Figure 5. Each alternative in this space has 
variants depending on how much work is done inside the relational engine. Note that “ inside the 
engine” means that tagging and structuring are done completely inside the relational engine, 

whereas “outside the engine” means that part, though not necessarily all, of that work is done 

Figure 4: Definition of an XML Constructor 

Define XML Constructor CUST (custId: integer, custName: varchar(20), acctList: xml, porderList: xml) {  
 <customer id=$custId> 
  <name> $custName </name> 
  <accounts> $acctList </accounts> 
  <porders> $porderList </porders> 
 </customer> 
}  
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outside the relational engine. Also note that early tagging with late structuring is not a viable 
alternative because physically tagging an XML document without having its structure makes no 
sense. We now explore the space of alternatives in more detail by means of concrete examples. 

4.1 Early Tagging, Early Structuring 

In this class of alternatives, tagging and structuring are both done early in query processing. We 
first describe an “outside the engine” approach, where a significant amount of processing is done 
as a stored procedure, and then we describe two approaches where more processing is done inside 
the relational engine. 

4.1.1 The Stored Procedure Approach 

Perhaps the simplest technique for structuring relational data as an XML document is for an 
application or stored procedure to explicitly (iteratively) issue a nested set of queries that matches 
the structure of the desired XML document. Consider the example shown in Figure 1. First a 
query can be issued to retrieve root level elements (customers). Information about a customer 
such as their customer ID and customer name are retrieved, tagged, and output. Then, using the 
customer’s ID, a query is issued to retrieve the customer’s account information, which is then 
tagged and output. Next, while still on the same customer, a query is issued to retrieve the 
customer’s purchase orders. Then, for each purchase order retrieved, a separate query is issued 
for the purchase order’s items and the purchase order’s payment information. Once this is done, 
the processing for one customer is complete. The same procedure is repeated for the next 
customer until the entire XML document has been constructed. Note that nested structures in the 
XML document can be ordered using an “order by” clause in the issued SQL queries. 

The Stored Procedure approach essentially performs a nested-loop join outside the engine by 
issuing queries for each nested structure within the desired XML document. It falls under the 
category of early structuring because the queries that are issued mimic the structure of the result. 
Also, since tagging is done as soon as each nested structure becomes available, this approach falls 
under the category of early tagging.  

Although the Stored Procedure approach is commonly used today, a major problem with it is 
that one or more SQL queries are issued per tuple for tables that have nested structures in the 

resulting XML document. The overhead of issuing so many queries can cause serious 
inefficiencies, as will be confirmed by the performance study in Section 5. Another significant 
problem with this approach is that it dictates a particular join order and the nested-loop join 
method, even when other join orders and/or join methods might be superior. 

Figure 5: Space of Alternatives for Publishing XML Documents 

Late Tagging Early Tagging

Late Structuring

Early Structuring 

Inside Engine 

Outside Engine Outside Engine 

Inside Engine 

Outside Engine 

Inside Engine 
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4.1.2 The Correlated CLOB Approach 

One way to eliminate the overhead of issuing many queries SQL to the relational engine is to 
move processing inside the relational engine so that one large query with sub-queries, rather than 
many top-level queries, is executed. The challenge is then to have the relational engine tag and 
build up the nested structures so that the processing that was previously performed in a stored 
procedure now occurs inside the engine. This can be accomplished by adding engine support for 
the XML constructors and XMLAGG function that we described in Section 3. The query to 
produce the XML result can then be executed as a nested SQL query. The query’s execution 
would basically follow the language specification shown in Figure 2 by executing correlated sub-
queries for nested queries. One question that comes to mind is how the XML fragments created 

by the constructors are to be represented in the relational engine. Since XML document fragments 
can be of arbitrary size, the obvious choice in relational systems is to use a large object 
representation such as Character Large Objects (CLOBs). 

Because of correlation during execution, the Correlated CLOB approach still performs a 
nested-loop join. It is likely to out-perform the Stored Procedure approach, however, because a 
single query is issued to the relational engine. Nonetheless, the fact that intermediate XML 
structures are represented as CLOBs can lead to performance problems. This is because large 
objects are typically stored separately from the tuples they belong to. Thus, in parallel 
environments, fetching these objects (scattered around different nodes) can lead to significant 
performance degradation. CLOBs may also have to be materialized and written to a separate 
storage area on disk during sorts. Finally, each invocation of an XML constructor copies its 
inputs, which may include CLOBs, to a new CLOB. This repeated creation and copying of 
CLOBs can be costly. 

4.1.3 The De-Correlated CLOB Approach 

One disadvantage of the Correlated CLOB approach is that, because of its correlated sub-queries, 
it naturally implies a nested-loop join strategy. This can be avoided by performing query de-
correlation [17] inside the relational engine to give the relational optimizer more flexibility. A de-
correlated query execution plan for the correlated query of Figure 2 is shown in Figure 6. Though 

Figure 6: De-Correlation of Nested SQL Query with Aggregations 

Customer PurchaseOrder Account 

Left Outer Join 
cust.id = porder.custId 

Group By: cust.id 
XMLAGG(PORDER()) 

Group By: cust.id 
XMLAGG(ACCT()) 

Right Outer Join 
acct.custId = cust.id 

Join 
cust.id = cust.id 

CUST() 
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the Item and Payment tables are ignored for clarity, it is easy to see how this approach generalizes 
to arbitrary depths. First, each path from the root-level table to a leaf-level table is computed by 
joining the tables along the path (Customer joined with Account, Customer joined with Purchase 
Order). Outer joins are used because the information about a parent has to be preserved even if it 
has no children. The set of leaf-level XML elements corresponding to each leaf-level table is then 
built up (using aggregation) by grouping on the id columns1 of the parent tables on the path from 

the root-level table to the leaf-level table (e.g., custId). Higher-level structures are built up by 
joining on these id fields and using an XML constructor. This is done till the root level is reached. 

Despite the fact that this approach is more flexible in allowing the engine to explore join 
strategies, it shares the same problems as the Correlated CLOB approach with respect to repeated 
copying, parallelism and materialization of CLOBs. This is because tagging and structuring are 
done early, thus creating opaque intermediate objects. Is it possible to defer tagging and 
structuring to arrive at a more efficient alternative? We explore this class of alternatives next. 

4.2 Late Tagging, Late Structuring 

In the class of alternatives that defer tagging and structuring, both tagging and structuring are 
done as the final step of constructing an XML document. The construction of an XML document 
is therefore logically split into two phases: (a) content creation, where relational data is produced, 
and (b) tagging and structuring, where the relational data is structured and tagged to produce the 
XML document. We first deal with content creation. We consider only “ inside the engine” 
approaches so that database functionality, such as joins, can be exploited. 

4.2.1 Content Creation: The Redundant Relation Approach 

One simple way to produce the needed content is to join all of the source tables. In our example, 
this would be done by joining the Customer, Accounts, Purchase Order, Item and Payment tables, 
as shown in Figure 7. Note that the join predicates relate parents to their children.  

This approach has the advantage of using regular, set-oriented relational processing, but it 
also has a serious pitfall – it has both content and processing redundancy. To see this, consider 
what the result of the query in Figure 7 would look like. Each customer’s account information 

would be repeated PO × IT × PA times, where PO is the number of purchase orders associated 
with the customer, IT is the number of items per purchase order, and PA is the number of 
payments per purchase order. The problem here is that multi-valued data dependencies [11] are 
created when we try to represent a hierarchical structure as a single table. This increases both the 
size of the result and the amount of processing to produce it, both of which are likely to severely 
impact performance. 

                                                        
1 In general, the id columns do not have to be the same as the join columns relating a parent to a child. 
Also, for tables that do not have primary keys, ids can be generated within the relational engine. 

Select cust.* , acct.* , porder.* , pay.* , item.*  
From  Customer cust left join Account acct on cust.id = acct.custId 
                                   left join PurchOrder porder on cust.id = porder.custId 
                                   left join Item item on porder.id = item.poId 
                                   left join Payment pay on porder.id = pay.poId 

Figure 7: Query Producing Content for Redundant Relation 
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4.2.2 Content Creation: The (Unsorted) Outer Union Approach 

The basic problem with the Redundant Relation approach is that the number of tuples in the 
relational result grows as the product of the number of children per parent. If we could limit the 
result’s size to be the sum of the number of children per parent, redundancy could be reduced. To 

do this, we need to separate the representation of a given child of a parent from the representation 
of the other children of the same parent. For example, one tuple of the relational result should 
represent either an account or a purchase order associated with the customer, not both. 

Figure 8 shows a query execution plan that reduces content redundancy for the query of 
Figure 2. First, as in the De-Correlated CLOB approach of Section 4.1.3, each path from the root-
level table to a leaf-level table is computed by means of joins. In our example query, there are 
three such paths – Customer-Account, Customer-PurchaseOrder-Item and Customer-
PurchaseOrder-Payment. Thus, Customers are joined with Accounts (one path), Customers are 
joined with Purchase Orders which are in turn joined with Items (another path) and Customers are 
joined with Purchase Orders which are in turn joined with Payments (final path). This 
computation is shown in Figure 8 (see everything below the outer union). Where possible, 
common sub-expressions are used so that redundant computation is avoided. Thus, in Figure 8, 
the join between Customers and Purchase Orders is shared between two path computations. 

Each path computation produces one tuple per data item in the leaf level of the XML tree. 
Each tuple describing a leaf level data item includes the information about all of its ancestors (see 
the lists of columns above each join box in Figure 8). A separate tuple describing an ancestor 
needs to be present only if the ancestor has no children. The use of outer joins to relate a parent 
with its children ensures this semantics. 

The final step in the process of creating the relational content is to glue together all the 
tuples representing leaf level elements in the XML tree (via the outer union in Figure 8) into a 
single relation. The obvious way to do this is to union the content corresponding to each leaf level 

Figure 8:  The Outer Union Plan 

Outer Union

(CustId, CustInfo, AcctId, AcctInfo, POId, POInfo, ItemId, ItemInfo, PaymentId, PaymentInfo, Type)

CustomerAccount

Right Outer Join

(CustId, CustInfo, AcctId, AcctInfo)

PurchaseOrder

Left Outer Join

Left Outer JoinRight Outer Join

PaymentItem

(CustId, CustInfo, POId, POInfo)

(CustId, CustInfo, POId, POInfo,
ItemId, ItemInfo)

(CustId, CustInfo, POId, POInfo,
PaymentId, PaymentInfo)
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element. There are, however, some complications with this strategy since the tuples 
corresponding to different leaf level elements need not have the same number or types of 
columns. For example, tuples representing accounts need only four columns, while tuples 
representing items have six columns. In order to handle this heterogeneity, a separate column is 
allocated in the result of the union for each distinct column in the union’s input. For each tuple 
representing a particular leaf level element and its ancestors, only a subset of these columns will 
be used and the rest will be set to null (hence the name outer union by analogy to outer join). 

To keep track of the origin of each tuple, e.g. to distinguish an account tuple from an item 
tuple, a type column is added to the result of the outer union as well. We call the approach 
exemplified by Figure 8 the Path Outer Union approach because it computes each path from the 
root-level table to a leaf-level table and outer unions them. 

The Path Outer Union approach eliminates much of the data redundancy (and associated 
computation redundancy) of the Redundant Relation approach. This is because children of the 
same parent are represented in separate tuples.  However, there is still some data redundancy 
present. In particular, parent information is replicated with every child of the parent (e.g., 
customer information is replicated with every account). One way to get around this is to feed the 
parent information directly into the outer union operator and to carry only parent ids along with 
the children. This reduces data redundancy, but it increases the number of tuples in the result 
because each parent is now represented by a separate tuple. We refer to this option as the Node 
Outer Union approach to distinguish it from the earlier Path Outer Union approach. 

One concern with the Path and Node Outer Union approaches is that the number of columns 
in the result increases with the depth and width of the XML document. Only a subset of the 
columns in a given tuple will have data values, with the remaining columns being null. Having 
many (null) columns may lead to increased processing overhead due to larger tuple widths. 

4.2.3 Structuring/Tagging: Hash-Based Tagger 

In the previous two sections, we discussed techniques to produce the relational content necessary 
for creating an XML document. The final step in the Late Structuring-Late Tagging alternatives is 
to tag and structure the results. This can be done either inside or outside the relational engine. If it 
is performed inside the relational engine, it can be implemented as an aggregate function. Such a 
function would be invoked as the last processing step, after the relational content has been 
produced. This ensures that large objects are not carried around during processing, which was one 
of the potential disadvantages of the CLOB approaches. 

In order to tag and structure the results, either inside or outside the engine, we need to do 
two things: (a) group all siblings in the desired XML document under the same parent (and 
eliminate duplicates in the case of the Redundant Relation approach) and (b) extract the 
information from each tuple and tag it to produce the XML result. An efficient way to group 
siblings is to use a main-memory hash table to look up the parent of a node, given the parent’s 
type and id information (including the ids of ancestors of the parent). Thus, whenever a tuple 
containing information about an XML element is seen, it is hashed on the element’s type and the 
ids of its ancestors in order to determine whether its parent is already present in the hash table. If 
the parent is present, a new XML element is created and added as a child of the parent. If the 
parent is not present, then a hash is performed on the type and ids of all ancestors except that of 

the parent. This is to determine if the grandparent exists. If the grandparent is present, the parent 
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is created and then the child is created. If the grandparent is also not present, the procedure is 
repeated until an ancestor is present in the hash table or the root of the document is reached. 

After all the input tuples have been hashed, the entire tagged structured can be written out as 
an XML file. If a specific order is required for the elements of the resulting XML document, then 
that order can either be maintained as children are added to a parent or it can be enforced by a 
final sort before writing out the XML document. 

The main limitation of using a hash-based tagger is that performance can degrade rapidly 
when there is insufficient memory to hold the hash table and the intermediate result. However, it 
may be possible to partition the data into memory-sized chunks, much like in a hash join [19]. 
Exactly how to do this partitioning (and merging) is left for future work. 

4.3 Late Tagging, Early Structuring 

The main problem with the Late Tagging-Late Structuring approaches we just considered is that 
complex memory management needs to be performed in the hash-based tagger when memory is 
scarce. To eliminate this problem, the relational engine can be used to produce “structured 
content” , which can then be tagged using a constant space tagger. We first explore a technique to 

produce structured content before describing the constant space tagger. 

4.3.1 Structured Content Creation: The Sorted Outer Union Approach 
The key to structuring relational content is to order it the same way that it needs to appear in the 
result XML document. This can be achieved by ensuring that: 

1) All of the information about a node X in the XML tree occurs either before or along with 
the information about the children of X in the XML tree. This essentially says that parent 

information occurs before, or with, child information. 
2) All tuples representing information about a node X and its descendants in an XML tree 

occur together. This ensures that information about a particular node and its descendants 

is not mixed in with information about non-descendant nodes.  
3) The relative order of the tuples matches that of any user-specified order. This is to ensure 

that application-provided ordering requests are not ignored. 
We now show that performing a single final relational sort of the unstructured relational content 
is sufficient to ensure these properties. Our discussion here will be based on the Node (Unsorted) 
Outer Union approach for constructing unstructured relational content. The solution for the Path 
Outer Union Approach is actually simpler because it always satisfies condition 1. It is also easy to 
see how the technique generalizes to the Redundant Relation approach. In the interest of space, 
we only illustrate how the approach works when there is no user-specified ordering requirement 
(i.e., considering only conditions 1 and 2) 

To ensure conditions 1 and 2, all that is required is to sort the result of the Node Outer Union 
on its id fields, with the ids of parent nodes occurring higher in the sort order than the ids of 
children nodes. Thus, in Figure 8, sorting the result on the composite key (CustId, AcctId, POId, 
ItemId, PaymentId) will ensure that result is in document order. It is also important that tuples 
having null values in the sort fields occur before tuples having non-null values (i.e., nulls must 
sort low). Condition 1 is then satisfied because a tuple corresponding to a parent node (say, 
customer) will have null values for the child id columns (say, account id). Since we ensure that 
tuples with null values in sort columns occur first, parent tuples (customers) will always occur 
before child tuples (accounts). Also, because the parent’s id (customer id) occurs before a child’s 
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id (account id) in the sort order, the children of a parent node are grouped together after the 
parent, thus satisfying condition 2. 

The Sorted Outer Union approach has the advantage of scaling to large data volumes 
because relational database sorting is disk-friendly. The approach can also ensure user-specified 
orderings with little additional cost. However, it does generate more work than necessary, since a 
total order is produced when only a partial order is needed. This is because we only require 
children to occur together with parents and the ordering among siblings is immaterial (unless 
there is a user-specified ordering requirement). 

4.3.2 Tagging Sorted Data: The Constant Space Tagger  

Once structured content is created, as described in the previous two sections, the next step is to 
tag and construct the result XML document. Since tuples arrive in document order, they can be 
immediately tagged and written out as they are seen. The tagger only requires memory to 
remember the parent ids of the last tuple seen. These ids are used to detect when all the children 
of a particular parent node have been seen so that the closing tag associated with the parent can be 
written out. For example, after all the items and payments of a purchase order have been seen, the 
closing tag for purchase order (</porder>) has to be written out. To detect this, the tagger stores 
the id of the current purchase order and compares it with that of the next tuple. It should be clear 
that the storage required by the constant space tagger is proportional only to the level of nesting 
and is independent of the size of the XML document. 

5 Performance Comparison of Alternatives for Publishing XML 
We have now outlined a number of alternatives for creating XML documents from a relational 
database, which are summarized in Figure 9. Our qualitative assessments indicate that every 
alternative has some potential disadvantage. In this section, we will conduct a performance 
evaluation of the alternatives to determine which ones are likely to win in practice (and in what 
situations). Our focus in this preliminary performance evaluation is to study the effects of nesting 

Figure 9: Summary of Approaches for Publishing XML 

Classification Approach Short Name Description 
Outside 
Engine 

Stored Procedure Stored Proc Issues separate queries according to 
document structure, essentially doing 
nested loops joins outside the engine. 

Inside Engine Correlated CLOB CLOB-Corr The “ inside the engine”  equivalent of the 
Stored Procedure approach. Uses CLOBs to 
build up intermediate XML fragments. 

 
 
Early 
  Tag 
Early 
  Structure 

Inside Engine De-Correlated CLOB CLOB-DeCorr De-correlated version of CLOB-Corr. Also 
requires CLOBs for intermediate fragments. 

Inside or 
Outside Engine 

Redundant Relation Redundant R 
(In/Out) 

Creates a relation with data redundancy 
because each child of a parent is repeated 
many times. 

Inside or 
Outside Engine 

Unsorted Path Outer 
Union 

Unsorted OU 
(In/Out) 

Creates “outer union”  of leaf elements and 
avoids data redundancy. Inside and outside 
engine versions of structuring/tagging. 

 
 
Late 
  Tag 
Late 
  Structure 

Inside or 
Outside Engine 

Unsorted Node Outer 
Union 

Unsorted NOU 
(In/Out) 

Similar to Unsorted OU, but also includes 
tuples for non-leaf elements in outer union. 

Inside or 
Outside Engine 

Sorted Path Outer 
Union 

Sorted OU 
(In/Out) 

Structures the results of Unsorted OU by 
sorting it in document order. 

Late 
  Tag 
Early 
  Structure 

Inside or 
Outside Engine 

Sorted Node Outer 
Union 

Sorted NOU 
(In/Out) 

Structures the results of Unsorted NOU by 
sorting it in document order. 
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flat relational tables as nested XML documents. Towards this end, we will first identify a set of 
parameters that are simple and yet can model a wide range of relational to XML conversions. In 
the experiments reported below, we do not consider queries with user-defined sort orders. 

5.1 Modeling Relational to XML Transformations 

In order to study the effects of nesting relational data as XML documents, we will vary the 
nesting of the queries specifying the construction of XML documents (see Figure 2 for an 
example query). In our experiments, the nesting of queries is characterized by two parameters. 
The first parameter is the query fan out. This corresponds to the maximum number of sub-queries 

directly nested under a parent (sub) query. For example, the query in Figure 2 has a query fan out 
of two because the (sub) queries in lines 1-15 and lines 5-13 each have two directly nested sub-
queries (lines 2-4, 5-13 and lines 6-8, 9-12, respectively) while the other sub-queries (lines 2-4, 6-
8, 9-12) have no directly nested sub-queries. The second parameter used to characterize nesting is 
query depth. This corresponds to the maximum nesting level of sub-queries. In our example in 

Figure 2, the query depth is three because there are three levels of query nesting – the first being 
the top level query (lines 1-15), the second being queries in lines 2-4 and 5-13 and the third being 
queries in lines 6-8 and 9-12.  

In our experiments, we only consider “balanced” queries, where 1) each non-leaf (sub) 
query has the same number of directly nested sub-queries and 2) all leaf (sub) queries are at the 
same depth. This results in a simple set of parameters, each of which can be studied in isolation. 
Note that the query in Figure 2 is not balanced because it satisfies condition 1 but not condition 2. 
It is important to note that the query fan out and query depth do not directly specify the fan out or 
the depth of the result XML document. Even at low values of query fan out and query depth, the 
result XML document can be wide/deep depending on the XML constructors used (see Figure 4). 
The query fan out and query depth only specify the structure of the repeating “set”  sub-elements, 
such as the accounts associated with a customer or the items associated with a purchase order.  

Our goal here is to study the effects of nesting relational data as XML documents, and not 
the complexity of the SQL used to create data for an XML element. Hence, for this performance 
study, the relational schema we use will reflect the nesting of the SQL query specifying the 
construction (e.g., like Figure 2 and Figure 3) and each relation in the schema will be a base table. 
It is, however, important to note that each relation could, in general, be an arbitrarily complex 
view. Figure 10 shows our actual experimental schema for a query fan out of two and a query 
depth of three. Figure 11 shows the detailed schema of each table in the first two levels of Figure 
10 and how a parent is linked to its children. Each table has an ID field, which is its primary key. 
It also has a PJID (parent join id) field that serves as a foreign key for its parent. To match parents 
with their children, a join is specified between the ID and PJID field of the parent and child 
tables, respectively. In addition to these two fields, each table has two data fields of different 
types. The first is an integer field (IntVal) while the second is a string field (CharVal).  

We now identify three additional parameters that, given a schema, suffice to describe a 
specific database instance. The first parameter is number of roots, which specifies the number of 
tuples present in the table at the root level. The second parameter is the number of leaf tuples, 

which specifies the total number of tuples present in all the leaf-level tables combined; this is an 
indicator of the overall data set size. (The number of tuples in each leaf-level table is thus the
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TABLE000 TABLE001 TABLE011TABLE010

TABLE00 TABLE01

TABLE0

 

Figure 10: Query Fan Out = 2, Depth = 3 

TABLE01
[ID, PJID, IntVal, CharVal]

TABLE01
[ID, PJID, IntVal, CharVal]

TABLE0
[ID, PJID, IntVal, CharVal]

 

Figure 11: Structure of Relational Schema 

 

TABLE 0 
ID   PJID  intVal charVal
--------------------------------
(0,    0,       356,      ‘books’)
(1,    0,       953,      ‘genes’)
(2,    0,       584,      ‘carts’ )

TABLE 00 
ID   PJID  intVal charVal
--------------------------------
(0,    0,       123,      ‘humor’ )
(1,    0,       453,      ‘gloom’)
(2,    1,       964,      ‘ f lies’ )
(3,    1,       653,      ‘darwin’)
(4,    2,       894,      ‘wheel’ )
(5,    2,       986,      ‘moves’)

TABLE 01 
ID   PJID  intVal charVal
--------------------------------
(0,    0,       734,      ‘happy’)
(1,    0,       934,      ‘ trash’)
(2,    1,       137,      ‘chain’)
(3,    1,       850,      ‘split’ )
(4,    2,       037,      ‘axles’ )
(5,    2,       284,      ‘steel’ )

Figure 12: Sample Database Instance 
 

<result>
    <T0V>books</T0V>
        <T1L>
              <T1V>humor</T1V><T1V>gloom</T1V>
        </T1L> <T1L>
              <T1V>happy</T1V><T1V>trash</T1V>
        </T1L>
   <T0V>genes</T0V>
        <T1L>
              <T1V>flies</T1V><T1V>darwin</T1V>
        </T1L><T1L>
              <T1V>chain</T1V><T1V>split</T1V>
        </T1L>
</result>

Figure 13: Result XML Document 
 

number of leaf tuples divided by the number of leaf-level tables.) These two parameters together  
also determine another important derivative parameter, the instance fan out, which specifies the 

number of children of each type that a parent has. The final independent parameter that 
characterizes the database instance is character value size. This specifies the size of the character 

string, CharVal, in the database instance. Figure 12 shows a sample database instance for a 
database schema associated with a query having a query fan out of 2 and a query depth of 2. The 
database instance parameters are: number of roots = 3, number of leaf tuples = 12, character value 
size = 5. Note that the derivative parameter, instance fan out, has a value of 2.  

We have chosen to use the number of leaf tuples as the primary parameter and the instance 
fan out as a derivative parameter because the number of leaf tuples (where the bulk of the data 
resides) is directly related to the size of the XML document produced. Thus, holding the number 
of leaf tuples constant allows us to study how the different approaches behave when (essentially) 
the same amount of data is structured differently. 

We now characterize the XML document created for a given relational database instance. 
This is determined by a parameter called the root selectivity, which specifies the percentage of 
tuples in the root level table (along with all its descendants) that are to be included in the result. 

Note that we do not explicitly consider selections on descendants since the same performance 
effect can be explored by (indirectly) varying the instance fan out. Figure 13 shows the XML 
document produced for the database instance in Figure 12 when the root selectivity is 66.67%. 
Note that the result is always a single XML document. This was done to make the experimental 
results easy to interpret. 
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5.2 Experimental Setup 

To conduct our performance comparison, we implemented the various alternatives2 discussed in 
Section 4 in the code base of the DB2 Universal Database system [4]. The XML constructors and 
XMLAGG were implemented as new built-in aggregate functions. The Stored Procedure 
approach was implemented as an “unfenced stored” procedure, which ran in the same address 
space as the relational database engine to maximize performance. The other “outside the engine” 
approaches were implemented as local embedded-SQL programs, running on the same machine 
as the database server, to avoid unpredictable network delays. (All outside-the-engine approaches 
were implemented as stored procedures as well, but since this did not significantly change their 
performance, these results are not included here.) A driver program was used to time the results 
for the various approaches. This driver was implemented as a local embedded SQL program and 
the final XML result was always written out as an NT file. The results were obtained on a warm 
DB2 cache. All experiments were performed on a Pentium 366 MHz processor with 256 MB of 
main memory running Windows NT 4.0. 

For the experiments, we varied all the parameters discussed in Section 5.1, as shown in 
Figure 14. For each experiment, we varied one of these parameters and used default values for the 
rest. This wide range of experiments enabled us to determine the effect of each parameter on 
performance. Indexes were created on the ID and PJID fields for all the tables in the relational 
schema (see Figure 11). Detailed optimizer statistics were collected for each table and index 
before any queries were run. For most experiments, the sort heap and buffer pool sizes were set 
so that all processing would be done in main memory; the one exception is the experiments in 
Section 5.7, where the effect of reduced memory is considered. Since the Node and Path Outer 
Union approaches behave similarly in a wide range of situations, we only show the performance 
for the Path Outer Union for most of the studies. The relative performance of the Node and Path 
Outer Union approaches is discussed separately in Section 5.8. 

5.3 Testing the Waters: Inside the Engine vs. Outside the Engine Approaches 

To get an initial feel for the results, we first explore the effects of varying query fan out while 
holding the other parameters constant. The resulting times taken to construct the XML document 
are shown in Figure 15. The first feature to note is that the Redundant Relation approach, as 
expected, performs very badly with increasing fan out because of the large data redundancy. In 

                                                        
2 We used a general technique to limit the number of sort columns in the Sorted Outer Union approach to at 
most two times the nesting depth. The details of this technique are complex, and in the interest of space, we 
do not discuss this optimization further. 

Figure 14: Parameter Settings for Experiments 

 Range of Values Default Value 
Query Fan Out 2, 3, 4 2 
Query Depth 2, 3, 4 2 
Number of Roots 1, 50, 500, 5000, 40000 5000 
Number of Leaf Tuples 160000, 320000, 480000 320000 
Instance Fan Out (derived parameter) 32 
Character Value Size 20 20 
Root Selectivity 1, 10, 50, 100 100 
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fact, the timing shown here for the Redundant Relation approach is actually the time for just 
executing the relational query, ignoring the time for tagging and writing the XML result to disk. 

The execution time at a fan out of 4 was about 155 seconds and is not included in this graph. The 
performance of this approach was always among the worst of all possible approaches throughout 
our experiments, so will not examine it further in our evaluation results. 

The second interesting thing to note in Figure 15 is that the Stored Procedure approach 
incurs a significant overhead because it issues many queries to the relational engine; the 
Correlated CLOB approach, its “ inside the engine” counterpart, takes less than one third of the 
time. This actually points to a more general trend. For the Unsorted and Sorted Outer Union 
approaches as well, the “ inside the engine” versions take less than half the time to execute than 
the corresponding “outside the engine” versions. In order to explain these results, we broke down 
the time for creating XML document results.  

For the “outside the engine” approaches, there are four components to generating the XML 
result: 1) the time to produce the relational content, either structured or unstructured, 2) the time 
to bind out the relational content to host variables outside the engine, 3) the time to tag and 
possibly structure the relational result, and 4) the time to write the XML result out to a file. For 
the “ inside the engine” approaches, there are the same components except that there is no time 
spent in binding out the results. We measured each of these components by subtracting the time it 
took to execute the query with the component from the time it took to execute the query without 
the component. (Though this ignores possible overlap of computation between components, it is 
accurate enough for our purposes.) Figure 16 shows this break down of time. The tagging time for 
the CLOB approaches is not separated out because it forms an integral part of the computation. 

Figure 16 shows that the time to bind out tuples to host variables dominates the cost of the 
“outside the engine” approaches. These results were found to be true regardless of bind out was 
done in a local client or in an unfenced stored procedure. Moreover, increasing the size of the 
communication buffer between the client application and the database server so that larger 
portions of the result could be copied over to the client address space in one chunk did not 
significantly reduce the bind-out cost. On the other hand, the “ inside the engine” approaches 
eliminate the host variable bind-out cost for every tuple; their only bind-out is done for the final 
(single) result document. Consequently, the “ inside the engine” approaches give rise to much 
better performance. This points to our first firm conclusion – constructing an XML document 

should be done inside the engine to maximize performance.  

Figure 15: Varying Query Fan Out 
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Since “ inside the engine” approaches consistently outperform the “outside the engine” 
approaches, the rest of our experimental results will consider these approaches separately. Note 
that, despite their poor relative performance, “outside the engine” approaches are valuable 
because they can be used with relational database systems that do not have support for the new 
XML scalar and aggregate functions mentioned in this paper. 

5.4 Effect of Query Fan Out 

We now re-examine the effect of varying the query fan out separately for the “ inside the engine” 
and “outside the engine” approaches. For the “ inside the engine” techniques, increasing the query 
fan out increases the time for producing the XML result, as shown in Figure 17. This is not 
surprising since increasing the query fan out increases the number of joins that need to be 
performed. What is more interesting is performance of the different approaches. The Correlated 
CLOB approach, which utilizes many correlated sub-queries, performs worse than the other set-
oriented plans. This is because the relational optimizer has no choice but to use the nested loop 
join strategy. Among the Outer Union based plans, the Unsorted Outer Union approach is more 
efficient than the Sorted Outer Union approach. This implies that the cost of sorting (and using a 
simple constant space tagger) is more expensive than avoiding the sort and using a more complex 
hash-based tagger, provided that there is sufficient main memory to perform all the computation. 

A rather surprising result is that the De-Correlated CLOB approach, despite the fact that it 
has to repeatedly copy information and carry CLOBs during computation, performs fairly well 
and in fact, is the best strategy for low query fan outs. This is because the DB2 optimizer picked a 
plan whereby CLOBs could be retained in main memory without having to be materialized. Also, 
since the query depth is low, the overhead of repeated copying was not significant. 

Figure 16: Break Down of XML Document Construction Time 

Figure 17: Varying Query Fan Out (Inside the Engine) 
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Figure 19 shows the effects of query fan out on the “outside the engine” approaches. Again, 
as expected, the execution time increases with query fan out. The interesting result lies in the 
relative performance of the approaches. The Stored Procedure approach performs much worse 
than the Outer Union approaches because of the overhead of issuing many separate queries and 
using a fixed join strategy. Surprisingly, unlike for the “ inside the engine” case, the execution 
times for the Sorted and Unsorted Outer Union approaches are approximately the same here. This 
is because the constant space tagger is a streaming operator; i.e., it produces parts of the XML 

document as soon as it sees each tuple. It thus overlaps tagging with writing the XML document 
to disk. In contrast, the hash-based tagger has to process all input tuples before writing anything 
to disk. 

5.5 Effect of Query Depth 

We now turn our attention to the next parameter – query depth. Figure 18 shows the effect of 
varying the query depth parameter for the “ inside the engine” approaches. While the execution 
time for all the approaches increases with query depth, it is interesting to note the dramatic 
increase for the De-Correlated CLOB approach. This is because, not surprisingly, the relational 
query optimizer makes mistakes when dealing with very complex queries at higher values of 
query depth. For instance, the query for a producing an XML document of query depth 4 has 15 
aggregations (XMLAGGs) and 12 joins! In these cases, the optimizer makes some wrong 
decisions such as choosing to sort after an aggregation. This requires CLOBs to be written to a 
temporary space and materialized again later. This problem is compounded because the optimizer 
has no good way to estimate the size of CLOBs and the cost of materializing them. 

The performance results for “outside the engine” approaches at increasing depth are not very 
surprising, and essentially have the same form as Figure 19. We thus omit them here. 

5.6 Effect of Number of Roots 

The next parameter of interest is the number of roots. When the number of root elements is 
decreased for the “ inside the engine” approaches, the performance of the Correlated CLOB 
approach improves dramatically, relative to the other approaches (see Figure 20). This happens 

Figure 18: Varying Query Depth (Inside the Engine) 

Figure 19: Varying Query Fan Out (Outside the Engine) 
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because only two correlated sub-queries have to be issued for constructing the XML document 
with one root element. A similar effect occurs (for similar reasons) with the Stored Procedure 
approach, the “outside the engine” counterpart of the Correlated CLOB approach. Since the 
relative performance of the “outside the engine” outer union approaches did not change, the 
results are not shown here. 

5.7 Effects of Database Size, Root Selectivity, and Memory Size 

For the next set of experiments, we varied the size of the data set by varying the number of leaf 
tuples. When there was sufficient memory, the relative performance of the various approaches did 
not change (see Figure 21). Varying the selectivity produced similar results. However, when the 
amount of memory available for processing was reduced so that the XML document construction 
could not be performed entirely in main memory, the Unsorted Outer Union approaches were 
unable to proceed because our hash-based tagger cannot (currently) handle overflows. The Sorted 
Outer Union approaches were able to proceed by gracefully spilling over to disk. This was 
possible because relational sorting scales to large data sizes. 

5.8 Path Outer Unions vs. Node Outer Unions 

So far, we have not considered Node Outer Union approaches in the performance evaluation. The 
reason for this is because the performance of the Node and Path Outer Union approaches are 
nearly identical when there is sufficient memory. In fact, despite its data redundancy, the Path 
Outer Union approach performs slightly better (by less than a second) because there are fewer 
tuples to process (and thus fewer to bind out in case of the “outside the engine” approaches). The 
main difference between the two outer union approaches occurs when memory is scarce. In this 
case, for very bushy trees (having high instance fan out) the Node Outer Union approaches 
perform better – a difference of up to three seconds – while for non-bushy trees (having low 
instance fan out), the Path Outer Union approaches perform better. This is because there is greater 
data redundancy in the Path Outer Union approach for bushy trees, and the overhead of spilling 
the extra data to disk exceeds the advantage of processing fewer tuples. 

Figure 20: Varying Number of Roots (Inside the Engine) 

Figure 21: Varying Number of Leaf Tuples 
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5.9 Summary of Experimental Results 

To summarize, our performance comparison of the alternatives for publishing XML documents 
points to the following conclusions: 
1) Constructing an XML document inside the relational engine is far more efficient that doing 

so outside the engine, mainly because of the high cost of binding out tuples to host variables. 
2) When processing can be done in main memory, a stable approach that is always among the 

very best (both inside and outside the engine), is the Unsorted Outer Union approach. 
3) When processing cannot be done in main memory, the Sorted Outer Union approach is the 

approach of choice (both inside and outside the engine). This is because the relational sort 
operator is disk-friendly and thus scales well.  

6 Conclusion and Future Work 

XML is rapidly emerging as the dominant standard for exchanging data on the World Wide Web, 
making the ability to publish data as XML increasingly important. In this paper, we have studied 
ways to publish relational data in the form of structured XML documents. We first proposed a 
SQL language extension (the XML constructor) to specify the construction of XML documents 
from relational data. By extending SQL in this manner, it is possible for applications to reuse the 
SQL infrastructure and API to process the XML documents extracted from relational sources. 

The bulk of this paper was devoted to exploring efficient mechanisms for publishing 
relational data as XML documents, independent of the actual language used to specify this 
mapping. Towards this end, we first characterized the solution space based on the main 
differences between XML documents and relational tables, namely tags and nested structure. We 
then explored various alternatives in this space, paying special attention to the amount of 
processing that can be done inside the relational engine. Our experimental evaluation showed that 
moving all the processing inside the relational engine has significant performance benefits 
because of the high cost of binding out tuples to host variables. Our study also showed that the 
outer union approaches proposed in this paper provide an efficient and robust way to retrieve the 
relational data needed to construct an XML document. 

Possibilities for future work include studying the impact of parallelism, of new runtime 
operators (inside the relational engine) to enhance the performance of outer union plans, and of 
techniques for efficient memory management to extend the useful range of the Unsorted Outer 
Union approach. In addition, we believe that the approaches outlined in this paper can be 
extended to handle the construction of recursive XML documents, such as part hierarchies and 
bill of material documents. Specifically, this requires modifications to the tagger algorithms so 
that nested structures of arbitrary depth can be handled and also to the outer union approaches so 
that information about the unbounded hierarchy can be captured in a finite number of columns. 
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