
Specification 2.0

April 28, 2000

© 2000 Intuit Inc., Microsoft Corp. All rights reserved

and

ncial
on.

N,
Open Financial Exchange Specification Legend

Open Financial Exchange Specification ©1996-2000 by its publishers: CheckFree Corp., Intuit Inc.,
Microsoft Corporation. All rights reserved.

A royalty-free, worldwide, and perpetual license is hereby granted to any party to use the Open Fina
Exchange Specification to make, use, and sell products and services that conform to this Specificati

THIS OPEN FINANCIAL EXCHANGE SPECIFICATION IS MADE AVAILABLE “AS IS” WITHOUT
WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
MICROSOFT, INTUIT AND CHECKFREE (“PUBLISHERS”) FURTHER DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT, ALL
OF WHICH ARE HEREBY DISCLAIMED. THE ENTIRE RISK ARISING OUT OF THE USE OF
THIS SPECIFICATION REMAINS WITH RECIPIENT. TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, IN NO EVENT SHALL THE PUBLISHERS OF THIS SPECIFICATION BE
LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE,
OR OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATIO
OR OTHER PECUNIARY LOSS) ARISING OUT OF ANY USE TO WHICH THIS SPECIFICATION
IS PUT, EVEN IF THE PUBLISHERS HEREOF HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
ii

OF
TABLE OF CONTENTS

Chapter 1 Overview . 15

NKN=fåíêçÇìÅíáçåK=NR

NKNKN=aÉëáÖå=mêáåÅáéäÉë =K=NS

NKO=léÉå=cáå~åÅá~ä=bñÅÜ~åÖÉ=~í=~=dä~åÅÉ K=NU

NKOKN=a~í~=qê~åëéçêíK=NU

NKOKO=oÉèìÉëí=~åÇ=oÉëéçåëÉ=jçÇÉä K=OM

NKP=aÉÑáåáíáçåë K=ON

NKPKN=rëÉê K=ON

NKPKO=cáå~åÅá~ä=fåëíáíìíáçå=K=ON

NKPKP=pÉêîáÅÉ=mêçîáÇÉê =K=ON

NKPKQ=`äáÉåíK=OO

NKPKR=pÉêîÉê =K=OO

NKPKS=pÉêîáÅÉK=OO

NKPKT=q~ÖK=OO

NKPKU=bäÉãÉåíK=OP

NKPKV=^ÖÖêÉÖ~íÉ K=OP

NKPKNM=oÉèìÉëí K=OQ

NKPKNN=oÉëéçåëÉK=OQ

NKPKNO=jÉëë~ÖÉ =K=OQ

NKPKNP=qê~åë~ÅíáçåK=OQ

NKPKNQ=póåÅÜêçåáò~íáçåK=OQ

NKPKNR=jÉëë~ÖÉ=pÉí =K=OR

NKQ=lcu=sÉêëáçåëK=OR

NKR=`çåîÉåíáçåëK=OS

Chapter 2 Structure . 29

OKN=eqqm=eÉ~ÇÉêëK=PM

OKO=léÉå=cáå~åÅá~ä=bñÅÜ~åÖÉ=cáäÉ=cçêã~íK=PM

OKOKN=lcueb^abo =K=PO

OKOKO=sbopflk=K=PO

OKOKP=pb`rofqv=K=PO

OKOKQ=liacfibrfa=~åÇ=kbtcfibrfa =K=PO

OKP=uji=aÉí~áäëK=PQ

OKPKN=`çãéäá~åÅÉ =K=PQ

OKQ=léÉå=cáå~åÅá~ä=bñÅÜ~åÖÉ=uji=píêìÅíìêÉK=PQ
X 2.0 Specification iii6/30/00

iv
OKQKN=lîÉêîáÉï =K= =PQ

OKQKO=`~ëÉ=pÉåëáíáîáíó=K= =PQ

OKQKP=qçé=iÉîÉä =K= =PR

OKQKQ=jÉëë~ÖÉëK= =PR

OKQKR=jÉëë~ÖÉ=pÉíë=~åÇ=sÉêëáçå=`çåíêçä K= =PT

OKQKS=qê~åë~Åíáçåë K= =PV

OKQKT=póåÅÜêçåáò~íáçå=tê~ééÉê=K= =QO

OKQKU=jÉëë~ÖÉ=pÉí=tê~ééÉê K= =QO

OKR=qÜÉ=páÖåçå=jÉëë~ÖÉ=pÉíK= =QO

OKRKN=páÖåçå=Yplkon[=~åÇ=Yplkop[=K= =QO

OKRKO=rpbom^pp=`Ü~åÖÉ=Ymfk`eon[=Ymfk`eop[=K= =QU

OKRKP=Y`e^iibkdbon[=Y`e^iibkdbop[=K= =RM

OKRKQ=páÖåçå=jÉëë~ÖÉ=pÉí=mêçÑáäÉ=fåÑçêã~íáçå=K= =RN

OKRKR=bñ~ãéäÉëK= =RO

OKS=bñíÉêå~ä=a~í~=pìééçêí=K= =RO

OKT=bñíÉåëáçåë=íç=léÉå=cáå~åÅá~ä=bñÅÜ~åÖÉ=K= =RP

OKU=_~Åâï~êÇ=`çãé~íáÄáäáíó=ïáíÜ=mêÉJlcu=OKM=póëíÉãë K= =RP

OKUKN=båÇ=q~Ö=rë~ÖÉK= =RP

OKUKO=uji=`çãéäá~åí=eÉ~ÇÉêK= =RQ

OKUKP=fåíÉêå~íáçå~ä=pìééçêí K= =RQ

OKUKQ=jÉëë~ÖÉ=pÉí=sÉêëáçåáåÖ=K= =RR

Chapter 3 Common Aggregates, Elements, and Data Types 57

PKN=`çããçå=^ÖÖêÉÖ~íÉë=K= =RT

PKNKN=fÇÉåíáÑáÅ~íáçå=çÑ=cáå~åÅá~ä=fåëíáíìíáçåë=~åÇ=^ÅÅçìåíë=K= =RT

PKNKO=mìåÅíì~íáçå=áå=`Éêí~áå=rëÉêJpìééäáÉÇ=s~äìÉë=K= =RT

PKNKP=bÅÜçáåÖ=áå=oÉëéçåëÉë K= =RV

PKNKQ=_~ä~åÅÉ=oÉÅçêÇë=Y_^i[K= =RV

PKNKR=bêêçê=oÉéçêíáåÖ=Ypq^qrp[=K= =SM

PKO=`çããçå=bäÉãÉåíë K= =SN

PKOKN=`äáÉåíJ^ëëáÖåÉÇ=qê~åë~Åíáçå=rfa=Yqokrfa[K= =SN

PKOKO=pÉêîÉêJ^ëëáÖåÉÇ=fa=Yposoqfa[=K= =SO

PKOKP=cáå~åÅá~ä=fåëíáíìíáçå=qê~åë~Åíáçå=fa=Ycfqfa[=K= =SP

PKOKQ=qçâÉå=Yqlhbk[K= =SQ

PKOKR=qê~åë~Åíáçå=^ãçìåí=Yqok^jq[K= =SQ

PKOKS=jÉãç=Yjbjl[K= =SQ

PKOKT=a~íÉ=pí~êí=~åÇ=a~íÉ=båÇ=Yaqpq^oq[=Yaqbka[=K= =SR

PKOKU=`çããçå=a~í~=qóéÉë =K= =SS

PKOKV=^ãçìåíëI=mêáÅÉëI=~åÇ=nì~åíáíáÉë =K= =SV
OFX 2.0 Specification6/30/00

OF
PKOKNM=i~åÖì~ÖÉ =K=TM

PKOKNN=líÜÉê=_~ëáÅ=a~í~=qóéÉë =K=TM

Chapter 4 OFX Security . 71

QKN=pÉÅìêáíó=`çåÅÉéíë=áå=lcu=K=TN

QKNKN=^êÅÜáíÉÅíìêÉ K=TN

QKNKO=pÉÅìêáíó=dç~äë =K=TO

QKNKP=pÉÅìêáíó=pí~åÇ~êÇë =K=TO

QKNKQ=cf=oÉëéçåëáÄáäáíáÉë K=TP

QKNKR=pÉÅìêáíó=iÉîÉäëW=`Ü~ååÉä=îëK=^ééäáÅ~íáçå=K=TQ

QKO=pÉÅìêáíó=fãéäÉãÉåí~íáçå=áå=lcu=K=TR

QKOKN=`Ü~ååÉäJiÉîÉä=pÉÅìêáíó =K=TR

QKOKO=^ééäáÅ~íáçåJiÉîÉä=pÉÅìêáíó =K=TT

Chapter 5 International Support . 83

RKN=i~åÖì~ÖÉ=~åÇ=båÅçÇáåÖ=K=UP

RKO=`ìêêÉåÅó=Y`roabc[=Y`roobk`v[=Ylofd`roobk`v[K=UP

RKP=`çìåíêóJpéÉÅáÑáÅ=bäÉãÉåí=s~äìÉëK=UR

Chapter 6 Data Synchronization . 87

SKN=lîÉêîáÉï K=UT

SKO=_~ÅâÖêçìåÇ K=UT

SKP=a~í~=póåÅÜêçåáò~íáçå=^ééêç~ÅÜ=K=UU

SKQ=a~í~=póåÅÜêçåáò~íáçå=péÉÅáÑáÅë =K=UV

SKQKN=qçâÉåëK=UV

SKQKO=qÜÉ=póåÅÜêçåáò~íáçå=mêçÅÉëëK=VM

SKQKP=póåÅÜêçåáò~ÄäÉ=lÄàÉÅíë =K=VO

SKQKQ=qçâÉå=~åÇ=cìää=póåÅêçåáò~íáçå=pìãã~êóK=VO

SKR=`çåÑäáÅí=aÉíÉÅíáçå=~åÇ=oÉëçäìíáçå K=VQ

SKS=póåÅÜêçåáò~íáçå=léíáçåëK=VQ

SKSKN=póåÅÜêçåáò~íáçå=bêêçêë =K=VS

SKT=qóéáÅ~ä=pÉêîÉê=^êÅÜáíÉÅíìêÉ=Ñçê=póåÅÜêçåáò~íáçå =K=VS

SKU=qóéáÅ~ä=`äáÉåí=mêçÅÉëëáåÖ=çÑ=póåÅÜêçåáò~íáçå=oÉëìäíë=K=VU

SKV=páãìäí~åÉçìë=`çååÉÅíáçåë=K=VV

SKNM=póåÅÜêçåáò~íáçå=^äíÉêå~íáîÉë K=VV

SKNMKN=cáäÉJ_~ëÉÇ=bêêçê=oÉÅçîÉêó K=NMM
X 2.0 Specification v6/30/00

vi
SKNMKO=iáíÉ=póåÅÜêçåáò~íáçåK= =NMO

SKNMKP==oÉä~íáåÖ=póåÅÜêçåáò~íáçå=~åÇ=bêêçê=oÉÅçîÉêó =K= =NMP

SKNN=bñ~ãéäÉë =K= =NMQ

Chapter 7 FI Profile. 107

TKN=lîÉêîáÉï=K= =NMT

TKNKN=jÉëë~ÖÉ=pÉíë =K= =NMT

TKNKO=sÉêëáçå=`çåíêçä K= =NMU

TKNKP=_~íÅÜáåÖ=~åÇ=oçìíáåÖ K= =NMV

TKNKQ=`äáÉåí=páÖåçå=Ñçê=mêçÑáäÉ=oÉèìÉëíë =K= =NMV

TKNKR=mêçÑáäÉ=oÉèìÉëí=Ymolcon[K= =NNM

TKO=mêçÑáäÉ=oÉëéçåëÉ=Ymolcop[K= =NNN

TKOKN=jÉëë~ÖÉ=pÉí =K= =NNO

TKOKO=páÖåçå=oÉ~äãë K= =NNQ

TKOKP=pí~íìë=`çÇÉëK= =NNR

TKP=mêçÑáäÉ=jÉëë~ÖÉ=pÉí=mêçÑáäÉ=fåÑçêã~íáçå =K= =NNR

Chapter 8 Activation & Account Information . 117

UKN=lîÉêîáÉï=K= =NNT

UKO=^ééêç~ÅÜÉë=íç=rëÉê=páÖåJré=ïáíÜ=lcu =K= =NNT

UKP=rëÉêë=~åÇ=^ÅÅçìåíë =K= =NNU

UKQ=båêçääãÉåí=~åÇ=m~ëëïçêÇ=^Åèìáëáíáçå=K= =NNU

UKQKN=rëÉê=faë =K= =NNV

UKQKO=båêçääãÉåí=oÉèìÉëí=Ybkoliion[K= =NNV

UKQKP=båêçääãÉåí=oÉëéçåëÉ=Ybkoliiop[K= =NOM

UKQKQ=båêçääãÉåí=pí~íìë=`çÇÉë=K= =NON

UKQKR=bñ~ãéäÉëK= =NOO

UKR=^ÅÅçìåí=fåÑçêã~íáçå =K= =NOP

UKRKN=oÉèìÉëí=Y^``qfkclon[K= =NOQ

UKRKO=oÉëéçåëÉ=Y^``qfkclop[K= =NOQ

UKRKP=^ÅÅçìåí=fåÑçêã~íáçå=^ÖÖêÉÖ~íÉ=Y^``qfkcl[=K= =NOR

UKRKQ=pí~íìë=`çÇÉëK= =NOR

UKRKR=bñ~ãéäÉëK= =NOS

UKS=pÉêîáÅÉ=^Åíáî~íáçå K= =NOT

UKSKN=^Åíáî~íáçå=oÉèìÉëí=Y^``qon[K= =NOT

UKSKO=^Åíáî~íáçå=oÉëéçåëÉ=Y^``qop[K= =NOV

UKSKP=pí~íìë=`çÇÉëK= =NPM

UKSKQ=pÉêîáÅÉ=^Åíáî~íáçå=póåÅÜêçåáò~íáçå K= =NPN
OFX 2.0 Specification6/30/00

OF
UKSKR=bñ~ãéäÉë =K=NPO

UKT=k~ãÉ=~åÇ=^ÇÇêÉëë=`Ü~åÖÉë =K=NPP

UKTKN=`Ü~åÖÉ=rëÉê=fåÑçêã~íáçå=oÉèìÉëí=Y`edrpbofkclon[=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NPP

UKTKO=`Ü~åÖÉ=rëÉê=fåÑçêã~íáçå=oÉëéçåëÉ=Y`edrpbofkclop[=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=NPQ

UKTKP=pí~íìë=`çÇÉëK=NPQ

UKTKQ=`Ü~åÖÉ=rëÉê=fåÑçêã~íáçå=póåÅÜêçåáò~íáçå =K=NPR

UKU=páÖåìé=jÉëë~ÖÉ=pÉí=mêçÑáäÉ=fåÑçêã~íáçåK=NPS

Chapter 9 Customer to FI Communication . 139

VKN=qÜÉ=bJj~áä=jÉëë~ÖÉ=pÉí K=NPV

VKO=bJj~áä=jÉëë~ÖÉë K=NPV

VKOKN=oÉÖìä~ê=îëK=péÉÅá~äáòÉÇ=bJj~áä=K=NQM

VKOKO=_~ëáÅ=Yj^fi[=^ÖÖêÉÖ~íÉ =K=NQM

VKOKP=bJj~áä=Yj^fion[=Yj^fiop[=K=NQO

VKOKQ=bJj~áä=póåÅÜêçåáò~íáçå=Yj^fipvk`on[=Yj^fipvk`op[=K=K=K=K=K=K=K=K=K=K=K=K=K=NQQ

VKOKR=bJj~áä=bñ~ãéäÉ K=NQR

VKP=dÉí=eqji=m~ÖÉ =K=NQU

VKPKN=jfjb=dÉí=oÉèìÉëí=~åÇ=oÉëéçåëÉ=Ydbqjfjbon[=Ydbqjfjbop[K=K=K=K=K=K=K=NQU

VKPKO=jfjb=bñ~ãéäÉ=K=NQV

VKQ=bJj~áä=jÉëë~ÖÉ=pÉí=mêçÑáäÉ=fåÑçêã~íáçå=K=NRN

Chapter 10 Recurring Transactions . 153

NMKN=`êÉ~íáåÖ=~=oÉÅìêêáåÖ=jçÇÉä=K=NRP

NMKO=oÉÅìêêáåÖ=fåëíêìÅíáçåë=Yob`roofkpq[=K=NRQ

NMKOKN=s~äìÉë=Ñçê=Ycobn[K=NRQ

NMKOKO=bñ~ãéäÉë =K=NRR

NMKP=oÉíêáÉîáåÖ=qê~åë~Åíáçåë=dÉåÉê~íÉÇ=Äó=~=oÉÅìêêáåÖ=jçÇÉä =K=NRT

NMKQ=jçÇáÑóáåÖ=~åÇ=`~åÅÉäáåÖ=fåÇáîáÇì~ä=qê~åë~Åíáçåë =K=NRT

NMKR=jçÇáÑóáåÖ=~åÇ=`~åÅÉäáåÖ=oÉÅìêêáåÖ=jçÇÉäëK=NRT

NMKRKN=bñ~ãéäÉë =K=NRU

NMKS=bñéáêÉÇ=jçÇÉäëK=NSM

Chapter 11 Banking . 161

NNKN=`çåëìãÉê=~åÇ=_ìëáåÉëë=_~åâáåÖK=NSN

NNKO=`êÉÇáí=`~êÇ=a~í~K=NSN

NNKP=`çããçå=_~åâáåÖ=^ÖÖêÉÖ~íÉë=K=NSN
X 2.0 Specification vii6/30/00

vii
NNKPKN=_~åâáåÖ=^ÅÅçìåí=Y_^kh^``qcolj[=~åÇ=Y_^kh^``qql[=K=K=K=K=K=K=K=K= =NSO

NNKPKO=`êÉÇáí=`~êÇ=^ÅÅçìåí=Y``^``qcolj[=~åÇ=Y``^``qql[=K=K=K=K=K=K=K=K=K=K=K= =NSS

NNKPKP=_~åâ=^ÅÅçìåí=fåÑçêã~íáçå=Y_^kh^``qfkcl[=K= =NST

NNKPKQ=`êÉÇáí=`~êÇ=^ÅÅçìåí=fåÑçêã~íáçå=Y``^``qfkcl[=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K= =NSU

NNKPKR=qê~åëÑÉê=fåÑçêã~íáçå=Yucbofkcl[K= =NSU

NNKPKS=qê~åëÑÉê=mêçÅÉëëáåÖ=pí~íìë=Yucbomo`pqp[K= =NTM

NNKQ=açïåäç~ÇáåÖ=qê~åë~Åíáçåë=~åÇ=_~ä~åÅÉë K= =NTN

NNKQKN=_~åâ=pí~íÉãÉåí=açïåäç~Ç =K= =NTO

NNKQKO=`êÉÇáí=`~êÇ=pí~íÉãÉåí=açïåäç~Ç =K= =NTQ

NNKQKP=pí~íÉãÉåí=qê~åë~Åíáçå=Ypqjqqok[K= =NTT

NNKR=pí~íÉãÉåí=`äçëáåÖ=fåÑçêã~íáçåK= =NUN

NNKRKN=pí~íÉãÉåí=`äçëáåÖ=açïåäç~Ç=K= =NUN

NNKRKO=kçåJ`êÉÇáí=`~êÇ=pí~íÉãÉåí=Y`ilpfkd[K= =NUO

NNKRKP=`êÉÇáí=`~êÇ=pí~íÉãÉåí=`äçëáåÖ=oÉèìÉëí=Y``pqjqbkaon[K=K=K=K=K=K=K=K=K=K=K=K= =NUQ

NNKRKQ=`êÉÇáí=`~êÇ=pí~íÉãÉåí=`äçëáåÖ=oÉëéçåëÉ=Y``pqjqbkaop[=K=K=K=K=K=K=K=K=K=K=K= =NUQ

NNKS=píçé=`ÜÉÅâ K= =NUT

NNKSKN=píçé=`ÜÉÅâ=^ÇÇK= =NUU

NNKSKO=pí~íìë=`çÇÉëK= =NVN

NNKT=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉê =K= =NVO

NNKTKN=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉê=^ÇÇáíáçå K= =NVP

NNKTKO=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉê=jçÇáÑáÅ~íáçåK= =NVS

NNKTKP=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉê=`~åÅÉää~íáçå K= =NVV

NNKU=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉê =K= =OMN

NNKUKN=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉê= =rp K= =OMN

NNKUKO=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉê= =fåíÉêå~íáçå~ä=rë~ÖÉ=K= =OMO

NNKUKP=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉê=jçÇáÑáÅ~íáçåK= =OMR

NNKUKQ=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉê=`~åÅÉää~íáçå K= =OMU

NNKV=táêÉ=cìåÇë=qê~åëÑÉêK= =ONM

NNKVKN=táêÉ=cìåÇë=qê~åëÑÉê=^ÇÇáíáçå =K= =ONN

NNKVKO=táêÉ=cìåÇë=qê~åëÑÉê=`~åÅÉää~íáçå=K= =ONR

NNKNM=oÉÅìêêáåÖ=cìåÇë=qê~åëÑÉê=K= =ONT

NNKNMKN=oÉÅìêêáåÖ=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉê=^ÇÇáíáçåK= =ONT

NNKNMKO=oÉÅìêêáåÖ=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉê=jçÇáÑáÅ~íáçå =K= =OOM

NNKNMKP=oÉÅìêêáåÖ=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉê=`~åÅÉää~íáçåK= =OOP

NNKNMKQ=oÉÅìêêáåÖ=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉê=^ÇÇáíáçåK= =OOQ

NNKNMKR=oÉÅìêêáåÖ=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉê=jçÇáÑáÅ~íáçå =K= =OOT

NNKNMKS=oÉÅìêêáåÖ=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉê=`~åÅÉää~íáçåK= =OPM

NNKNN=bJj~áä=~åÇ=`ìëíçãÉê=kçíáÑáÅ~íáçå K= =OPO
i OFX 2.0 Specification6/30/00

OF
NNKNNKN=_~åâáåÖ=bJj~áä =K=OPO

NNKNNKO=kçíáÑáÅ~íáçåëK=OPR

NNKNNKP=oÉíìêåÉÇ=`ÜÉÅâ=~åÇ=aÉéçëáí=kçíáÑáÅ~íáçå =K=OPS

NNKNO=a~í~=póåÅÜêçåáò~íáçå=Ñçê=_~åâáåÖK=OPT

NNKNOKN=a~í~=póåÅÜêçåáò~íáçå=Ñçê=píçé=`ÜÉÅâ=K=OPU

NNKNOKO=a~í~=póåÅÜêçåáò~íáçå=Ñçê=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉêë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OPV

NNKNOKP=a~í~=póåÅÜêçåáò~íáçå=Ñçê=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉêë K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=OQO

NNKNOKQ=a~í~=póåÅÜêçåáò~íáçå=Ñçê=táêÉ=cìåÇë=qê~åëÑÉêë=K=OQQ

NNKNOKR=a~í~=póåÅÜêçåáò~íáçå=Ñçê=oÉÅìêêáåÖ=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉêë =K=K=K=K=K=K=K=K=K=OQR

NNKNOKS=a~í~=póåÅÜêçåáò~íáçå=Ñçê=oÉÅìêêáåÖ=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉêë =K=K=K=K=K=K=K=K=K=OQT

NNKNOKT=a~í~=póåÅÜêçåáò~íáçå=Ñçê=_~åâ=j~áä =K=OQV

NNKNP=jÉëë~ÖÉ=pÉíë=~åÇ=mêçÑáäÉ K=ORN

NNKNPKN=jÉëë~ÖÉ=pÉíë=~åÇ=jÉëë~ÖÉëK=ORO

NNKNPKO=_~åâ=jÉëë~ÖÉ=pÉí=mêçÑáäÉ K=ORU

NNKNPKP=`êÉÇáí=`~êÇ=jÉëë~ÖÉ=pÉí=mêçÑáäÉ K=OSM

NNKNPKQ=fåíÉêÄ~åâ=cìåÇë=qê~åëÑÉê=jÉëë~ÖÉ=pÉí=mêçÑáäÉ K=OSN

NNKNPKR=táêÉ=qê~åëÑÉê=jÉëë~ÖÉ=pÉí=mêçÑáäÉ=K=OSO

NNKNQ=bñ~ãéäÉë=K=OSP

NNKNQKN=pí~íÉãÉåí=açïåäç~Ç =K=OSP

NNKNQKO=fåíê~Ä~åâ=cìåÇë=qê~åëÑÉê =K=OSR

NNKNQKP=píçé=`ÜÉÅâ K=OST

NNKNQKQ=oÉÅìêêáåÖ=qê~åëÑÉêë =K=OTM

Chapter 12 Payments . 281

NOKN=`çåëìãÉê=~åÇ=_ìëáåÉëë=m~óãÉåíë =K=OUN

NOKO=qÜÉ=m~óÉÉ=jçÇÉä =K=OUN

NOKOKN=m~óÉÉ=fÇÉåíáÑáÉêë=K=OUN

NOKOKO=m~óÉÉ=iáëíë=K=OUO

NOKOKP=pí~åÇ~êÇ=m~óÉÉ=iáëíëK=OUP

NOKOKQ=fÇÉåíáÑóáåÖ=m~óÉÉëK=OUP

NOKOKR=páÇÉ=bÑÑÉÅíë=çÑ=m~óÉÉ=^ÇÇë=~åÇ=jçÇáÑáÅ~íáçåë K=OUR

NOKP=fÇÉåíáÑáÉêë=rëÉÇ=áå=m~óãÉåí=qê~åë~Åíáçåë =K=OUR

NOKQ=qÜÉ=m~óãÉåí=iáÑÉ=`óÅäÉK=OUT

NOKQKN=m~óãÉåí=`êÉ~íáçå K=OUT

NOKQKO=m~óãÉåí=jçÇáÑáÅ~íáçå =K=OUT

NOKQKP=m~óãÉåí=pí~íìë=fåèìáêó=K=OUU

NOKQKQ=m~óãÉåí=`~åÅÉää~íáçåK=OUU

NOKQKR=aÉä~óÉÇ=m~óÉÉ=j~íÅÜáåÖ K=OUU
X 2.0 Specification ix6/30/00

x

NOKR=`çããçå=m~óãÉåíë=^ÖÖêÉÖ~íÉë K= =OUV

NOKRKN=m~óãÉåíë=^ÅÅçìåí=fåÑçêã~íáçå=Y_m^``qfkcl[=K= =OUV

NOKRKO=m~óãÉåí=fåÑçêã~íáçå=Ymjqfkcl[K= =OVM

NOKS=m~óãÉåíë=cìåÅíáçåë K= =OVT

NOKSKN=m~óãÉåí=`êÉ~íáçå=K= =OVU

NOKSKO=m~óãÉåí=jçÇáÑáÅ~íáçå =K= =PMN

NOKSKP=m~óãÉåí=`~åÅÉää~íáçåK= =PMR

NOKSKQ=m~óãÉåí=pí~íìë=fåèìáêó=K= =PMT

NOKT=oÉÅìêêáåÖ=m~óãÉåíë K= =PMU

NOKTKN=`êÉ~íáåÖ=~=oÉÅìêêáåÖ=m~óãÉåí =K= =PNM

NOKTKO=oÉÅìêêáåÖ=m~óãÉåí=jçÇáÑáÅ~íáçå=K= =PNP

NOKTKP=oÉÅìêêáåÖ=m~óãÉåí=`~åÅÉää~íáçå =K= =PNT

NOKU=m~óãÉåí=j~áä =K= =PNV

NOKUKN=m~óãÉåí=j~áä=oÉèìÉëí=~åÇ=oÉëéçåëÉ =K= =PNV

NOKUKO=m~óãÉåí=j~áä=póåÅÜêçåáò~íáçåK= =POO

NOKV=m~óÉÉ=iáëíë=K= =POP

NOKVKN=^ÇÇáåÖ=~=m~óÉÉ=íç=íÜÉ=m~óÉÉ=iáëí K= =POR

NOKVKO=m~óÉÉ=jçÇáÑáÅ~íáçå K= =POT

NOKVKP=m~óÉÉ=aÉäÉíáçå K= =PPN

NOKVKQ=m~óÉÉ=iáëí=póåÅÜêçåáò~íáçå=K= =PPP

NOKNM=a~í~=póåÅÜêçåáò~íáçå=Ñçê=m~óãÉåíë =K= =PPR

NOKNMKN=m~óãÉåí=póåÅÜêçåáò~íáçå =K= =PPS

NOKNMKO=oÉÅìêêáåÖ=m~óãÉåí=póåÅÜêçåáò~íáçå K= =PPU

NOKNMKP=aáëÅìëëáçåK= =PQM

NOKNN=jÉëë~ÖÉ=pÉíë=~åÇ=mêçÑáäÉ=K= =PQN

NOKNNKN=_áää=m~ó=jÉëë~ÖÉ=pÉíë=~åÇ=jÉëë~ÖÉë =K= =PQO

NOKNNKO=_áää=m~ó=jÉëë~ÖÉ=pÉí=mêçÑáäÉ=Y_fiim^vjpdpbq[=K= =PQQ

NOKNO=bñ~ãéäÉë =K= =PQS

NOKNOKN=pÅÜÉÇìäáåÖ=~=m~óãÉåí =K= =PQS

NOKNOKO=jçÇáÑóáåÖ=~=m~óãÉåí K= =PRM

NOKNOKP=`~åÅÉäáåÖ=~=m~óãÉåí =K= =PRQ

NOKNOKQ=réÇ~íáåÖ=m~óãÉåí=pí~íìë =K= =PRR

NOKNOKR=pÅÜÉÇìäáåÖ=~=oÉÅìêêáåÖ=m~óãÉåí=K= =PRS

NOKNOKS=jçÇáÑóáåÖ=~=oÉÅìêêáåÖ=m~óãÉåíK= =PRU

NOKNOKT=`~åÅÉäáåÖ=~=oÉÅìêêáåÖ=m~óãÉåí=K= =PSM

NOKNOKU=^ÇÇáåÖ=~=m~óÉÉ=íç=íÜÉ=m~óÉÉ=iáëí K= =PSN

NOKNOKV=póåÅÜêçåáòáåÖ=pÅÜÉÇìäÉÇ=m~óãÉåíë =K= =PSP
OFX 2.0 Specification6/30/00

OF
Chapter 13 Investments . 365

NPKN=qóéÉë=çÑ=oÉëéçåëÉ=fåÑçêã~íáçå=K=PSS

NPKO=pìÄJ^ÅÅçìåíë =K=PSS

NPKP=råáíëI=mêÉÅáëáçåI=~åÇ=páÖåë =K=PSS

NPKPKN=råáíë =K=PSS

NPKPKO=mêÉÅáëáçå K=PST

NPKPKP=páÖåë =K=PST

NPKQ=_~åâ=~åÇ=fåîÉëíãÉåí=qê~åë~Åíáçåë=K=PSU

NPKR=jçåÉó=j~êâÉí=cìåÇëK=PSU

NPKRKN=pÉé~ê~íÉ=^ÅÅçìåí=~í=íÜÉ=cáå~åÅá~ä=fåëíáíìíáçåK=PSU

NPKRKO=pïÉÉé=^ÅÅçìåí=táíÜáå=~å=fåîÉëíãÉåí=^ÅÅçìåí =K=PSV

NPKRKP=mçëáíáçå=táíÜáå=~å=fåîÉëíãÉåí=^ÅÅçìåí=K=PSV

NPKS=fåîÉëíãÉåí=^ÅÅçìåíë=K=PSV

NPKSKN=péÉÅáÑóáåÖ=íÜÉ=fåîÉëíãÉåí=^ÅÅçìåí=Yfks^``qcolj[K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=K=PSV

NPKSKO=fåîÉëíãÉåí=^ÅÅçìåí=fåÑçêã~íáçå=Yfks^``qfkcl[K=PTM

NPKSKP=_êçâÉê~ÖÉI=jìíì~ä=cìåÇI=~åÇ=QMNh=^ÅÅçìåíë=K=PTN

NPKT=fåîÉëíãÉåí=jÉëë~ÖÉ=pÉíë=~åÇ=mêçÑáäÉ =K=PTO

NPKTKN=fåîÉëíãÉåí=pí~íÉãÉåí=açïåäç~Ç K=PTP

NPKTKO=pÉÅìêáíó=fåÑçêã~íáçåK=PTS

NPKU=fåîÉëíãÉåí=pÉÅìêáíáÉë K=PTV

NPKUKN=pÉÅìêáíó=fÇÉåíáÑáÅ~íáçå=Ypb`fa[K=PTV

NPKUKO=pÉÅìêáíó=iáëí=oÉèìÉëí =K=PTV

NPKUKP=pÉÅìêáíó=iáëí=oÉëéçåëÉ=K=PUN

NPKUKQ=pÉÅìêáíó=iáëí=Ypb`ifpq[=K=PUO

NPKUKR=pÉÅìêáíáÉë=fåÑçêã~íáçå =K=PUO

NPKV=fåîÉëíãÉåí=pí~íÉãÉåí=açïåäç~ÇK=PUU

NPKVKN=fåîÉëíãÉåí=pí~íÉãÉåí=oÉèìÉëí=K=PUU

NPKVKO==fåîÉëíãÉåí=pí~íÉãÉåí=oÉëéçåëÉ =K=PVM

NPKVKP=QMNEâF=^ÅÅçìåí=fåÑçêã~íáçå =K=QNQ

NPKNM=fåîÉëíãÉåí=bJj~áä =K=QON

NPKNMKN=fåîÉëíãÉåí=bJj~áä=oÉèìÉëí=~åÇ=oÉëéçåëÉ=K=QON

NPKNMKO=fåîÉëíãÉåí=bJj~áä=póåÅÜêçåáò~íáçåK=QOP

NPKNN=`çãéäÉíÉ=bñ~ãéäÉ K=QOR

NPKNO=`çãéäÉíÉ=QMNEâF=bñ~ãéäÉ K=QPM

Chapter 14 Bill Presentment . 437
X 2.0 Specification xi6/30/00

xii
NQKN=lîÉêîáÉï=K= =QPT

NQKNKN=_áää=mêÉëÉåíãÉåí=jçÇÉä =K= =QPT

NQKNKO=pÉêîÉêë=~åÇ=jÉëë~ÖÉ=pÉíëK= =QPT

NQKO=_áääÉê=aáêÉÅíçêó =K= =QPU

NQKOKN=`äáÉåí=páÖåçå=íç=íÜÉ=_áääÉê=aáêÉÅíçêó=pÉêîÉê =K= =QPU

NQKOKO=pÉ~êÅÜ=^êÖìãÉåíë K= =QPU

NQKOKP=fÇÉåíáÑáÅ~íáçå=çÑ=_áää=mìÄäáëÜÉêë K= =QPU

NQKOKQ=cáåÇ=_áääÉê=oÉèìÉëí=Ycfka_fiiboon[K= =QPV

NQKOKR=cáåÇ=_áääÉê=oÉëéçåëÉ=Ycfka_fiiboop[K= =QQN

NQKOKS=pí~íìë=`çÇÉë=Ycfka_fiiboop[=K= =QQP

NQKOKT=^ÅÅçìåí=kìãÄÉê=s~äáÇ~íáçå K= =QQQ

NQKOKU=_áääÉê=m~óãÉåí=oÉëíêáÅíáçåë=K= =QQR

NQKP=`ìëíçãÉê=páÖåìé =K= =QQS

NQKPKN=båêçääãÉåí=K= =QQT

NQKPKO=^ÅÅçìåí=fåèìáêóK= =QQT

NQKPKP=pÉêîáÅÉ=^Åíáî~íáçå K= =QRM

NQKPKQ=pÉêîáÅÉ=pí~íìë=réÇ~íÉ=Ñçê=dêçìéë=çÑ=`ìëíçãÉêë =K= =QRO

NQKQ=_áää=aÉäáîÉêó K= =QRS

NQKQKN=_áää=aÉäáîÉêó=mêçÅÉëë K= =QRS

NQKQKO=_áää=iáëí=oÉíêáÉî~ä K= =QRS

NQKQKP=_áää=aÉí~áä=oÉíêáÉî~ä K= =QTM

NQKQKQ=q~ÄäÉ=píêìÅíìêÉ=aÉÑáåáíáçå=K= =QTQ

NQKQKR=aÉäáîÉêó=kçíáÑáÅ~íáçå =K= =QTS

NQKQKS=_áää=pí~íìë=jçÇáÑáÅ~íáçå =K= =QTV

NQKR=_áää=m~óãÉåíK= =QUM

NQKRKN=oÉãáíí~åÅÉ=fåÑçêã~íáçå=K= =QUM

NQKRKO=m~óÉÉ=fÇÉåíáÑáÅ~íáçåK= =QUM

NQKS=_áää=mêÉëÉåíãÉåí=bJj~áä K= =QUN

NQKSKN=_áää=mêÉëÉåíãÉåí=j~áä=oÉèìÉëí=Ymobpj^fion[=K= =QUO

NQKSKO=_áää=mêÉëÉåíãÉåí=j~áä=oÉëéçåëÉ=Ymobpj^fiop[K= =QUO

NQKSKP=pí~íìë=`çÇÉë=Ymobpj^fiop[=K= =QUP

NQKSKQ=oÉèìÉëí=Ymobpj^fipvk`on[K= =QUQ

NQKSKR=oÉëéçåëÉ=Ymobpj^fipvk`op[K =K= =QUR

NQKT=jÉëë~ÖÉ=pÉíë=~åÇ=mêçÑáäÉ=K= =QUS

NQKTKN=jÉëë~ÖÉ=pÉíë=~åÇ=jÉëë~ÖÉëK= =QUS

NQKTKO=_áääÉê=aáêÉÅíçêó=jÉëë~ÖÉ=pÉí=mêçÑáäÉ K= =QVM

NQKTKP=_áää=aÉäáîÉêó=jÉëë~ÖÉ=pÉí=mêçÑáäÉ =K= =QVM

NQKU=_áää=mêÉëÉåíãÉåí=bñ~ãéäÉë=K= =QVO
OFX 2.0 Specification6/30/00

OF
NQKUKN=cáåÇ=_áääÉê=bñ~ãéäÉëK=QVO

NQKUKO=båêçääãÉåí=bñ~ãéäÉë K=QVV

NQKUKP=^Åíáî~íáçå=bñ~ãéäÉ =K=RMN

NQKUKQ=_áää=aÉäáîÉêó=bñ~ãéäÉë K=RMP

Appendix A Status Codes. 513

Appendix B Differences Between OFX 1.6 and OFX 2.0 519
_KN=lcu=NKS=íç=OKM =K=RNV

_KNKN=péÉÅáÑáÅ~íáçå=`Ü~åÖÉë=Äó=`Ü~éíÉê K=ROM
X 2.0 Specification xiii6/30/00

xiv
 OFX 2.0 Specification6/30/00

s

on,
r data

e as well
s

CHAPTER 1 OVERVIEW

1.1 Introduction

Open Financial Exchange is a broad-based framework for exchanging financial data and instruction
between customers and their financial institutions. It allows institutions to connect directly to their
customers without requiring an intermediary.

Open Financial Exchange is an open specification that anyone can implement: any financial instituti
transaction processor, software developer, or other party. It uses widely accepted open standards fo
formatting (such as XML), connectivity (such as TCP/IP and HTTP), and security (such as SSL).

Open Financial Exchange defines the request and response messages used by each financial servic
as the common framework and infrastructure to support the communication of those messages. Thi
specification does not describe any specific product implementation.

CUSTOMERS
Consumers

Families
Taxpayers

Small Businesses

INSTITUTIONS

Financial Institutions
Financial Advisors

Government Agencies
Merchants and Businesses

Information Providers
Transaction Processors
OFX 2.0 Specification 156/30/00

, and

th

vices.

the
.

ons
mers
o

se of
1.1.1 Design Principles

The following principles were used in designing Open Financial Exchange:

� Broad Range of Financial Activities – Open Financial Exchange provides support for abroad
range of financial activities. Open Financial Exchange 2.0 specifies the following services:

� Bank statement download

� Credit card statement download

� Funds transfers including recurring transfers

� Consumer payments, including recurring payments

� Business payments, including recurring payments

� Brokerage and mutual fund statement download, including transaction history, current holdings
balances for normal accounts and 401(k) accounts.

� Bill presentment and payment

� Tax form download, including 1099 and W2 (presented as a 2.0 addendum).

� Broad Range of Financial Institutions – Open Financial Exchange supports communication wi
a broad range of financial institutions (FIs), including:

� Banks

� Brokerage houses

� Merchants

� Processors

� Financial advisors

� Government agencies

� Broad Range of Front-End Applications – Open Financial Exchange supports abroad range of
front-end applications, including Web-based applications, covering all types of financial activities
running on all types of platforms.

� Extensible – Open Financial Exchange has been designed to allow the easy addition of new ser
Future versions will include support for many new services.

� Open – This specification is publicly available. You can build client and server applications using
Open Financial Exchange protocols independent of any specific technology, product, or company

� Multiple Client Support – Open Financial Exchange allows a user to use multiple client applicati
to access the same data at a financial institution. With the popularity of the World Wide Web, custo
are increasingly more likely to use multiple applications—either desktop-based or Web-based—t
perform financial activities. For example, a customer can track personal finances at home with a
desktop application and occasionally pay bills while at work with a Web-based application. The u
data synchronization to support multiple clients is a key innovation in Open Financial Exchange.
16 1.1 Introduction

d for
d
very.

ed, as

ge is
or
ser

rms

t-
r

ava,
on a

al
� Robust – Open Financial Exchange will be used for executing important financial transactions an
communicating important financial information. Assuring users that transactions are executed an
information is correct is crucial. Open Financial Exchange provides robust protocols for error reco

� Secure – Open Financial Exchange provides a framework for building secure online financial
services. In Open Financial Exchange, security encompasses authentication of the parties involv
well as secrecy and integrity of the information being exchanged.

� Batch & Interactive – The design of request and response messages in Open Financial Exchan
for use in either batch or interactive style of communication. Open Financial Exchange provides f
applying a single authentication context to multiple requests in order to reduce the overhead of u
authentication.

� International Support – Open Financial Exchange is designed to supply financial services
throughout the world. It supports multiple currencies, country-specific extensions, and different fo
of encoding such as UNICODE.

� Platform Independent –Open Financial Exchange can be implemented on a wide variety of fron
end client devices, including those running Windows 3.1, Windows 95, Windows NT, Macintosh, o
UNIX. It also supports a wide variety of Web-based environments, including those using HTML, J
JavaScript, or ActiveX. Similarly on the back-end, Open Financial Exchange can be implemented
wide variety of server systems, including those running UNIX, Windows NT, or OS/2.

� Transport Independent – Open Financial Exchange is independent of the data communication
protocol used to transport the messages between the client and server computers. Open Financi
Exchange 2.0 uses HTTP.
OFX 2.0 Specification 176/30/00

ests

l
twork

ge
tion

n

ternet.

ce
ay
and
1.2 Open Financial Exchange at a Glance

The design of Open Financial Exchange is as a client and server system. An end-user uses a client
application to communicate with a server at a financial institution. The form of communication is requ
from the client to the server and responses from the server back to the client.

Open Financial Exchange uses the Internet Protocol (IP) suite to provide the communication channe
between a client and a server. IP protocols are the foundation of the public Internet and a private ne
can also use them.

1.2.1 Data Transport

Clients use the HyperText Transport Protocol (HTTP) to communicate to an Open Financial Exchan
server. The World Wide Web throughout uses the same HTTP protocol. In principle, a financial institu
can use any off-the-shelf web server to implement its support for Open Financial Exchange.

To communicate by means of Open Financial Exchange over the Internet, the client must establish a
Internet connection. This connection can be a dial-up Point-to-Point Protocol (PPP) connection to an
Internet Service Provider (ISP) or a connection over a local area network that has a gateway to the In

Clients use the HTTP POST command to send a request to the previously acquired Uniform Resour
Locator (URL) for the desired financial institution. The URL presumably identifies a Common Gatew
Interface (CGI) or other process on an FI server that can accept Open Financial Exchange requests
produce a response.
18 1.2 Open Financial Exchange at a Glance

pe as

esult,
The POST identifies the data as being of type application/x-ofx. Use application/x-ofx as the return ty
well. Fill in other fields per the HTTP 1.0 specification. Here is a typical request:

POST http://www.fi.com/ofx.cgi HTTP/1.0 HTTP headers

User-Agent:MyApp 5.0

Content-Type: application/x-ofx

Content-Length: 1032

<!--XML declaration-->

<?xml version="1.0"?>

<!--OFX declaration-->

<?OFX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

<!-- OFX request-->

<OFX>

... Open Financial Exchange requests ...

</OFX>

A blank line defines the separation between the HTTP headers and the start of the Open Financial
Exchange headers.

The structure of a response is similar to the request, with the first line containing the standard HTTP r
as shown next. The content length is given in bytes.

HTTP 1.0 200 OK HTTP headers

Content-Type: application/x-ofx

Content-Length: 8732

<!--XML declaration-->

<?xml version="1.0"?>

<!--OFX declaration-->

<?OFX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

<!-- OFX response-->

... Open Financial Exchange responses ...

</OFX>
OFX 2.0 Specification 196/30/00

an be

odel
plain

w the
ee the
1.2.2 Request and Response Model

The basis for Open Financial Exchange is the request and response model. One or more requests c
batched in a single file. This file typically includes a signon request and one or more service-specific
requests. An FI server will process all of the requests and return a single response file. This batch m
lends itself to Internet transport as well as other off-line transports. Both requests and responses are
text files, formatted using a grammar based on Extensible Markup Language (XML).

Here is a simplified example of an Open Financial Exchange request file. (This example does not sho
Open Financial Exchange headers and the indentation is only for readability.) For complete details, s
more complete examples throughout this specification.

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- Begin signon -->

<DTCLIENT>19991029101000</DTCLIENT><!-- Oct. 29, 1999, 10:10:00
am -->

<USERID>123-45-6789</USERID> <!-- User ID (that is, SSN) -->

<USERPASS>MyPassword</USERPASS> <!-- Password (SSL encrypts
whole) -->

<LANGUAGE>ENG</LANGUAGE> <!-- Language used for text -->

<FI> <!-- ID of receiving institution
-->

<ORG>NCH</ORG> <!-- Name of ID owner -->

<FID>1001</FID> <!-- Actual ID -->

</FI>

<APPID>MyApp</APPID>

<APPVER>0500</APPVER>

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>

<BANKMSGSRQV1>

<STMTTRNRQ> <!-- First request in file -->

<TRNUID>1001</TRNUID>

<STMTRQ> <!-- Begin statement request -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID> <!-- Routing transit or other FI
ID -->

<ACCTID>999988</ACCTID> <!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<INCTRAN> <!-- Begin include transaction --
>

<INCLUDE>Y</INCLUDE> <!-- Include transactions -->
20 1.2 Open Financial Exchange at a Glance

,
g

e. Data

)
nt. If
pper.
e

ly
s.

on
</INCTRAN> <!-- End of include transaction -
->

</STMTRQ> <!-- End of statement request -->

</STMTTRNRQ> <!-- End of first request -->

</BANKMSGSRQV1>

</OFX> <!-- End of request data -->

The response format follows a similar structure. Although a response, such as a statement response
contains all of the details of each transaction, each individual detail of the statement is identified usin
tags.

The key rule of Open Financial Exchange syntax is that each tag is either an element or an aggregat
follows its element tag. An aggregate tag begins a compound tag sequence, which must end with a
matching tag; for example, <AGGREGATE> ... </AGGREGATE>.

The file sent by Open Financial Exchange does not require any white space between tags.

White space following a tag delimiter (>), following an element value, or preceding a tag delimiter (<
should be ignored. White space within an element value (i.e. not preceding, not following) is significa
white space is desired preceding or following an element value, this is achieved using the CDATA wra
If more than one white space element is needed, then multiple macros should be utilized. Se
section 2.3.1.1.

1.3 Definitions

The following sections detail definitions that hold within the context of OFX.

1.3.1 User

Userrefers to the person or entity interfacing with the OFXclient to cause it to generate OFXrequests.

1.3.2 Financial Institution

Financial Institution(FI) refers to the institution with which the user has a direct relationship. General
this means a bank, but in many cases it may be an institution providing non-banking financial service

1.3.3 Service Provider

Service Provider(SP) refers to an institution with which the user doesnot have a direct relationship.
Generally, such an institution is subcontracted by the FI to provide specific services to the customer
behalf of the FI.
OFX 2.0 Specification 216/30/00

Java

ponses.

fers,

age

ks like
1.3.4 Client

An OFX client is the software that generates OFXrequests, receivesresponsesand processes them. This
may be a personal finance manager, a web browser running locally interactive code (such as with a
applet or ActiveX control), a Web server, a proxy, or one of many other possibilities.

1.3.5 Server

An OFX serveris the software that receives OFX requests, processes them, and generates OFX res

1.3.6 Service

A serviceis a collection of relatedtransactions. For example, the BANKSVC service encompasses
banking transactions such as requesting bank statements, initiating stop checks, initiating wire trans
etc.

In OFX 1.x and 2.x, services are used directly only when describing or changing the general options
available to a particular customer. Other collections of transactions instead use the concept of Mess
Sets as described in section 1.3.15.

1.3.7 Tag

Tag is the generic name for either a start tag or an end tag. Astart tagconsists of anelementor aggregate
name surrounded by angle brackets. Anend tagis the same as a start tag, with the addition of a forward
slash immediately preceding the name. For example, the start tag for the aggregate named FOO loo
this:

<FOO>

The end tag for the same aggregate looks like this:

</FOO>
22 1.3 Definitions

ag

her
th

data

out
tional)
1.3.8 Element

An OFX document contains one or moreelements. An element is some data bounded by a leading start t
and a trailing end tag. For example, an element named BAZ, containing data “bar,” looks like this:

<BAZ>bar</BAZ><!-- An element ended by its own end tag-->

An OFX elementmust contain data (not just white space) and maynot contain other elements. This is a
refinement to the XML definition of an element which is more generic. An XML element containing ot
elements is defined in OFX as anaggregate. OFX specifically disallows empty elements and elements wi
mixedcontent.

1.3.9 Aggregate

An aggregateis a collection of elements and/or other aggregates. An aggregate may not contain any
itself, but rather contains elements containing data, and/or recursively contains aggregates.

OFX includes very few empty aggregates and clients and servers should not send an aggregate with
content. In general, the entire aggregate should be left out of a request or response file when its (op
content is missing. The few exceptions to these rules (such as <SECLISTRS>, described in section
13.8.3.3) are called out in the relevant sections of this document.
OFX 2.0 Specification 236/30/00

.

ds

re
ith the

,
dding a
es a

nts of
and

ge to

st

ontains a
l) the

a token

n

1.3.10 Request

A requestis information sent by the client. An OFXrequest fileis the entire XML file sent by the client,
including the OFX declaration. Anindividual requestgenerally is an aggregate whose name ends in RQ

1.3.11 Response

A responseis information sent by the server. An OFXresponse fileis the entire XML file sent by the
server, including the OFX declaration. Anindividual responsegenerally is an aggregate whose name en
in RS.

When elements and aggregates from the request also appear in the corresponding response they a
generally intended to echo the values from a request in the response (this enables client matching w
request, for example). While the server should not modify data in individual elements when echoing
elements not found in a particular request may be added in the response. These situations (such as a
<PAYEELSTID> when creating a <PMTRQ> response) are described as they arise. OFX also includ
few specific situations requiring different information to be sent and returned in corresponding eleme
a request/response pair. Again, these exceptions (such as the <TOKEN> element in a sync request
response) are described as they arise.

1.3.12 Message

A messageis the unit of work in OFX. It refers to a request and response pair. For example, the messa
download a bank statement consists of the request <STMTRQ> and the response <STMTRS>.

1.3.13 Transaction

A transactionconsists of a message and its associated transaction wrappers. The transaction reque
wrapper contains a unique transaction identifier used to prevent ambiguity in matching a particular
response to its associated request, and the request aggregate. The transaction response wrapper c
status aggregate, the transaction identifier sent in the request, and (if the transaction was successfu
response aggregate. For details on the use of transaction wrappers, see section 2.4.6.

1.3.14 Synchronization

For messages subject to synchronization (see Chapter 6, "Data Synchronization"), an added layer of
aggregates is also part of a message definition: a synchronization request and response. These add
and, in some cases, other information. Synchronization requests may encapsulateembedded transactions
that execute only when certain conditions are true at the server (either the containing synchronizatio
request completed without error or the request had no errors and the client was up to date).
24 1.3 Definitions

ng
mple,

ets are
at

.
0.2 and/

ments
t unless
s 1.6
so it

2
.0

This
1.3.15 Message Set

Message setsare collections of messages. Generally they form all or part of aservice(as defined in section
1.3.6). OFX utilizes these smaller groupings when wrapping request or response transactions, profili
server support for the wrappers and describing individual messages. The BANKSVC service, for exa
is broken into the BANKMSGSET, CREDITCARDMSGSET, INTERXFERMSGSET and
WIREXFERMSGSET message sets.

Please refer to section 2.4.5 , "Message Sets and Version Control"for additional information about
message sets.

1.4 OFX Versions

There are four distinct versions of OFX clients and servers.

Version 1.0.2 supports any or all version 1 message sets except Bill Presentment. These message s
defined by the OFX 1.0.2 Document Type Definition (DTD), which is used for parsing. Applications th
conform to this version are referred to as 1.0.2 clients and 1.0.2 servers.

Version 1.5.1 supports all version 2 message sets, Bill Presentment, and all version 1 message sets
Because it supports all message sets, the OFX 1.5.1 DTD can be used to create and support OFX 1.
or OFX 1.5.1 clients and servers.

Version 1.6 DTD supports all message sets available in the OFX 1.5.1 DTD. It adds specific enhance
to some of the aggregates. All of those enhancements are optional and should not be used by a clien
the server indicates support in its FI Profile. Applications that conform to this version are referred to a
clients and 1.6 servers. The OFX 1.6 DTD fully incorporates the OFX 1.0.2 and 1.5.1 message sets,
can be used to support both 1.0.2 and 1.5.1 applications.

Version 2.0 supports all V1 message sets available in the OFX 1.6 DTD. It adds support for 401(k)
investment statement download. The Tax OFX addendum to OFX 2.0 adds support for 1099 and W
download. An important change for 2.0 is that it adds the requirement of XML compliance to OFX 2
clients and servers. See chapter 2for more information.

For a complete description of OFX message sets, see section 2.4.5.3.

As of the publication of this document, only versions 1.0.2, 1.5.1, 1.6 and 2.0 of OFX are supported.
document describes OFX version 2.0.
OFX 2.0 Specification 256/30/00

are
t, and a

which

ription,

.

, the
e
ic
a

1.5 Conventions

The conventions used in the element and aggregate descriptions include the following:

� Required elements and aggregates are inbold . Regular face indicates elements and aggregates that
optional. Required means that a client must always include the element or aggregate in a reques
server must always include the element or aggregate in a response.

� Required elements and aggregates occur once unless noted as one or more in the description, in
case the specification allows multiple occurrences.

� Optional elements and aggregates occur once if present unless noted as zero or more in the desc
in which case the specification allows multiple occurrences.

� Character fields are identified with a data type of “A-n” , where n is the maximum number of allowed
Unicode characters.

Note: n refers to the number of characters in the resultant string. Each multi-byte or encoded
character counts as a single character. UTF-8 encodes “high” Latin-1 characters (decimal 128-
255) using two bytes, and double-byte characters using three bytes. In addition, XML encodes
ampersands, less-than symbols, greater-than symbols, and spaces (where required) using multi-
character escape strings (see section 2.3.1.1). Therefore, an element of type A-40 may require
more than 40 bytes in a UTF-8-encoded XML stream.

� N-n identifies an element of numeric type wheren is the maximum number of characters in the value
Values of this type are generally whole numbers, but the data type allows negative numbers. OFX
includes a few fixed-position numeric values (such as <APPVER>, see section 2.5.1.1) called out in the
text. In all cases, elements of this type may contain only the characters 0 through 9 and - (hyphen
negative sign indicator). So an element of type “N-6” may take values from -99999 to 999999. Th
value “0000000” would be illegal for an N-6 element. White space is not allowed within the numer
value. Leading zeroes are allowed, but discouraged except where noted in the text. For example,
<MIN> element containing zero might be sent as “<MIN>0”, “<MIN>00”, “<MIN> 0", but not
“<MIN>0 0".

� Common value types, such as a dollar amount, are referenced by name. Chapter 3, "Common
Aggregates, Elements, and Data Types"lists value types that are referenced by name.
26 1.5 Conventions

ur
� Explanatory information is initalics

Tag Description

<REQUIRED> Required element or aggregate (1 or more)

<REQUIRED2> Required element or aggregate that occurs only once

<OPTIONAL> Optional element or aggregate; this element or aggregate can occ
multiple times (0 or more)

<SPECIFIC> Values are A, B, and C

<ALPHAVALUE> Takes a value up to 32 characters in length,A-32

Explanatory text Hopefully useful information.
OFX 2.0 Specification 276/30/00

28 1.5 Conventions

tructure
ow Open

ck.
Internet
n
e the

the

eed
vers

of CR
OFX 2.0 Specification 296/30/00

CHAPTER 2 STRUCTURE

This chapter describes the basic structure of an Open Financial Exchange request and response. S
includes headers, basic syntax, and the Signon request and response. This chapter also describes h
Financial Exchange encodes external data, such as bit maps.

Open Financial Exchange data consists of a declaration plus one Open Financial Exchange data blo
This block consists of a signon message and zero or more additional messages. When sent over the
using HTTP, standard HTTP and (optionally) multipart MIME headers and formats surround the Ope
Financial Exchange data. A simple file that contained only Open Financial Exchange data would hav
following form:

HTTP headers

MIME type application/x-ofx

XML declaration

Open Financial Exchange declaration

Open Financial Exchange XML block

A more complex file that contained additional Open Financial Exchange data would have this form:
HTTP headers

MIME type multipart/x-mixed-replace; boundary =XYZZY24x7

--XYZZY24x7

MIME type application/x-ofx

XML declaration

Open Financial Exchange declaration

Open Financial Exchange XML block

--XYZZY24x7

MIME type image/jpeg

FI logo

--XYZZY24x7--

Version 1.0.2 of the Open Financial Exchange specification did not specify how to properly separate
various components of an OFX request. In particular, separation of the HTTP headers, the MIME
attachments, the OFX declaration, the OFX header elements, and the OFX SGML block.

OFX 1.0.2 clients used a mix of LF and CRLF constructs and OFX 1.0.2 servers handled either linef
(LF) or carriage return/line feed (CRLF), but not often both. In the future, it is expected that 1.0.2 ser
will be upgraded to handle both CRLF and LF.

OFX 2.0 clients and servers are expected to follow standard XML 1.0 conventions regarding the use
and LF. XML 1.0 is an accepted World Wide Web Consortium (W3C) recommendation.

http://www.w3.org (W3C home page)

http://www.w3.org/TR/REC-xml (XML 1.0 recommendation)

http://www.w3.org

a
clients

),

ts

al
L
d

The text has been included below for ease of reference:

2.1 HTTP Headers

Data delivered by way of HTTP places the standard HTTP result code on the first line. HTTP defines
number of status codes. Servers can return any standard HTTP result. However, FIs should expect
to collapse these codes into the following three cases:

Note: The server must return a code in the 400s for any problem that prevents it from
processing the request file. Processing problems include failures relating to security,
communication, parsing, or the Open Financial Exchange declaration (for example, the client
requested an unsupported language). For content errors such as wrong USERPASS or invalid
account, the server must return a valid Open Financial Exchange response along with code 200.
If a communication time-out error occurs while an OFX server and a back-end server are
communicating to fill a request, then the server MUST return a code in the 500s.

Open Financial Exchange requires the following HTTP standard headers:

When responding with multipart MIME (likely only if the request included a <GETMIMERQ> request
the main type will be multipart/x-mixed-replace; one of the parts will use application/x-ofx.

2.2 Open Financial Exchange File Format

The contents of an Open Financial Exchange file consists of simple declarations followed by conten
defined by those declarations.

Code Meaning Action

200 OK The request was processed and a valid Open Financial Exchange result is
returned.

400s Bad request The request was invalid and was not processed. Clients will report an intern
error to the user. Invalid requests include: general HTTP transport errors, XM
formatting errors, invalid OFX syntax, and invalid data values. This error shoul
not appear for request files the server is able to parse.

500s Server error The server is unavailable. Clients should advise the user to retry shortly.

Code Value Explanation

Content-
type

application/x-
ofx

The MIME type for Open Financial Exchange

Content-
length

length Length of the data after removing HTTP headers
30 2.1 HTTP Headers

ns to

hange
ion

an
The first line should be the standard XML declaration. This Processing Instruction (PI) includes optio
specify the version of XML being used, the encoding declaration, and the standalone status of the
document.

The XML declaration takes the form:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

The next line must be the OFX declaration. This PI identifies the contents as an Open Financial Exc
file and provides the version number of the Open Financial Exchange declaration itself (not the vers
number of the contents). The Open Financial Exchange PI contains the following attributes:

OFXHEADER

VERSION

SECURITY

OLDFILEUID

NEWFILEUID

All these attributes are required. "NONE" should be returned if client or server does not make use of
individual attribute, e.g., OLDFILEUID="NONE".

The entire declaration takes the form:

<?OFX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>
OFX 2.0 Specification 316/30/00

new
the

value

FX
ue to

e

For information about each of the OFX declaration attributes, refer to the following sections.

2.2.1 OFXHEADER

OFXHEADER specifies the version number of the Open Financial Exchange declaration.

The OFXHEADER value changes its major number only if an existing client is unable to process the
header. This can occur because of a complete syntax change in a header, or a significant change in
semantics of an existing header element.

Because OFX 2.0 uses an XML compliant header which significantly differs from the 1.x header, the
of OFXHEADER is now 2.0 (OFXHEADER="200").

2.2.2 VERSION

VERSION specifies the version number of the following OFX data block.

The OFX 2.0 DTD supports the following:

� All version 1 message sets found in OFX 1.6.

� 401(k) extensions to Investment Statement Download.

The current accepted value for VERSION is 200.

2.2.2.1 Tax OFX Versioning

A separate version of the OFX 2.0 DTD exists for Tax forms. The Tax OFX DTD contains the basic O
entities and aggregates along with the W2 and 1099 form definitions. As the OFX tax forms change d
IRS changes, only the Tax OFX DTD shall change. The current OFX version will remain unchanged
unless changes to core OFX require it.

2.2.3 SECURITY

SECURITY defines the type of application-level security, if any, that is used for the <OFX> block. Th
values for SECURITY can be NONE or TYPE1.

For more information about security, refer to Chapter 4, "OFX Security."

2.2.4 OLDFILEUID and NEWFILEUID

NEWFILEUID uniquely identifies this request file. The NEWFILEUID, which clients must send with
every request file and which servers must echo in the response, serves two purposes:

� Servers can use the NEWFILEUID to quickly identify duplicate request files.
32 2.2 Open Financial Exchange File Format

ed by
� Clients and servers can use NEWFILEUID in conjunction with OLDFILEUID for file-based error
recovery. For more information about using file-based error recovery orlite synchronization, see
Chapter 6, "Data Synchronization."

OLDFILEUID is used together with NEWFILEUID only when the client and server support file-based
error recovery. OLDFILEUID identifies the last request and response that was received and process
the client.
OFX 2.0 Specification 336/30/00

se off-
FX
th
gs

’>’,
e

that
2.3 XML Details

2.3.1 Compliance

XML is the basis for Open Financial Exchange 2.0 and later. To enable OFX clients and servers to u
the-shelf XML parsers, OFX 2.0 is fully XML compliant. Therefore, in contrast to the guidelines for O
1.6 and below, unrecognized tags may not be present. If clients and servers wish to extend OFX wi
private tags and true DTD validation is necessary, a modified OFX DTD which contains those new ta
must be passed along with the OFX document.

2.3.1.1 Special Characters

Special characters in OFX 2.0 are handled according to the XML standard. Characters such as ’<’,
’&’, ’’’, and ’"’ are predefined in XML. Other character strings with many special characters should b
enclosed in a CDATA section.

Note: The space macro () should be used if leading or trailing blanks are meant to be
preserved as part of a data element’s value. Alternatively, a CDATA block may be used to
force the handling of leading or trailing spaces. No special formatting of space characters in
the middle of an element’s text value is needed.

2.4 Open Financial Exchange XML Structure

2.4.1 Overview

Open Financial Exchange hierarchically organizes request and response blocks:

Top Level <OFX>

Message Set and Version < xxx MSGSVn>

Synchronization Wrappers < xxx SYNCRQ>, <xxx SYNCRS>

Transaction Wrappers < xxx TRNRQ>, <xxx TRNRS>

Specific requests and responses

The following sections describe these levels.

2.4.2 Case Sensitivity

OFX requires upper case letters for tag names and enumerated values. In the example below,
<SEVERITY> is an element with an enumerated value and <MESSAGE> is an element with a value
is not enumerated.

<STATUS>

<CODE>2000</CODE>
34 2.3 XML Details

nd the
nt
<SEVERITY>ERROR</SEVERITY>

<MESSAGE>General Error</MESSAGE>

</STATUS>

2.4.3 Top Level

An Open Financial Exchange request or response has the following top-level form:

This chapter specifies the order of requests and responses.

A single file MUST contain only one OFX block.

2.4.4 Messages

A message is the unit of work in Open Financial Exchange. It refers to a request and response pair, a
status codes associated with that response. For example, the message to download a bank stateme
consists of the request <STMTRQ> and the response <STMTRS>.

OFX uses several common message types to perform specific functions. Within OFX, the following
naming conventions are used, where the generalxxxmessages may be:

� Basic (or Add) request <xxxRQ> and response <xxxRS>

� Modify request <xxxMODRQ> and response <xxxMODRS>

� Delete request <xxxDELRQ> and response <xxxDELRS>

� Cancel request <xxxCANRQ> and response <xxxCANRS> (these pairs may also be named
<xxxCANCRQ> and <xxxCANCRS)

Tag Description

<OFX> Opening tag

<SONRQ> or
<SONRS>

Required signon request or response. See section 2.5.1.

... Open Financial
Exchange requests or
responses ...

0 or more transaction requests and responses inside appropriate message set
aggregates

</OFX> Closing tag for the Open Financial Exchange record
OFX 2.0 Specification 356/30/00

n

ted

or
>).

value is
es for
nt

th it,
2.4.4.1 Basic and Add Messages

ThebasicOFX message has a name structure of <xxxRQ>/<xxxRS>. It is used for read actions of a
specific object (such as a bank statement using <STMTENDRQ>). It is encapsulated in a transactio
wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore, <STMTENDTRNRQ> and <STMTENDTRNRS> in
the example above).

TheaddOFX message, like the Basic message, has a name structure of <xxxRQ>/<xxxRS>. It is used to
create a new instance of objectxxx(such as creating a new payment using <PMTRQ>). It is encapsula
in a transaction wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore, <PMTTRNRQ> and <PMTTRNRS>
in the example above).

2.4.4.2 Modify Message

ThemodifyOFX message has a name structure of <xxxMODRQ>/<xxxMODRS>. It is used to modify an
existing instance of objectxxx(such as modifying an existing payment using <PMTMODRQ>). It is
encapsulated in a transaction wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore, <PMTTRNRQ> and
<PMTTRNRS> in the example above).

The <xxxMODRQ> request contains thecomplete replacementdata for an existing objectxxx. Therefore,
both changed and unchanged elementsmust be included in the request.

2.4.4.3 Delete and Cancel Messages

ThedeleteandcancelOFX messages have a name structure of <xxxDELRQ>/<xxxDELRS> and
<xxxCANRQ>/<xxxCANRS> or <xxxCANCRQ>/<xxxCANCRS>, respectively. They are used to delete
an existing instance of objectxxx(such as deleting a payee from a payee list using <PAYEEDELRQ>),
to cancel an existing scheduled object (such as canceling a pending payment using <PMTCANCRQ
They are encapsulated in a transaction wrapper <xxxTRNRQ> or <xxxTRNRS> (therefore,
<PAYEETRNRQ> and <PMTTRNRQ> in the examples above).

2.4.4.4 Inquiry Message

The inquiry OFX message sometimes has a name structure of <xxxINQRQ>/<xxxINQRS>. It is used to
search for and/or gain information about (an) existing object(s)xxx(such as finding one or more existing
payments using <PMTINQRQ>). It is encapsulated in a transaction wrapper <xxxINQTRNRQ> or
<xxxINQTRNRS> (therefore, <PMTINQTRNRQ>and <PMTINQTRNRS> in the example above).

Inquiry messages limit the response set to records matching theselection criteriaused in the request.
Selection criterion elements in the request are generally repeating elements. Where more than one
given for a particular element, the query ORs those values. Where multiple different elements (match
different fields of the objects) are provided, the query ANDs those values. Where an element is abse
from the request, the query is not filtering on that element. If an element has a history associated wi
only the most recent value is intended by the inquiry.
36 2.4 Open Financial Exchange XML Structure

ider a
sis of

ncial

xample,

ay or

in
ck
r request
Note: A server is not obligated to support filtering on all selection criterion elements. If a
server chooses not to support a particular element as a selection criterion, itmust treat that
element as if it were not present. That is, the server must return the appropriate record set for
the elements on which it does support filtering. As a result, clients should be prepared to
receive records outside the scope of the selection criteria submitted in the request.

Note: Many inquiry messages do not presently follow the naming conventions detailed above.
They may be named <xxxINFORQ>/<xxxINFORS> (<ACCTINFORQ> and
<ACCTINFORS> for example) or without reference to an obvious convention
(<PRESLISTRQ> and <PRESLISTRS> for example).

2.4.5 Message Sets and Version Control

Message sets are collections of messages. Generally they form all or part of what a user would cons
service, something for which they might have signed up, such as “banking.” Message sets are the ba
version control, routing, and security. They are also the basis for the required ordering in Open Fina
Exchange files.

Within the OFX block, OFX organizes messages by message set. Message sets follow these rules:

� A request file may include at most one message set wrapper of each type.

� All messages within any message set must be from the same version of that message set.

� Servers must respond using the same message sets and versions as sent in the request file. For e
if <SIGNUPMSGSRQV1> appears in the request file, <SIGNUPMSGSRSV1> must appear in the
response file. There is one exception to this rule: servers may return the <SECLISTMSGSRSV1>
wrapper (see 13.7.2 and 13.8.4) in response to an investment statement download request that m
may not include <SECLISTMSGSRQV1>.

2.4.5.1 Message Set Aggregates

For each message set ofxxxand versionn, there are two aggregates, one for requests <xxxMSGSRQVn>)
and one for responses <xxxMSGSRSVn>. All of the messages from that message set must be enclosed
the appropriate message set aggregate. In the following example, the Open Financial Exchange blo
contains a signon request inside the signon message set, and two statement requests and a transfe
inside the bank message set.

<OFX>

<SIGNONMSGSRQV1> <!-- Signon message set -->

<SONRQ> <!-- Signon message -->

...

</SONRQ>

</SIGNONMSGSRQV1>

<BANKMSGSRQV1> <!-- Banking message set -->
OFX 2.0 Specification 376/30/00

ge set.
<STMTTRNRQ> <!-- Statement request -->

...

</STMTTRNRQ>

<STMTTRNRQ> <!-- Another stmt request -->

...

</STMTTRNRQ>

<INTRATRNRQ> <!-- Intrabank transfer request -->

...

</INTRATRNRQ>

</BANKMSGSRQV1>

</OFX>

2.4.5.2 Message Set Ordering

Message sets must appear in the following order:

� Signon

� Signup

� Banking

� Credit card statements

� Investment statements

� Interbank funds transfers

� Wire funds transfers

� Payments

� General e-mail

� Investment security list

� Biller Directory

� Bill Delivery

� FI Profile

The definition of each message set can further prescribe an order of its messages within that messa
38 2.4 Open Financial Exchange XML Structure

t

t-

his

sponse
2.4.5.3 Message Set Version Numbers

The following table lists each message set, along with its aggregate name and the DTD versions tha
support it.

Note: For each message set that it is supporting, a financial institution must indicate which
version numbers of that message set it supports. The financial institution includes the message
set version number in the <MSGSETCORE> aggregate of the FI profile. For more information
about the FI profile, refer to Chapter 7, "FI Profile." OFX 2.0 servers should use version
number 1.

2.4.6 Transactions

Other than the signon message, each request is made as a transaction. Transactions contain a clien
assigned globally-unique ID, optional client-supplied pass-back data, and the request aggregate. A
transaction similarly wraps each response. The response transaction returns the client ID sent in the
request, along with a status message, the pass-back data if present, and the response aggregate. T
technique allows a client to track responses against requests. Section 3.1.2provides more information
about the format of information exchanged by the client and server.

The <STATUS> aggregate, defined in Chapter 3, "Common Aggregates, Elements, and Data Types,"
provides feedback on the processing of the request. If the <SEVERITY> of the status is ERROR, the
server provides the transaction response without the nested response aggregate. Otherwise, the re
must be complete even though a warning might have occurred.

Message Set Message Set Aggregate DTD Support

Signon <SIGNONMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

Signup <SIGNUPMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

Banking <BANKMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

Credit Card Statements <CREDITCARDMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

Investment Statements <INVSTMTMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

Interbank Funds Transfers <INTERXFERMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

Wire Funds Transfers <WIREXFERMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

Payments <BILLPAYMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

General e-mail <EMAILMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

Investment security list <SECLISTMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0

Biller directory <PRESDIRMSGSETV1> 1.5.1, 1.6, 2.0

Bill delivery <PRESDLVMSGSETV1> 1.5.1, 1.6, 2.0

FI Profile <PROFMSGSETV1> 1.0.2, 1.5.1, 1.6, 2.0
OFX 2.0 Specification 396/30/00

is
l

as

h
t for

ded to

turn
he
s to

ses,
he

action
in a
ned
Clients can send additional information in <CLTCOOKIE> that servers will return in the response. Th
allows clients that do not maintain state, and thus do not save <TRNUID>s, to cause some additiona
descriptive information to be present in the response. For example, a client might identify a request
relating to a user or a spouse.

<CLTCOOKIE> must only be returned by the server in the initial response to the client (and any cras
recovery from that response). The <CLTCOOKIE> should not be present in a sync response, excep
those transactions whose requests were wrapped in the sync request.

In some countries, some banks may require that a customer-supplied authorization number be inclu
authenticate certain kinds of individual transactions such as payment requests. For those banks, the
<TAN> element passes this information to servers.

Note that if a <CLTCOOKIE> is given to an OFX server in a request, the OFX server is required to re
it. This return of the <CLTCOOKIE> will necessitate server-side storage of <CLTCOOKIE> data. In t
case of an OFX client getting a <CLTCOOKIE> that it didn’t send in a request, the default behavior i
ignore it.

2.4.6.1 Transaction Wrapper

With the exception of the <SONRQ>/<SONRS> message, each message has a correspondingtransaction
wrapper. For requests, the transaction wrapper adds a transaction unique ID <TRNUID>. For respon
the transaction wrapper adds the same transaction unique ID <TRNUID> (an echo of that found in t
request), plus a <STATUS> aggregate.

Thetransaction wrapperhas a name structure of <xxxTRNRQ>/<xxxTRNRS>. A transaction wrapper pair
encapsulates a single message (<xxxRQ>/<xxxRS>, <xxxMODRQ>/<xxxMODRS>, etc.).

While the same name may be used for addition, modification and deletion messages, a single trans
wrapper may contain at most one request or response. The request transaction wrapper must conta
single request. The response transaction wrapper must contain a single response unless the contai
<STATUS> aggregate indicates an error. The <MULTIINTERTRNRQ>/<MULTIINTERTRNRS> pair
(section 11.8.5) is an exception to these rules.

Note: Some requests and responses (generally, Add, Modify, and Delete/Cancel types) share a
transaction wrapper and synchronization wrapper. In these cases, the names of the transaction
and synchronization wrappers reflect the Add message.
40 2.4 Open Financial Exchange XML Structure

A typical request is as follows:

A typical response is as follows:

List of status code values for the <CODE> element of <STATUS>:

Tag Description

<xxx TRNRQ> Transaction-request aggregate

<TRNUID> Client-assigned globally-unique ID for this transaction,trnuid

<CLTCOOKIE> Data to be echoed in the transaction response,A-32

<TAN> Transaction authorization number; used in some countries with some types of
transactions. The FI Profile defines messages that require a <TAN>,A-80

Request
aggregate

Aggregate for the request

</xxx TRNRQ>

Tag Description

<xxx TRNRS> Transaction-response aggregate

<TRNUID> Client-assigned globally-unique ID for this transaction,trnuid

<CLTCOOKIE> Client provided data,A-32

<STATUS> Status aggregate

</STATUS>

Response
aggregate

Aggregate for the response

</xxx TRNRS>

Value Meaning

0 Success (INFO)

2000 General error (ERROR)

2022 Invalid TAN (ERROR)
OFX 2.0 Specification 416/30/00

ails on

sponse

e
>

Every
tly one
and

is
a
his will
or
count.

mber,
2.4.7 Synchronization Wrapper

Thesynchronization wrapperhas a name structure of <xxxSYNCRQ>/<xxxSYNCRS>. It contains
synchronization parameters and optionally encapsulates one or more transaction wrappers. For det
the use of synchronization wrappers, see Chapter 6.

When embedded transactions are not present, the synchronization request contains no transaction
wrappers. If the client is up to date when the server processes such a request, the synchronization re
also contains no transaction wrappers.

Note: If a request/response is a sync request/response only, the transaction wrapper and
request that it wraps are omitted.

2.4.8 Message Set Wrapper

The profilemessage set wrappershave a name structure of <xxxMSGSET> and <xxxMSGSETV1>.

The request and responsemessage set wrappershave a name structure of <xxxMSGSRQVn> and
<xxxMSGSRSVn> respectively. For OFX 2.0, “n” must be “1”. This number indicates the version of the
message set used by the contained messages.

2.5 The Signon Message Set

The Signon message set includes the signon message, USERPASS change message, and challeng
message, which must appear in that order. The <SIGNONMSGSRQV1> and <SIGNONMSGSRSV1
aggregates wrap the message.

2.5.1 Signon <SONRQ> and <SONRS>

The signon record identifies and authenticates a user to an FI. It also includes information about the
application making the request, because some services might be appropriate only for certain clients.
Open Financial Exchange block contains exactly one <SONRQ>. Every response must contain exac
<SONRS> record. Use of Open Financial Exchange presumes that FIs authenticate each customer
then give the customer access to one or more accounts or services. Authentication of a <SONRQ>
required, even when in Error Recovery. If passwords are specific to individual services or accounts,
separate Open Financial Exchange request must be made for each user ID or password required. T
not necessarily be in a manner visible to the user. Note that some situations, such as joint accounts
business accounts, will have multiple user IDs and multiple passwords that can access the same ac

FIs assign user IDs for the customer. Although the user ID may be the customer’s social security nu
the client must not make any assumptions about the syntax of the ID, add check-digits, or do similar
processing.
42 2.5 The Signon Message Set

r a
If the

t
, a

the
gle

ser

en a

t
the
gned

ervers
should

ext
d,
.0
uccess

with
it must
tus
ust

e same
To improve server efficiency in handling a series of Open Financial Exchange request files sent ove
short period of time, clients can request that a server return a <USERKEY> in the signon response.
server provides a user key, clients will send the <USERKEY> instead of the user ID and password in
subsequent sessions, until the <USERKEY> expires. This allows servers to authenticate subsequen
requests more quickly. Servers must accept a <GENUSERKEY> element in a <SONRQ>. However
server may decide <USERKEY> does not afford sufficient security and may optionally not return a
<USERKEY> in the <SONRS>.

The client returns <SESSCOOKIE> if the server sent one in a previous <SONRS>. Servers can use
value of <SESSCOOKIE> to track client usage but cannot assume that all requests come from a sin
client, nor can they deny service if they did not expect the returned cookie. Use of a backup file, for
example, could lead to an unexpected <SESSCOOKIE> value that nevertheless should not stop a u
from connecting.

A client may use an anonymous form of <USERID> and <USERPASS> on those rare occasions wh
server need not authenticate the <SONRQ>. The only present situations in this class are first-time
<PROFRQ>, <FINDBILLERRQ>, and all <ENROLLRQ> transactions. Any request sent by the clien
after a successful <ENROLLRQ> response (or out of band enrollment) for the service must provide
user’s <USERID> and <USERPASS>. The anonymous <USERID> or <USERPASS> value is left ali
and padded with 0 to a length of 32 characters: anonymous00000000000000000000000

Note: This anonymous password length may exceed the <MAX> value for the profile server
(in the corresponding <SIGNONINFO> aggregate). Nonetheless, servers supporting
anonymous signon must not reject this password due to its length.

Servers can request that a consumer change his or her password by returning status code 15000. S
should keep in mind that only one status code can be returned. If the current signon response status
be 15500 (invalid ID or password), the request to change the password must wait until an otherwise
successful signon is achieved.

An OFX 2.0 server has the option of allowing or disallowing “empty” signon transactions. In the cont
of signon, “empty” means a simple signon without any other transaction (a sync, statement downloa
etc.). If the OFX 2.0 server does not support empty signon, it should return error 15506. If the OFX 2
server does support empty signon, it should process the signon and return the appropriate error or s
code.

If the server returns any signon error, it must respond to all other requests in the same <OFX> block
status code 15500. For example, if the server returns status code 15502 to the <SONRQ> request,
return status code 15500 to all other requests in the same <OFX> block. The server must return sta
code 15500 for all requests; it cannot simply ignore the requests. In addition, any sync responses m
indicate an error with <TOKEN>-1</TOKEN>, <LOSTSYNC>N </LOSTSYNC>(<LOSTSYNC> is an
optional element). Responses for any transactions embedded in the sync request should contain th
<STATUS><CODE>15500</CODE></STATUS>. Otherwise, they must be omitted from the sync
response wrapper. (See section 6.2 for data synchronization specifics.)
OFX 2.0 Specification 436/30/00

t

st
lue

nt
2.5.1.1 Signon Request <SONRQ>

Unlike other requests, the signon request <SONRQ> does not appear within a transaction wrapper.

Tag Description

<SONRQ> Signon-request aggregate

<DTCLIENT> Date and time of the request from the client computer,datetime

This value should reflect the time (according to the client machine) when the reques
file is sent to the server, not the (original) creation time of the request file. While not
required for existing software, OFX 2.0 clients must comply with this rule. This
clarification is particularly important in error recovery situations in which the request
file may be sent to the server after its initial creation.

User identification.
Either <USERID> and
<USERPASS> or
<USERKEY>, but not
both.

<USERID> User identification string,A-32

<USERPASS> User password on server,A-171

Note: The maximum clear text length of USERPASS is 32 characters: a client mu
not send a longer password. However, when using Type 1 security, the encrypted va
may extend to 171 characters.

<USERKEY> Log in using previously authenticated context,A-64

<GENUSERKEY> Request server to return a USERKEY for future use,Boolean

<LANGUAGE> Requested language for text responses,language

<FI> Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether a FI aggregate should be used
and if so, the appropriate values for it. If the FI aggregate is to be used, then the clie
should send it in every request, and the server should return it in every response.

</FI>

<SESSCOOKIE> Session cookie value received in previous <SONRS>, not sent if first login or if none
sent by FI,A-1000

<APPID> ID of client application,A-5

<APPVER> Version of client application, (6.00 encoded as 0600),N-4

</SONRQ>
44 2.5 The Signon Message Set

er.

as

,

I

d
nt
2.5.1.2 Signon Response <SONRS>

Unlike other responses, the signon response <SONRS> does not appear within a transaction wrapp

Note: A client should use <DTPROFUP> and <DTACCTUP> only when the service provider
that originated <SONRS> is the same provider that is specified by <SPNAME> in the profile
message set. A client can determine if the service provider is the same by comparing the value
of <SPNAME> in the appropriate message set with the value for <SPNAME> in the profile
message set.

Tag Description

<SONRS> Record-response aggregate

<STATUS> Status aggregate, see section 3.1.5. See list of possible code values in section 2.5.1.3

</STATUS>

<DTSERVER> Date and time of the server response,datetime

This value should reflect the time (according to the server) when the response file w
originally created. While not required for existing software, OFX 2.0 servers must
comply with this rule. This clarification is particularly important in error recovery
situations: The server should (must for OFX 2.0 servers) return the time the request
was first processed. If the previous attempt failed after transactions were processed
<DTSERVER> in the response file would reflect that processing time.

<USERKEY> Use user key instead of USERID and USERPASS for subsequent requests.
TSKEYEXPIRE can limit lifetime.A-64

<TSKEYEXPIRE> Date and time that USERKEY expires,datetime

<LANGUAGE > Language used in text responses,language

<DTPROFUP> Date and time of last update to profile information for any service supported by this F
(see Chapter 7, "FI Profile"), datetime

<DTACCTUP> Date and time of last update to account information (see Chapter 8, “Activation &
Account Information”),datetime

<FI> Financial-Institution-identification aggregate

Note: The client will determine out-of-band whether an FI aggregate should be use
and, if so, the appropriate values for it. If the FI aggregate is to be used, then the clie
should send it in every request, and the server should return it in every response.

</FI>

<SESSCOOKIE> Session cookie that the client should return on the next <SONRQ>,A-1000

</SONRS>
OFX 2.0 Specification 456/30/00

2.5.1.3 Status Codes

List of status code values for the <CODE> element of <STATUS>:

Value Meaning

0 Success (INFO)

2000 General error (ERROR)

13504 <FI> Missing or Invalid in <SONRQ> (ERROR)

15000 Must change USERPASS (INFO)

15500 Signon invalid (see section 2.5.1) (ERROR)

15501 Customer account already in use (ERROR)

15502 USERPASS Lockout (ERROR)

15505 Country system not supported by server (ERROR)

15506 Empty signon transaction not supported (ERROR)

15507 Signon invalid without supporting pin change request (ERROR)
46 2.5 The Signon Message Set

pass

FI
regates

here
nce:

ct the
ause
client

not

to
2.5.1.4 Financial Institution ID <FI>

Some service providers support multiple FIs, and assign each FI an ID. The signon allows clients to
this information along, so that providers know to which FI the user is signing on.

If a server does not require an FI aggregate in a request but receives one anyway, it should echo the
aggregate back. This is compliant with the general rule that the server should echo elements and agg
in the response if they are received and understood in the request.

If a server requires the <FI> aggregate in <SONRQ> requests and it contains incorrect information t
are several different specification compliant ways to respond. These are given in the order of prefere

� Return a 2000 error with appropriate text message – since the FI aggregate information is incorre
user’s information (<USERID> and <USERPASS>) cannot be verified. Returning a 15500 might c
clients to display messages to the user that the attempt to communicate with the server failed. A
would probably suggest that the user verify their <USERID> and <USERPASS> values.

� Return a 15500 error – since the FI aggregate information is incorrect or unknown the server can
verify the <USERID>, <USERPASS>, etc.

� Return an http 400 error – this is the least desirable option since it will provide no useful feedback
the client communicating with the server, however it is legal.

Tag Description

<FI> FI-record aggregate

<ORG> Organization defining this FI name space,A-32

<FID> Financial Institution ID (unique within <ORG>),A-32

</FI>
OFX 2.0 Specification 476/30/00

. The
de the

se, it
ccept

word
en

t know

utilize
f that

rn a

hether

ith the
r 7,
ge

rmation

e

2.5.2 USERPASS Change <PINCHRQ> <PINCHRS>

The client sends a request to change the customer password as a separate request from the signon
transaction request <PINCHTRNRQ> aggregate contains <PINCHRQ>. Responses are placed insi
transaction response <PINCHTRNRS>.

Password changes pose a special problem for error recovery. If the client does not receive a respon
cannot know whether or not the password change was successful. OFX recommends that servers a
either the old password or the new password on the connection following the one containing a pass
change. When file-based error recovery is in use, the server must reject the old password except wh
received with NEWFILEUID/OLDFILEUID headers indicating an error recovery attempt.

Also, if the client does not receive a response that has a status code of 15000 from a server, it canno
that a password change is required. In this case, the server must accept the old password when the
NEWFILEUID/OLDFILEUID headers indicate an error recovery attempt.

Servers that do not support file-based error recovery (or, when interacting with a client that does not
file-based error recovery) must not complete a <PINCHRQ> until after the next request file arrives. I
request file uses the new password, the new password must be permanently associated with the
<USERID>. Otherwise, the old password may authenticate the user. (For security, servers may retu
signon error if the next request file uses the old password but does not include a <PINCHRQ>.)
Conforming clients should re-send request files (unchanged beyond the <SONRQ>) after a failure w
or not file-based error recovery is in use.

2.5.2.1 <PINCHRQ>

A USERPASS change request changes the customer’s password for the specific realm associated w
messages contained in the OFX block. Based on the properties of an OFX profile, defined in Chapte
"FI Profile," a single OFX block contains instructions related to a single realm. The USERPASS chan
request thus changes the USERPASS for all message sets associated with one realm. For more info
about signon realms, see section 7.2.2.

Tag Description

<PINCHRQ> USERPASS-change-request aggregate

<USERID> User identification string. Often a social security number, but if so, does not includ
any check digits,A-32

Note: The maximum clear text length of USERPASS is 32 characters: a client
must not send a longer password. However, when using Type 1 security, the
encrypted value may extend to 171 characters.

<NEWUSERPASS> New user password,A-171

Note: The effective size of NEWUSERPASS is A-32. However, if Type 1 security
is used, then the actual field length is A-171.

</PINCHRQ>
48 2.5 The Signon Message Set

y

2.5.2.2 <PINCHRS>

2.5.2.3 Status Codes

Tag Description

<PINCHRS> USERPASS-change-response aggregate

<USERID> User identification string. Often a social security number, but if so, does not include an
check digits,A-32

<DTCHANGED> Date and time the password was changed,datetime

</PINCHRS>

Value Meaning

0 Success (INFO)

2000 General error (ERROR)

15503 Could not change USERPASS (ERROR)

15508 Transaction not authorized (ERROR)
OFX 2.0 Specification 496/30/00

nd is the

.

a

ded
nse.

0 for

Even
2.5.3 <CHALLENGERQ> <CHALLENGERS>

A challenge request is the first step in Type 1 application-level security. Essentially, it asks for some
random data from the server. The challenge response provides that server-generated random data a
second step in Type 1 security.

The challenge message is part of the signon message set and is not subject to data synchronization

2.5.3.1 <CHALLENGERQ>

A <CHALLENGERQ> is part of a <CHALLENGETRNRQ> transaction, a <CHALLENGERS> part of
<CHALLENGETRNRS>.

The client includes <FICERTID> in the request if it already has the server’s certificate. If that is inclu
and matches the server’s current certificate, the server may omit the actual certificate from the respo

2.5.3.2 <CHALLENGERS>

When generating the <NONCE>, make sure the data is as unpredictable as possible. See RFC 175
recommendations.

The server includes <FICERTID> in the response to identify the certificate in a separate MIME part.
if the certificate itself is not attached, <FICERTID> is still included in the response.

Tag Description

<CHALLENGERQ > Opening tag for the challenge request.

<USERID> User identification string,A-32

<FICERTID> Optional server certificate ID.A-64

</CHALLENGERQ> Closing tag for challenge request.

Tag Description

<CHALLENGERS > Opening tag for the challenge response.

<USERID> User identification string,A-32

<NONCE> Server-generated random data.A-16

<FICERTID> ID of server certificate used to encrypt.A-64

</CHALLENGERS > Closing tag for challenge response.
50 2.5 The Signon Message Set

evel)
signon
L that

ge set
ction
2.5.3.3 Status Codes

Status code values for the <CODE> element (contained within the <STATUS> aggregate):

2.5.4 Signon Message Set Profile Information

A server must include the signon message set <SIGNONMSGSET> as part of the <MSGSETLIST>
aggregate in the FI profile, since every server must support signon requests.

The information that is part of the <MSGSETCORE> aggregate (for example, the URL and security l
is used only when no other message sets are used. Otherwise, the other message sets override the
message set for the purposes of batching and routing. For example, if bill payments are sent to a UR
is different from the one used for signon, the client uses the URL specified in the bill payment messa
<BILLPAYMSGSET>. For more information about how clients batch and route messages, refer to se
7.1.3.

Value Meaning

0 Success (INFO)

2000 General error (ERROR)

15504 Could not provide random data (ERROR)

15508 Transaction not authorized (ERROR)

Tag Description

<SIGNONMSGSET> Signon-message-set-profile-information aggregate

<SIGNONMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information, defined in Chapter 7, "FI Profile"

</MSGSETCORE>

</SIGNONMSGSETV1>

</SIGNONMSGSET>
OFX 2.0 Specification 516/30/00

ation
ta
an send

ancial
2.5.5 Examples

User requests a password change:

<PINCHTRNRQ>

<TRNUID>888</TRNUID>

<PINCHRQ>

<USERID>123456789</USERID>

<NEWUSERPASS>5321</NEWUSERPASS>

</PINCHRQ>

</PINCHTRNRQ>

The server responds with:

<PINCHTRNRS>

<TRNUID>888</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PINCHRS>

<USERID>123456789</USERID>

</PINCHRS>

</PINCHTRNRS>

2.6 External Data Support

Some data, such as binary data, cannot easily be sent within XML. For these situations, the specific
defines an element that references some external data. The way that clients pick up the external da
depends on the transport used. For the HTTP-based transport described in this document, servers c
the data in one of two ways:

� Send the same response, using multipart MIME types to separate the response into the Open Fin
Exchange file and one or more external data files

� Client can make a separate HTTP get against the supplied URL, if it really needs the data

For example, to retrieve a logo, a <GETMIMERS> might answer a <GETMIMERQ> as follows:

<GETMIMERS>

<URL>https://www.fi.com/xxx/yyy/zzz.jpg</URL>

</GETMIMERS>

If the file includes the same response using multipart MIME, clients must have the local file, zzz.jpg.
52 2.6 External Data Support

isting
isk of
own

nage
ly

d

ncial

ents
but

tent of
ly

y to
2.7 Extensions to Open Financial Exchange

An organization that provides a customized client and server that communicate by means of Open
Financial Exchange might wish to add new requests and responses or even specific elements to ex
requests and responses. To ensure that each organization can extend the specification without the r
conflict, Open Financial Exchange defines a style of tag naming that lets each organization have its
naming convention.

Organizations can register a specific tag name prefix. (The specific procedure or organization to ma
this registration will be detailed at a later time.) If an organization registers “ABC,” then they can safe
add new elements and aggregates named <ABC.SOMETHING> without:

� Colliding with another party wishing to extend the specification

� Confusing a client or server that does not support the extension

The extensions are not considered proprietary. An organization is free to publish their extensions an
encourage client and server implementors to support them.

All tag names that do not contain a period (.) are reserved for use in future versions of the Open Fina
Exchange specification.

Note: Because OFX 2.0 forces XML compliance, unrecognized tags (per the DTD) are no
longer allowed in OFX documents. If a client or server wishes to send an OFX document with
tags or elements not found in the official OFX DTD, a modified DTD must be sent with the
OFX document containing the new content so that validating parsers will not fail on parsing the
new tags or elements.
The requirement to send a modified DTD with the document itself can be relaxed for clients
and servers which do not use validating parsers. However, clients and servers using extensions
to OFX must still conform to a mutually agreed upon DTD.

2.8 Backward Compatibility with Pre-OFX 2.0 Systems

OFX 2.0 differs with previous versions of OFX mainly through the required use of end tags on all elem
and through the use of an XML compliant header. OFX 1.0.2 required any parser to accept end tags
did not require clients or servers to send elements with end tags. Therefore, because the actual con
the OFX message sets has not changed, the transformation between OFX 1.0.2 and OFX 2.0 is fair
simple.

2.8.1 End Tag Usage

OFX 2.0 requires the use of end tags in the OFX block of requests and responses. This is necessar
enforce XML compliance.
OFX 2.0 Specification 536/30/00

old

t the
r,
lder
2.8.2 XML Compliant Header

Any client or server using OFX 2.0 will have to use the XML compliant header. Mapping between the
and new style of OFX headers is straightforward.

The old OFX header looks like:

OFXHEADER: 100
DATA: OFXSGML
VERSION: 102
SECURITY: NONE
ENCODING: USASCII
CHARSET: NONE
COMPRESSION: NONE
OLDFILEUID:NONE
NEWFILEUID: NONE

The new XML compliant OFX header looks like:

<?OFX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

The old OFX header maps to the new header as follows:

� OFXHEADER has the same meaning in both versions.

� DATA is not necessary because XML is assumed.

� VERSION has the same meaning in both versions.

� SECURITY has the same meaning in both versions.

� ENCODING is not necessary because it is specified in the standard XML declaration.

� CHARSET is not necessary because it is handled by the XML declaration.

� COMPRESSION is not necessary because it will not be handled at this data level.

� OLDFILEUID has the same meaning in both versions.

� NEWFILEUID has the same meaning in both versions.

2.8.3 International Support

XML supports many different types of character encoding An OFX 2.0 server would have to suppor
full range of encoding specified in the XML 1.0 recommendation to be fully XML compliant. Howeve
OFX 1.x only required support for USASCII and UTF-8. Therefore, to guarantee compatibility with o
servers, it will be necessary to limit the encoding of characters to USASCII and UTF-8.
54 2.8 Backward Compatibility with Pre-OFX 2.0 Systems

2.8.4 Message Set Versioning

OFX 2.0 supports all V1 message sets found in the OFX 1.6 specification.
OFX 2.0 Specification 556/30/00

56 2.8 Backward Compatibility with Pre-OFX 2.0 Systems

ample,

ervice.

ient or
way as
aking

values
of a

server.

ese
CHAPTER 3 COMMON AGGREGATES, ELEMENTS, AND

DATA TYPES

3.1 Common Aggregates

This section describes aggregates used in more than one service of Open Financial Exchange (for ex
investments and payments).

3.1.1 Identification of Financial Institutions and Accounts

Open Financial Exchange does not provide a universal space for identifying financial institutions,
accounts, or types of accounts. The way to identify an FI and an account at that FI depends on the s
For information about service-specific ID aggregates, see Chapter 11, "Banking," Chapter 12,
"Payments,"and Chapter 13, "Investments."

3.1.2 Punctuation in Certain User-Supplied Values

This section discusses the addition or removal of punctuation in certain user-supplied values by a cl
server. The term punctuation is loosely used to pertain to the manipulation of these values in such a
to make them more readable to either a user or processor, or make them more precise or correct. M
user-supplied values more readable to the user or processor involves the utilization of punctuation
characters, for example, the stripping out of dashes in a user-supplied account number. Making the
more precise or correct might involve an actual syntactic change to data, for example, the extension
zip code to use the full zip+4 value.

3.1.2.1 Manipulation of User-Supplied Values by a Client

The user-supplied values under consideration here fall into three broad groups:

� Values provided for security reasons

� Values of critical ID fields

� Values of non-critical fields

3.1.2.1.1 Values provided for security reasons

This group pertains to values provided for security reasons such as <USERID> and <USERPASS>
elements. These values must never be manipulated by a client; they are sent without change to the

3.1.2.1.2 Values of critical ID fields

This group pertains to critical ID fields, generally account numbers, routing numbers and the like. Th
values also should never be manipulated by a client unless the server has supplied the client with a
OFX 2.0 Specification 576/30/00

>.
t. For
n in

out of

that
ip
g it

e

ore
or its
h as

while
r

wn
in the

o

d

s

n
ossible,

ment
normalizing mask (not available to the customer) such as an <ACCTFORMAT> or <ACCEDITMASK
Values in this group, supplied to the client, must be in the correct format already if a server requires i
this reason, it is recommended that a server support <ACCTINFORQ> which supplies the informatio
the form it is needed. In any event, as part of the enrollment process (either via OFX, the internet, or
band) a financial institution should communicate to the end-user which formatting is required. This is
recommended since there may be times when <ACCTINFO> is, for some reason, unavailable.

3.1.2.1.3 Values of non-critical fields

This third group of values relates to certain non-critical fields such as postal codes, addresses and
telephone numbers. Such values should not be manipulated by the client unless there is information
the client has, which the user may not be aware of, for example, the four additional digits in a U.S. z
code. In the case where such manipulated data is sent to the server (as opposed to simply displayin
differently in the application) the client should inform the user that this change will be made, thereby
allowing the user to prevent the change if desired. An example of this would be the substitution of th
name of a township for the name of the larger city encompassing it, based on the postal code value.

3.1.2.2 Validation by a Server

When matching user-supplied text against stored information, servers are free to ignore all supplied
punctuation characters. For example, a server might remove all punctuation from an <ACCTID> bef
performing validation. This temporary modification affects neither how the data would be returned, n
storage format. Such transformations should not occur with values provided for security reasons suc
<USERID> and <USERPASS> elements.

Servers are permitted to add or remove punctuation or otherwise modify client-supplied information,
storing the data after processing a (successful) <xxxRQ> or <xxxMODRQ> request. For example, a serve
might store only the first five digits of a US <POSTALCODE> value, abbreviate common address
components (storing "St." when the request specified "Street"), or use a special address for well-kno
payees. If a server does make such modifications, it must return the client-supplied values verbatim
initial response, and treat the modification as a server-initiated action. Therefore, a subsequent
synchronization should include a <xxxMODRS> with the server-stored values and <TRNUID>0 (zero) t
indicate that the server modified the client-supplied values.

This last requirement does not distinguish between insignificant changes (case or abbreviations) an
semantic differences (use of a completely different address for well-known payees). Although it is
recommended that clients be notified of all insignificant storage discrepancies and modifications, it i
required that clients be informed of all other such modifications.

In summary, if, for security reasons, a server will not accept a value that is punctuated differently tha
expected, it must force compliance as described in section 3.1.2.1. In some cases where this is not p
sending a <xxxMODRS> to force a change on the client side might also be in order. (Note that a
PAYEEMODRS will not affect pending payments so a server may also have to send out-of-band pay
modifications, if applicable.)
58 3.1 Common Aggregates

s in
nd with
nds a
S> in

ill

r

in
3.1.3 Echoing in Responses

A server should echo back unedited element values in the immediate response, but may store value
edited form. In the cases where the stored value is changed, it is recommended that the server respo
an out-of-band modification synchronization response whenever possible. For example, if a client se
payee name of “Sears” but the server stores it as “SEARS”, the server should send a <PAYEEMODR
the next sync response. (See Chapter 12, "Payments"for clarification of payee issues.) However, if the
server simply edits punctuation in or out of client-supplied numbers such as account numbers and w
match both forms in future requests, it is not required to notify the client.

Any intermediate software should avoid any modifications to these values, thus avoiding the need to
resolve this issue out-of-band.

3.1.4 Balance Records <BAL>

Several responses allow FIs to send an arbitrary set of balance information as part of a response, fo
example a bank statement download. FIs might want to send information on outstanding balances,
payment dates, interest rates, and so forth. Balances can report the date the given balance reflects
<DTASOF>.

Tag Description

<BAL > Balance-response aggregate

<NAME> Balance name,A-32

<DESC> Balance description,A-80

<BALTYPE> Balance type.

DOLLAR = dollar (value formatted DDDD.cc)

PERCENT = percentage (value formatted XXXX.YYYY)

NUMBER = number (value formatted as is)

<VALUE> Balance value.

Interpretation depends on <BALTYPE> field,amount

<DTASOF> Effective date of the given balance,datetime

<CURRENCY> If dollar formatting, can optionally include currency

</CURRENCY>

</BAL>
OFX 2.0 Specification 596/30/00

es a
se

hange

rver
n an
ng no
lement

es. For
r. Of the
pecific
.

ir
3.1.5 Error Reporting <STATUS>

To provide as much feedback as possible to clients and their users, Open Financial Exchange defin
<STATUS> aggregate. The most important element is the code that identifies the error. Each respon
defines the codes it uses. Codes 0 through 2999 have common meanings in all Open Financial Exc
transactions. Codes from 3000 and up have meanings specific to each transaction.

Clients should assume the burden of checking the profile and not sending a transaction which the se
does not support. If the client goes ahead and sends such a transaction, the server may either retur
HTTP 400 syntax error, or ignore unsupported elements and aggregates. In the latter case, assumi
other problems occur in processing that request, servers may return warning code 2028 (Request e
unknown). The response file should not contain the unsupported elements or aggregates.

The last 200 error codes in each assigned range of 1000 are reserved for server-specific status cod
example, of the general status codes, 2800-2999 are reserved for status codes defined by the serve
banking status codes, codes 10800-10999 are reserved for the server. If a client receives a server-s
status code of <SEVERITY> ERROR that it does not know, it must handle it as a general error 2000

Tag Description

<STATUS> Error-reporting aggregate.

<CODE> Error code,N-6

<SEVERITY> Severity of the error:

INFO = Informational only

WARN = Some problem with the request occurred but a valid response still present

ERROR = A problem severe enough that response could not be made

<MESSAGE> A textual explanation from the FI. Note that clients will generally have messages of the
own for each error ID. Use this element only to provide more details or for the general
errors.A-255

</STATUS>
60 3.1 Common Aggregates

all

he

may
r

ross
For general errors, the server can respond with one of the following <CODE> values. However, not
codes are possible in a specific context.

Note: Clients will generally have error messages that are based on <CODE>. Therefore, do not
use <MESSAGE> to replace that text. Use <MESSAGE> only to explain an error not well
described by one of the defined codes, or to provide some additional information.
<MESSAGE> should be returned whenever the <CODE> can be refined. For example,
<CODE>2000 should always be accompanied with a <MESSAGE> explaining the problem.

3.2 Common Elements

This section defines elements used in several services of Open Financial Exchange. The format of t
value is either character (A-n) or numeric (N-n) with a maximum lengthn; or as a named type. Section
3.2.8describes the named types.

3.2.1 Client-Assigned Transaction UID <TRNUID>

Format: A-36

Open Financial Exchange uses <TRNUID>s to identify transactions within transaction wrappers
(<xxxTRNRQ>, </xxxTRNRQ>).

In most cases, clients originate <TRNUID>s. When a client originates a <TRNUID>, the value of the
<TRNUID> is always set to a unique identifier. The server must return the same <TRNUID> in the
corresponding response and any later synchronization responses that include this response. Clients
use this <TRNUID> to match up requests and responses or to recognize synchronized responses fo
transactions they did not initiate. Servers can use <TRNUID>s to reject duplicate requests. Because
multiple clients might be generating requests to the same server, transaction IDs must be unique ac
clients. Thus, <TRNUID> must be a globally unique ID.

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

Note: Servers should provide a more specific error whenever possible. Error 2000
should be reserved for cases in which a more specific code is not available.

2021 Unsupported version (ERROR)

2028 Requested element unknown (WARNING)

6502 Unable to process embedded transaction due to out-of-date <TOKEN> (ERROR)

15500 Signon invalid (See section 2.5.1)(ERROR)
OFX 2.0 Specification 616/30/00

r
t
the

s

er
ir own

>

nts

stant
t” or
bject.

D> in
In some cases, servers can originate a transaction that was not specifically requested by a client. Fo
instance, a client might set up a recurring payment model. Although the client originates the paymen
model, the server originates the individual payments. Whenever the server originates a transaction,
value of the <TRNUID> must be set to zero. Lite synchronization servers (see Chapter 6, "Data
Synchronization") must respond to synchronization requests with information about all changes of thi
type.

The Open Software Foundation Distributed Computing Environment standards specify a 36-charact
hexadecimal encoding of a 128-bit number and an algorithm to generate it. Clients are free to use the
algorithm, to use smaller <TRNUID>s, or to relax the uniqueness requirements. However, it is
RECOMMENDED that clients allow for the full 36 characters in responses to work better with other
clients.

For example: A client creates a new recurring payment using <RECPMTRQ> in a <RECPMTTRNRQ
with <TRNUID>123. Later, the same client might cancel the model using <RECPMTCANRQ> in a
<RECPMTTRNRQ> with <TRNUID>456. The server would inform the client of any spawned payme
using <PMTRS> responses with <TRNUID>0 in later payment synchronization responses
(<PMTSYNCRS>).

Usage:All services

3.2.2 Server-Assigned ID <SRVRTID>

Format: A-10 for <SRVRTID>, used in V1 message sets

A <SRVRTID> is a server-assigned ID for an object that is stored on the server. It should remain con
throughout the lifetime of the object on the server. The client will consider the SRVRTID as its “receip
confirmation and will use this ID in any subsequent requests to change, delete, or inquire about this o

A <SRVRTID> is not unique across FI’s or Service Providers, and clients might need to use FI +
<SPNAME> + <SRVRTID> when a unique key is necessary.

Where the context allows, a server may use the samevaluefor a given server object for both <SRVRTID>
and <FITID>, but the client will not know this. In this case, the server must assign <SRVRTID> and
<FITID> values that are more unique than otherwise required. Because of the differing uniqueness
constraints on the individual elements, such a reused value must be unique throughout the FI.

For example: The server creates the new recurring model from the example in section 3.2.1with
<RECSRVRTID>1234:5687. The server uses this identifier in the initial <RECPMTRS> and any
synchronization responses that reference this model. The client references the same <RECSRVRTI
the later <RECPMTCANCRQ>.
62 3.2 Common Elements

D>
is not
an one

n
. Open
ction

>.

.
quest

t and

d

d in a
If any payments are spawned from this model before it is cancelled, they would each have their own
<SRVRTID> value (for example, <SRVRTID>8765:4321 and <SRVRTID>8765:4322). The <SRVRTI
value for one of the spawned payments may match the <RECSRVRTID> of the model. Such a match
required for any spawned payment. To guarantee uniqueness of the payment identifiers, no more th
spawned payment may use the <RECSRVRTID> value of its model.

Usage:Payments, Banking

Elements of this type:RECSRVRTID and SRVRTID

3.2.3 Financial Institution Transaction ID <FITID>

Format: A-255

An FI (or its Service Provider) assigns an <FITID> to uniquely identify a financial transaction that ca
appear in an account statement. Its primary purpose is to allow a client to detect duplicate responses
Financial Exchange intends <FITID> for use in statement download applications, where every transa
(not just those that are client-originated or server-originated) requires a unique ID.

An <FITID> also uniquely identifies the closing statement in <CLOSINGRS> and <CCCLOSINGRS
Again, the OFX client should detect repeated closing statements (duplicate downloads) using these
identifiers.

FITIDs must be unique within the scope of an account but need not be sequential or even increasing
Clients should be aware that FITIDs are not unique across FIs. If a client performs the same type of re
within the same scope at two different FIs, clients will need to use FI + <ACCTID> + <FITID> as a
globally unique key in a client database. That is, the <FITID> value must be unique within the accoun
Financial Institution (independent of the service provider).

Note: Although the specification allows FITIDs of up to 255 characters, client performance
may significantly improve if servers use fewer characters. It is recommended that servers use
32 characters or fewer.

For example:The two spawned payments mentioned in section 3.2.1are processed and later downloade
in a <STMTRS>. The first payment’s <STMTTRN> would list <SRVRTID>8765:4321,
<RECSRVRTID>1234:5678, and <FITID>9999:8888:7777. The second payment would be describe
<STMTTRN> containing <SRVRTID>8765:4322, <RECSRVRTID>1234:5678, and
<FITID>6666:5555:4444.

Usage:Bank statement download, investment statement download

Elements of this type:<CORRECTFITID>, <FITID>, <RELFITID>, and <REVERSALFITID>
OFX 2.0 Specification 636/30/00

in
of

ount.

t of an
3.2.4 Token <TOKEN>

Format: A-10 for <TOKEN>, used in V1 message sets

Open Financial Exchange uses<TOKEN> as part of data synchronization requests to identify the point
history that the client has already received data, and in responses to identify the server’s current end
history. See Chapter 6, “Data Synchronization,” for more information.

<TOKEN> is unique within an FI and the scope of the synchronization request. For example, if the
synchronization request includes an account ID, the <TOKEN> needs to be unique only within an acc
Servers are free to use a <TOKEN> that is unique across the entire FI. Clients must save separate
<TOKEN>s for each account, FI, and type of synchronization request.

Usage:All synchronization requests and responses

3.2.5 Transaction Amount <TRNAMT>

Format: Amount

Open Financial Exchange uses <TRNAMT> in any request or response that reports the total amoun
individual transaction.

Usage:Bank statement download, investment statement download, payments

3.2.6 Memo <MEMO>

Format: A-255 for <MEMO>, used in V1 message sets

A <MEMO> provides additional information about a transaction.

Usage:Bank statement download, investment statement download, payments, transfers
64 3.2 Common Elements

these

rs

rs

e
the

uld

e latter
> and
to the
f time

stem
ut the
never

stem

ample,
and
6.
3.2.7 Date Start and Date End <DTSTART> <DTEND>

Format: Datetime

Clients use these elements in requests to indicate the range of response that is desired. Servers use
elements in responses to let clients know what the FI was able to produce.

In requests, the following rules apply:

� If <DTSTART> is absent, the client is requesting all available history (up to the <DTEND>, if
specified). Otherwise, it indicates theinclusivedate and time in history where the client expects serve
to start sending information.

� If <DTEND> is absent, the client is requesting all available history (starting from <DTSTART>, if
specified). Otherwise, it indicates theexclusivedate and time in history where the client expects serve
to stop sending information.

In responses, the following rules apply:

� <DTSTART> is the date and time where the server beganlookingfor information, not necessarily the
date of the earliest returned information. If the response <DTSTART> is later than the requested
<DTSTART>, clients can infer that the user has not signed on frequently enough to ensure that th
client has retrieved all information. If the user has been calling frequently enough, <DTSTART> in
response will match <DTSTART> in the request.

� <DTEND> is the date and time that, if used by the client as the next requested <DTSTART>, it wo
pick up exactly where the current response left off. It is theexclusivedate and time in history where the
server stoppedlooking for information, based on the request <DTEND> rules.

Because the system add date for a transaction is not necessarily the post date for the transaction (th
occurring when the account is actually debited or credited), a server should consider the <DTSTART
<DTEND> dates in a <(CC)STMTRQ> as a request for any transactions that were posted or added
FI system at that time. In addition, the transactions returned should probably span a greater window o
than that included in the <DTSTART>/<DTEND> dates since a transaction might be added to the sy
after a statement download request was made for that time period. (Clients should be able to filter o
unnecessary transactions.) If a client is always requesting a download sequentially, through time, is
requesting an end date using <DTEND> and is always substituting <DTEND> in the response for
<DTSTART> in the next request, it is safe for a server to return only those transactions that had a sy
add date on or after <DTSTART> in the request. In all cases, servers are minimallyrequired to use a
“system add datetime” as the basis for deciding which details match the requested date range. For ex
if an FI posts a transaction dated Jan 3 to a user’s account on Jan 5, and a client connects on Jan 4
again on Jan 6, the server isrequired to return that Jan 3-dated transaction when the client calls on Jan

Usage:Bank statement download, investment statement download
OFX 2.0 Specification 656/30/00

ber 5,

s the
is
3.2.8 Common Data Types

3.2.8.1 Dates, Times, and Time Zones

There is one format for representing dates, times, and time zones. The complete form is:

YYYYMMDDHHMMSS.XXX [gmt offset:tz name]

3.2.8.1.1 Ranges for Years, Months, Days, Hours, Seconds

3.2.8.2 Date and Datetime

Elements specified as typedate or datetimeand generally starting with the letters “DT” accept a fully
formatted date-time-timezone string. For example, “19961005132200.124[-5:EST]” represents Octo
1996, at 1:22 and 124 milliseconds p.m., in Eastern Standard Time. This is the same as 6:22 p.m.
Greenwich Mean Time (GMT).

Dateanddatetimealso accept values with fields omitted from the right. They assume the following
defaults if a field is missing:

Note that times zones are specified by an offset and optionally, a time zone name. The offset define
time zone. Valid offset values are in the range from –12 to +12 for whole number offsets. Formatting
+12.00 to -12.00 for fractional offsets, plus sign may be omitted.

Take care when specifying an ending date without a time. If the last transaction returned for a bank
statement download was Jan 5 1996 10:46 a.m. and if the <DTEND> was given as just Jan 5, the

Portion of Date/Time Field Range

YYYY 0000 - 9999

MM 1 - 12

DD 1 - 31

HH 0 - 23

MM 0 - 59

SS 0 - 60
60 is only used in the case of the leap second

Specified date or datetime Assumed defaults

YYYYMMDD 12:00 AM (the start of the day), GMT

YYYYMMDDHHMMSS GMT

YYYYMMDDHHMMSS.XXX GMT
66 3.2 Common Elements

t times

nd list
transactions on Jan 5 would be resent. If results are available only daily, then just using dates and no
will work correctly.

Note: Open Financial Exchange does not require servers or clients to use the full precision
specified. However, they areREQUIRED to accept any of these forms without complaint.

Some services extend the general notion of adateby adding special values, such as “TODAY.” These
special values are called “smart dates.” Specific requests indicate when to use these extra values, a
the element as having a special data type.
OFX 2.0 Specification 676/30/00

ves a
e

some
or this

a
T the

tore
time
uiring
rver

now
time
le,
,

t all as
3.2.8.3 Time

Elements specified as typetimeand generally ending with the letters “TM” accept times in the following
format:

HHMMSS.XXX[gmt offset:tz name]

The milliseconds and time zone are still optional, and default to GMT.

3.2.8.4 Time Zone Issues

Several issues arise when a customer and FI are not in the same time zone, or when a customer mo
computer into new time zones. In addition, it is generally unsafe to assume that computer users hav
correctly set their time or time zone.

Although most transactions are not sensitive to the exact time, they often are sensitive to the date. In
cases, time zone errors lead to actions occurring on a different date than intended by the customer. F
reason, servers should always use a complete local time plus GMT offset in any datetime values in
response. If a customer’s request is for 5 p.m. EST, and a server in Europe responds with 1 a.m. ME
next day, a smart client can choose to warn the customer about the date shift.

Clients that maintain local state, especially of long-lived server objects, should be careful how they s
datetime values. If a customer initiates a repeating transaction for 5 p.m. EST, then moves to a new
zone, the customer might have intended that the transaction remain 5 p.m. in the new local time, req
a change request to be sent to the server. If, however, the customer intended it to remain fixed in se
time, this would require a change in the local time stored in the client.

Client software that doesn’t know the current local time zone for the user, or client proxies that don’t k
the current local time zone of their end users, should maintain and display the datetime value in the
zone indicated by the originator of the value and explicitly marked with that time zone. As an examp
consider <DTPMTDUE> in section 11.5.4.2. If the biller gave a due date of 23:59pm EST on Dec. 29
1997, this is best displayed as 23:59pm EST rather than rendered in local time if there is any doubt a
to the current local time zone of the end user looking at the due date.
68 3.2 Common Elements

y

e.

cases,
e
ould
itive

s,
er of
or

al
ation

be

d
tion.
When considering timezone conversions, remember the following differences between thedateand
datetimedatatypes:

� Date= A date without time; this date is explicit. Clients and servers will not convert the value in an
way. Examples include birth date and billing date.

� Datetime= A date and time format; clients and servers may convert this date to their local timezon
Examples include last account update date and bill summary fetch date.

Note: Developers should consider the possibility of a date change due to timezone conversion.
A datetimevalue in the GMT timezone with a time of 12:00:00 (noon) would be converted to
another time on the same date in every timezone. For example, 199812251200 remains
Christmas Day in every timezone.

3.2.9 Amounts, Prices, and Quantities

3.2.9.1 Basic Format

Format: A-32

This section describes the format of numerical values used for amounts, prices, and quantities. In all
a numerical value that does not contain a decimal point has an implied decimal point at the end of th
value. For example, a numerical value of “550” is equivalent to “550.” Trailing and leading spaces sh
be stripped. Number format uses a leading sign. Negative number format uses a minus sign (-). Pos
number format uses a plus sign (+). The plus sign is implied for all amounts and can be omitted.

The following types are defined to have a maximum of 32 characters, including alphabetic character
digits and punctuation. However, clients and servers may have specific limits for the maximum numb
digits to the left or right of a decimal point. If a server cannot support a client request due to the size
precision of a number, the server should return status code 2012.

Amount:Amounts that do not represent whole numbers (for example, 540.32), must include a decim
point or comma to indicate the start of the fractional amount. Amounts should not include any punctu
separating thousands, millions, and so forth. The maximum value accepted depends on the client.

Quantity:Use decimal notation.

Unitprice: Use decimal notation. Unless specifically noted, prices should always be positive.

Rate:Use decimal notation, with the rate specified out of 100%. For example, 5.2 is 5.2%. Rates can
greater than 100 and can be negative.

Some services define special values, such as INFLATION, which you can use instead of a designate
value. Open Financial Exchange refers to these as “smart types,” and identifies them in the specifica
OFX 2.0 Specification 696/30/00

k

ot be
tive or
ases of

ail.

ncy

g

3.2.9.2 Positive and Negative Signs

Most OFX transaction aggregates describe the flow of funds. Amounts in transactions which clearly
describe the flow of funds should normally be positive. For example, investment buys and sells, ban
statement credits and debits should be positive.

Servers should sign amounts from the perspective of the user in cases where the flow of funds cann
determined from the transaction aggregate alone. For example, interest amounts can be either posi
negative, depending on whether the interest is earned or paid. Servers should also sign amounts in c
corrections to transaction. For example, a correction to an Investment Buy Mutual Fund transaction,
BUYMF, would contain negatively signed UNITS.

3.2.10 Language

Languageidentifies the human-readable language used for such things as status messages and e-m
Languageis specified as a three-letter code based on ISO-639.

3.2.11 Other Basic Data Types

Boolean:Y = yes or true, N = no or false.

currsymbol: A three-letter code that identifies the currency used for a request or response. The curre
codes are based on ISO-4217. For more information about currencies, refer to section 5.2.

URL: String form of a World Wide Web Uniform Resource Location. It should be fully qualified includin
protocol, host, and path.A-255.
70 3.2 Common Elements

es the
s.

d the
r. The
lient

X

CHAPTER 4 OFX SECURITY

OFX provides several options for ensuring the security of customer transactions. This chapter describ
OFX security framework, security goals, types of security, and financial institution (FI) responsibilitie

4.1 Security Concepts in OFX

4.1.1 Architecture

OFX security applies to the communication paths between a client and the profile server, a client an
Web server, and, when the OFX server is separate from the Web server, a client and the OFX serve
diagram below illustrates the initial order in which these communications occur, assuming that the c
already has the URL for the FI profile server.

The bootstrap process for a client is:

� From the FI Profile Server, the client gets the URL of the FI Web server, so that it can retrieve a
particular message set.

� The client sends an OFX request to the FI Web Server URL, from which it is forwarded to the OF
Server.

� The OFX Server sends back a response to the client via the Web Server.

Financial Institution or 3rd Party

Financial Institution or Third Party

CLIENT

PROFILE
SERVER

FI Identifier

FI Profile
including

Web Server URL

WEB
SERVER

OFX Request

OFX
SERVER

OFX Response
OFX 2.0 Specification 716/30/00

an FI
here
ng the

eys.

ey
an

tes is
nt

ed the
ther.

For
use.

r
-8.
4.1.2 Security Goals

The main goals of OFX security are:

� Privacy: Only the intended recipient can read a message.Encryptionis a technique often used to
ensure privacy.

� Authentication: The recipient of a message can verify the identity of the sender. In OFX,passwords
allow an FI to authenticate a client, andcertificatesallow a client to authenticate a server.

� Integrity: A message cannot be altered after it is created A cryptographichashis often used to assist
integrity verification.

OFX specifies the minimum security required for Internet transactions and provides several security
options, based on existing standards. Through its choice of security techniques and related options,
can achieve privacy, authentication, and integrity with varying degrees of assurance. For example, t
are many kinds of encryption algorithms, most of which can be strengthened or weakened by changi
key size.

4.1.3 Security Standards

Several standards underlie Type 1 security:

� Certificates (X.509 v3) are used to identify and authenticate servers, and to convey their public k

� PKCS #1 block type 2 is the encryption format specified by the recipe (See section 4.2.2.4.3).

� RSA is the encryption algorithm.

4.1.3.1 Certificates and Certification Authorities

A certificate is a digitally signed document that binds a public key to an identity. It contains a public k
that identifies information such as the name of the person or organization to whom the key belongs,
expiration date, a unique serial number, and additional descriptive information.

A certificate is useful for authentication because it is signed by a trusted third-party. This assures the
verifier that the certificate has not been changed since it was signed. The entity which signs certifica
called acertification authority, or CA. A CA acts somewhat like a notary public: the reader of a docume
stamped by a notary public knows that the notary has checked the identity of the person who originat
document. By digitally signing someone’s identity and public key, the CA affirms that the two go toge

If the client and server do not share a common CA, the client cannot validate the server’s certificate.
this reason, OFX specifies a number of trusted CAs that all clients must accept and all servers must

Certificates are used in Type 1 security, as well as channel-level security through SSL. The format fo
these is defined by X.509 version 3. For more information, refer to ITU-T Rec. X.509, ISO/IEC 9594
72 4.1 Security Concepts in OFX

by a
ublic

y

ting
ctions
zed best

mined
e
wed
ntext-

sure

key.

he FI

e set to

rnet
nduct a
4.1.3.2 PKCS #1

The acronym, PKCS, stands for “Public Key Cryptography Standards,” a set of standards developed
consortium and hosted by RSA. PKCS #1 is the RSA Encryption Standard, the rules for using RSA p
key encryption. For the complete syntax of the PKCS #1 standard, refer to “Public-Key Cryptograph
Standards (PKCS)” published by RSA Data Security, Inc. at http://www.rsa.com/.

4.1.4 FI Responsibilities

OFX is designed with the understanding that there must be a security policy in place at each suppor
financial institution. That policy must clearly delineate how customer data is secured, and how transa
are managed such that all parties to the transaction are protected according to accepted and recogni
common practices.

The decision regarding which users may perform a given operation on a given account must be deter
by the financial institution. For example, is the specified user authorized to perform a transfer from th
specified account? The financial institution must also determine whether the user has exceeded allo
limits on withdrawals, whether the activity on this account is unusual given past history, and other co
sensitive issues.

Although OFX provides many security options, an FI must support a minimal level of security. To en
the proper security configuration, an FI must follow the steps outlined below.

1. Obtain one certificate for the profile server. This certificate must be rooted in one of the approved
Certification Authorities (CAs). Establish appropriate safeguards for this certificate and its private

2. Obtain a certificate, rooted in an acceptable CA, for each OFX server, whether it is operated by t
or by a third party.

3. Decide whether to use Type 1 application-level security for any message sets. For each messag
be secured by Type 1, obtain a certificate.

Type 1 security can be used on any message set, except for the Profile message set.

There are a number of other security issues beyond OFX proper, especially those relating to the Inte
and network engineering. These issues are beyond the scope of this document. FIs are advised to co
complete security review of all servers associated with OFX.
OFX 2.0 Specification 736/30/00

es
ol.
er. SSL

es
annot

rity
at
server,

m

the
exible
4.1.5 Security Levels: Channel vs. Application

With OFX, security can be applied at two different levels in the message exchange process.

� Channel level:Generally transparent to a client or server, channel-level security is built into the
communication process, protecting messages between two ends of the “pipe.” To secure messag
during HTTP transport, client and server applications use the Secure Sockets Layer (SSL) protoc
SSL transparently protects messages exchanged between the client and the destination Web serv
authenticates the destination Web server using the Web server’s certificate. Additionally, it provid
privacy via encryption, and SSL-record integrity, i.e. the block of data sent in each transmission c
be altered without detection.

� Application level: Transparent to and independent of the transport process, application-level secu
protects the user password sent from the client application all the way to the server application th
handles the OFX messages. The server application typically resides beyond the destination Web
secured behind an Internet firewall. Application-level security requires channel-level security.

The following diagram illustrates how channel-level and application-level security relate. The diagra
shows the path of a request from the client to the server when application-level encryption is used.

Channel-level security is sufficient for most message sets, provided that the network architecture at
destination is adequately secure; however, application-level password encryption can allow a more fl
back-end architecture with a high level of security.

CLIENT
WEB

SERVER
OFX

SERVER

SSL Encryption

OFX Data

Encrypted
Password

OFX Data

Encrypted
Password

Passwords are encrypted by the
client application and by the

SSL Protocol

The Web server removes the
SSL encryption and forwards
the encrypted password and

plaintext OFX data
74 4.1 Security Concepts in OFX

the

ne of

n the

the

ide;
uites).
lidate
4.2 Security Implementation in OFX

4.2.1 Channel-Level Security

4.2.1.1 Specification in FI Profile

For each message set listed in the FI profile response, the <MSGSETCORE> aggregate describes
channel-level security required for that message set.

The <TRANSPSEC> element defines whether or not channel-level security is required. It can have o
the following values:

All currently defined message sets require channel-level security.

4.2.1.2 SSL Protocol

Secure Sockets Layer (SSL) is a cryptographic protocol commonly used for channel-level security o
Internet. Central to the security of SSL is theserver certificate. This certificate assures clients that the
server is who it claims to be. It contains the public key of the server, which the client uses to encrypt
session keys it generates as part of each connection.

All of this function is available without significant software development on either the client or server s
however, the client and server must be configured to use appropriate encryption algorithms (CipherS
In addition, clients and servers must share a trusted root certificate, or the client will not be able to va
the server’s certificate.

Note: Although SSL supports client-side certificates to allow a server to authenticate a client,
OFX does not require them at this time. To identify and authenticate a customer, servers should
use the information provided in the signon request <SONRQ>.

Setting the <TRANSPSEC> element to Y means that the client must use SSL v3 or higher.

Tag Description

N Do not use any channel-level security

Y Use channel-level security
OFX 2.0 Specification 756/30/00

ted
vers
this

s.
4.2.1.3 Trusted Certificate Authorities

Both channel-level and application-level security rely on clients and servers having at least one trus
certification authority (CA) in common. To ensure that clients can test the validity of a certificate, ser
must have their certificates signed by an approved OFX CA. Clients are assumed to have access to
trusted CA.

4.2.1.4 CipherSuites

The following SSL CipherSuites are approved for use with OFX:

� SSL_RSA_WITH_RC4_128_SHA

� SSL_RSA_WITH_IDEA_CBC_SHA

� SSL_RSA_WITH_DES_CBC_SHA

� SSL_RSA_WITH_3DES_EDE_CBC_SHA

� SSL_DH_DSS_WITH_DES_CBC_SHA

� SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA

� SSL_DH_RSA_WITH_DES_CBC_SHA

� SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA

� SSL_DHE_DSS_WITH_DES_CBC_SHA

� SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

� SSL_DHE_RSA_WITH_DES_CBC_SHA

� SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

Other CipherSuites are not approved.

4.2.1.5 Key Size

Signing keys must be either RSA with a minimum 1024-bit modulus, or DSS with a 1024-bit modulu

Server RSA keys and Diffie-Hellman keys must both have a minimum 1024-bit modulus. The Diffie-
Hellman base must be primitive.
76 4.2 Security Implementation in OFX

the

the

er. In

ess
t

t the

own.

quest.
that
iated
4.2.2 Application-Level Security

4.2.2.1 Specification in FI Profile

For each message set listed in the FI profile response, the <MSGSETCORE> aggregate describes
security required for that message set.

The <OFXSEC> element defines the type of application-level security required for the message set.
<OFXSEC> can have one of the following values, which also are used in the SECURITY element of
OFX headers:

Application-level security requires channel-level security.

4.2.2.2 Type 1 Protocol Overview

The goal of the Type 1 protocol is to protect the user password all the way to the destination OFX serv
the absence of client certificates, this password is the primary vehicle for client authentication and is
therefore worthy of special consideration.

Type 1 requires channel-level security,i.e. SSL. Though the password is well protected by SSL alone in
the client to Web server connection, the server-side network architecture may render the password l
secure while it is in transit between the Web and OFX servers. With Type 1, the user password is no
decrypted until the request reaches the OFX server.

Type 1 applies only to the request part of a message; the server response is unaffected.

A simple approach would be to deliver the server’s Type 1 certificate in the profile and use it to encryp
password, but that would permit areplay attack. An attacker could capture a transaction, including
encrypted password, and replay it to the server. It wouldn’t matter that the password remained unkn

To prevent thereplay attack, the server introduces some random data to the process, data which is
unpredictably different for each transmission. The client asks for the random data with a challenge re
The server sends it, along with its Type 1 certificate, in the challenge response. The client then uses
random data in the encryption process, thereby assuring the server that the client response is assoc
with this and only this interaction.

Tag Description

NONE Do not use any application-level security

TYPE1 Use Type 1 application-level security
OFX 2.0 Specification 776/30/00

ucting
l

e

action
The following diagram illustrates:

4.2.2.3 Type 1 Protocol Notation

In this section, the expression, C = EA (M), means that plain text M is encrypted either symmetrically or

asymmetrically with key A into ciphertext C. The expression, M = DA(C) signifies the inverse operation

(decryption), in which ciphertext C is decrypted into plain text M using key A. If C was encrypted
asymmetrically, then A in the latter case is understood to be the private component of the key. The
expression, A || B, indicates that B is concatenated to A.

4.2.2.4 Type 1 Protocol Implementation

Type 1 application-level security provides additional password secrecy. These are the steps for cond
a Type 1 transaction (unless otherwise noted, the term “Server” in this section refers to the Financia
Institution Server):

1. Client obtains the Server’s profile from the Profile Server (seeChapter 7, "FI Profile")

2. Client establishes an SSL connection with the Server (see section 4.2.1)

3. Client sends <CHALLENGERQ> to Server (see section 4.2.2.4.1)

4. Server sends <CHALLENGERS> which contains a nonce and the Server’s Type 1 certificate (se
section 4.2.2.4.2)

5. Client builds a transaction request and sends it to the Server (see section 4.2.2.4.3)

6. Server parses the request, verifying the user password, and either rejects or processes the trans
(see section 4.2.2.4.4)

CLIENT

Challenge request

WEB
SERVER

OFX
SERVER

Challenge response
w/ random data

OFX request w/
encrypted password

OFX response
78 4.2 Security Implementation in OFX

ro
The following table lists data elements used in the Type 1 protocol:

Field Type Description

BT octet, length 1 Block Type byte.

BT = 0x02

CT1 octet string, length 128 Ciphertext: the PKCS #1 RSA encryption of EB with KS.

CT1 = EKS(EB)

CT2 printable ASCII, length 171 Encoded Ciphertext: the RADIX-64 encoding of CT1 (see
RFC 1113, §4.3.2.4 and §4.3.2.5).

CT2 = RADIX64(CT1)

D octet string, length 68 Data: the user data to be encrypted.

D = NC || P || T

EB octet string, length 128 Encryption Block: the formatted plain text block, ready for
encryption.

EB = 0x00 || BT || PS || 0x00 || D

KS RSA key, modulus length 1,024 bits Server’s Type 1 RSA key

NC octet string, length 16 Client Nonce: string of random octets generated by the
Client

NS octet string, length 16 Server Nonce: string of random octets generated by the
Server

P printable ASCII, null-padded, length 32 Password: shared by the Client and Financial Institution,
null-padded on the right

PS octet string, length 57 Padding String: each octet is pseudo-random and non-ze

T octet string, length 20 Authentication Token.

T = SHA1(NS || P || NC)
OFX 2.0 Specification 796/30/00

te and

on

o seed

step
struct {

unsigned char nc[16];

unsigned char p[32];

unsigned char t[20];

} D;

struct {

unsigned char null1 = 0x00;

unsigned char bt = 0x02;

unsigned char ps[57];

unsigned char null2 = 0x00;

struct D d;

} EB;

4.2.2.4.1 Challenge request

Client sends a <CHALLENGERQ> to the Server.

4.2.2.4.2 Challenge response

Server sends a <CHALLENGERS> to the client. This response contains the Server’s Type 1 certifica
NS.

4.2.2.4.3 Building the OFX Request

1. Client generates 16 random octets and places them in NC (see RFC 1750 for recommendations
entropy generation)

2. Client obtains the User’s password (P)

3. Client computes T = SHA1(NS || P || NC)

4. Client generates 57 pseudo-random, non-zero octets and places them in PS (NC may be used t
the pseudo-random number generator)

5. Client sets D = NC || P || T

6. Client sets EB = 0x00 || BT || PS || 0x00 || D

7. Client RSA-encrypts EB using the Server’s Type 1 public key (obtained from the Server’s Type 1
certificate): CT1 = EKS(EB) (see PKCS #1, §§8.2-8.4)

8. Client encodes the ciphertext for transport: CT2 = RADIX64(CT1). See RFC 1113, §4.3.2.4 and
§4.3.2.5. This is a standard encoding method supported by RSA’s Bsafe library and others.

9. Client constructs the body of its OFX request

10. Client copies CT2 to the <USERPASS> field of the OFX <SONRQ>

11. Client sends the complete OFX request to the Server

In <PINCHRQ>, the steps are identical, except that in step 2, P is set to <NEWUSERPASS> and in
10, CT2 is copied to the <NEWUSERPASS> field of the <PINCHRQ>.
80 4.2 Security Implementation in OFX

The diagram below illustrates the creation of CT2.

NC
16 bytes

NS
16 bytes

NC
16 bytes

P
32 bytes

T
20 bytes

D
68 bytes

SHA-1

|

PS
57 bytes

BT
1 byte

0x00
1 byte

0x00
1 byte

|

EB
128 bytes

CT1
128 bytes

E R64
CT2

171 bytes

SHA-1

|

E

R64

SHA-1 hash

concatenation

RSA encryption with Server's
public key

RADIX-64 encoding

Legend

P
32 bytes
OFX 2.0 Specification 816/30/00

ing

ing to

result

w

4.2.2.4.4 Parsing the OFX Request

1. Server reads the OFX SECURITY header in the request file to ascertain whether Type 1 process
should be used on this message. If Type 1 is not used, skip to step 6.

2. Server extracts CT2 from the <USERPASS> field of the OFX <SONRQ> and removes the encod
obtain CT1 (see RFC 1113, §4.3.2.4 and §4.3.2.5)

3. Server decrypts CT1 to obtain EB: EB = DKS(CT1) (see PKCS #1, §9)

4. Server extracts D from EB, then extracts NC, P, and T from D

5. Server looks up the Client’s password in its database, and computes SHA1(NS || P || NC). If the
does not match T, Server terminates the session and reports the error to the client

6. Server processes the request and returns confirmation to the Client

In <PINCHRQ>, the steps are identical except that in step 2, CT2 is obtained from the
<NEWUSERPASS> field of the <PINCHRQ> and in step 5, the server does not look up the extracted ne
password in a database.
82 4.2 Security Implementation in OFX

ns, and
ases,
e

ervers

s

the rest

F>.

ere
Y>
luding

ing a
tal,

tly
nt
re

for

. It is
the FI
at a
CHAPTER 5 INTERNATIONAL SUPPORT

5.1 Language and Encoding

Most of the content in OFX is language-neutral. However, some error messages, balance descriptio
similar elements contain text meant to appear to the financial institution customers. There are also c
such as e-mail records, where customers need to send text in other languages. To support worldwid
languages, OFX relies on standard XML mechanisms to encode text.

The encoding declaration of the standard XML declaration specifies the character set being used. S
should respond to clients using the same encoding as was sent in the client’s request.

Clients identify the language in the signon request. OFX specifies languages by three-letter codes a
defined in ISO-639. Servers report their supported languages in the profile (seeChapter 7, "FI Profile"). If a
server cannot support the language requested by the client, it must return an error and not process
of the transactions.

5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>

In each transaction involving amounts, responses include a default currency identification, <CURDE
The values are based on the ISO-4217 three-letter currency identifiers.

Within each transaction, specific parts of the response might need to report a different currency. Wh
appropriate, aggregates include an optional <CURRENCY> aggregate. The scope of a <CURRENC
aggregate is everything within the same aggregate that the <CURRENCY> aggregate appears in, inc
nested aggregates, unless overridden by a nested <CURRENCY> aggregate. For example, specify
<CURRENCY> aggregate in an investment statement detail means that the unit price, transaction to
commission, and all other amounts are in terms of the given currency, not the default currency.

Note that there is no way for two or more individual elements that represent amounts—and are direc
part of the same aggregate—to have different currencies. For example, there is no way in a stateme
download to have a different currency for the <LEDGERBAL> and the <AVAILBAL>, because they a
both directly members of <STMTRS>. In most cases, you can use the optional <BAL> aggregates to
overcome this limitation, since <BAL> aggregates accept individual <CURRENCY> aggregates.

The default currency for a request is the currency of the source account. For example, the currency
<BANKACCTFROM>.

The <CURRATE> should be the one in effect throughout the scope of the <CURRENCY> aggregate
not necessarily the current rate. Note that the <CURRATE> needs to take into account the choice of
for formatting of amounts (that is, where the decimal is) in both default and overriding currency, so th
OFX 2.0 Specification 836/30/00

what

e

an
client can do math. This can mean that the rate is adjusted by orders of magnitude (up or down) from
is commonly reported in newspapers.

In some cases, OFX defines transaction responses so that amounts have been converted to the hom
currency. However, OFX allows FIs to optionally report the original amount and the original (foreign)
currency. In these cases, transactions include a specific aggregate for the original amount, and then
<ORIGCURRENCY> aggregate to report the details of the foreign currency.

Again, <CURRENCY> means that OFXhas notconverted amounts. Whereas, <ORIGCURRENCY>
means that OFXhasalready converted amounts.

Tag Description

<CURRENCY> or

<ORIGCURRENCY>

Currency aggregate

<CURRATE> Ratio of <CURDEF> currency to <CURSYM> currency, in decimal notation,rate

<CURSYM> ISO-4217 3-letter currency identifier,currsymbol

</CURRENCY> or

</ORIGCURRENCY>
84 5.2 Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>

PE>
s that
s must

oes not
In
are

ment
entify
y for
5.3 Country-Specific Element Values

Some of the elements in OFX have values that are country-specific. For example, <USPRODUCTTY
is useful only within the United States. OFX will extend in each country as needed to provide element
accept values useful to that country. Clients in other countries that do not know about these element
simply skip them.

In some cases, an element value represents a fundamental way of identifying something, yet there d
exist a world-wide standard for such identification. Examples include bank accounts and securities.
these cases, OFX must define a single, extensible approach for identification. For example, CUSIPs
used within the U.S., but not in other countries. However, CUSIPs are fundamental to relating invest
securities, holdings, and transactions. Thus, a security ID consists of a two-part aggregate: one to id
the naming scheme, and one to provide a value. OFX will define valid naming schemes as necessar
each country.
OFX 2.0 Specification 856/30/00

86 5.3 Country-Specific Element Values

es or
and

ategy
s may

ives to

main

rver
uch as a

X

server
ata

to
ot the

e. This
CHAPTER 6 DATA SYNCHRONIZATION

6.1 Overview

Currently, some systems provide only limited support for error recovery and no support for backup fil
multiple clients. This chapter defines OFX’s powerful means of data synchronization between clients
servers.

OFX data synchronization addresses the following problems:

� Error recovery

� Use of multiple data files, including multiple client applications

� Restoring from an outdated backup file

This chapter first provides a brief introduction to synchronization problems and then presents the str
used in OFX to ensure data integrity. Additional details about synchronization requests and response
be found in the relevant sections of this document. The final section in this chapter discusses alternat
full synchronization and summarizes the options for each.

6.2 Background

When a connection between the client and the server does not successfully complete, there are two
areas of concern:

� Unconfirmed requests
If a client does not receive a response to work it initiates, it has no way of knowing whether the se
processed the request. It also does not have any server-supplied information about the request, s
server ID number.

� Unsolicited data
Some message sets allow a server to send data to the client without first receiving a request. OF
assumes that the first client to connect after the unsolicited data is available receives it. If the
connection fails, this information could be forever lost to the client. Examples of unsolicited data
include updates to the status of a bill payment and e-mail messages.

Unsolicited data presents problems beyond error recovery. Because the first client that connects to a
is the only one to receive unsolicited data, this situation precludes use of multiple clients without a d
synchronization method. For example, if a user has a computer at work and one at home, and wants
perform online banking from both computers, a bank server could send unsolicited data to one but n
other.

An even greater problem occurs when a user resorts to an outdated backup copy of the client data fil
backup file may be missing recent unsolicited data with no way to retrieve it from the server again.
OFX 2.0 Specification 876/30/00

to
e
hese

before
saved

t
h

e

clients
gh
agram
6.3 Data Synchronization Approach

A simple solution is to make sure that clients can always obtain information from the server for a
reasonable length of time after it is initially sent. Clients can request recent responses—whether due
client-initiated work or other status changes on the server—by supplying the previous endpoint in th
response history. Servers should always supply a new endpoint whenever they supply responses. T
endpoints are described by the <TOKEN> element.

To ensure a consistent state after a failure (for example, dropped client connections or a client crash
updating its database), the client must store all data returned in a sync response before updating the
token for that account and object type. After a failure, the next sync attempt using the old token migh
download information already reflected in the client database. But, re-integration of that data is muc
preferred over losing all changes between the old and new token values.

If a user switches to an outdated backup file, then the most recent endpoint known to the client will b
older than the most recent endpoint known to the server.

If multiple clients are in use, each will send requests based on its own current endpoint, so that both
will obtain complete information from the server. This is one reason why OFX responses carry enou
information from the request to enable them to be processed independent from the requests. The di
below shows the interaction between clients and servers.

DATA SERVER
(Financial Institution)

Transaction 9
Transaction 8
Transaction 7
Transaction 6
Transaction 5
Transaction 4
Transaction 3
Transaction 2
Transaction 1

CLIENT #1
(Customer)

Transaction 7
Transaction 6
Transaction 5
Transaction 4
Transaction 3
Transaction 2
Transaction 1

CLIENT #2
(Customer)

Transaction 4
Transaction 3
Transaction 2
Transaction 1

Client sends
token #7

Server responds
with transactions 8-9

Client sends
token #4

Server responds
with transactions 5-9
88 6.3 Data Synchronization Approach

X
n in

er has

quest

k-
ntly,

tion

ct
now
eturns

or

ble for
OFX relieves the server from maintaining any special error-recovery state information. However, OF
requires the server to maintain a history of individual responses and a <TOKEN> to identify a positio
the history. This token is commonly a time stamp, but it need not be. Because of the freedom a serv
in choosing values for its <TOKEN>s, a client must not assume any sequential relationship between
<TOKEN>s based on the <TOKEN> values.

Note: OFX does not require servers to store responses based on individual connections. Also,
not all requests are subject to synchronization. For example, OFX does not require servers to
store statement-download responses separately for data synchronization.

6.4 Data Synchronization Specifics

OFX performs synchronization separately for each type of response. In addition, a synchronization re
might include further identifying information, such as a specific account number. This specification
defines the additional information for each synchronization request.

Each OFX service identifies the objects that are subject to data synchronization. For example, a ban
statement download is a read-only operation from the server. A client can request it again; conseque
there is no data synchronization for this type of response.

6.4.1 Tokens

The basis for synchronization is atokenas defined by the <TOKEN> element. The server can create a
token in any way it wishes. The client simply holds the token for possible use in a future synchroniza
request.

The server can derive a token from one of the following:

� Time stamp

� Sequential number

� Unique nonsequential number

� Other convenient values for a server

OFX reserves the following tokens:

� <TOKEN>0 (zero) requests all available history for the referenced account (if specified) and obje
type. Servers should send all relevant transactions that are accessible, allowing a new client to k
about work done by other clients. If a user’s account has never been used with OFX, the server r
no history.

� Servers should return <TOKEN>–1 (negative one) in the event they must respond with an error. F
more information, see section 6.4.4.

In all other cases, the server can use different types of tokens for different types of responses, if suita
the server.
OFX 2.0 Specification 896/30/00

r
n 6.6
would

ist
ht
istory
t.

,

quest
nt. In
. For
signed

r.

lable

he

nt

uest.
s any
n. An
token as

n. In
on will
.

Clients must send either a <REFRESH>Y request (if supported by the server) or <TOKEN>0 in thei
initial synchronization request for each account (if necessary) and object type. As described in sectio,
a server’s response to either request should bring the client up-to-date. The <REFRESH>Y response
not detail how or when an object reached its current state. But, the <TOKEN>0 response might not l
every relevant object (for example, some early history that the server has already purged, which mig
include a payment that was scheduled far in the past, but not yet due.) Should the client require full h
information initially, OFX recommends a <REFRESH>Y request together with a <TOKEN>0 reques

Tokens can contain up to 10 characters in V1 message sets; see Chapter 3, "Common Aggregates
Elements, and Data Types."Tokens must be unique only with respect to the type of synchronization
request and the additional information in that request. For example, a bill payment synchronization re
takes an account number; therefore, a token needs to be unique only within payments for the accou
sync requests which do not include an account number, token values are scoped to the current user
example, a token in a payee synchronization request needs to be unique only within payees for the
on user.

The server can use different types of tokens for different types of responses, if suitable for the serve

Servers will not have infinite history available, so synchronization responses can optionally include a
<LOSTSYNC>Y (yes) if the old token in the synchronization request was older than the earliest avai
history. This element allows clients to alert users that some responses have been lost.

Note: Tokens are unrelated to <TRNUID>s, <SRVRTID>s, and <FITID>s, each of which
serves a specific purpose and has its own scope and lifetime.

A <SRVRTID> is not appropriate as a <TOKEN> for bill payment. A single payment has a single
<SRVRTID>, but it can undergo several state changes over its life and thus have several entries in t
token history.

6.4.2 The Synchronization Process

There are three different ways a client and a server can conduct their requests and responses:

� Explicit synchronization—A client can request synchronization without sending any other OFX
requests. The client sends a synchronization request, including the current token for that type of
request. The response includes responses more recent than the given token, along with the curre
token.

� Synchronization with new requests—A client can request synchronization as part of any new req
The client gives the latest token it has. The response includes responses to the new requests plu
others that became available since the time of the token in the request, along with the current toke
aggregate contains the requests so that the server can process the new requests and update the
a single action.

� New requests without synchronization—A client can make new requests without providing a toke
this case, it expects only responses to the new requests. A subsequent request for synchronizati
cause the server to send this response again, because the client did not receive the current token
90 6.4 Data Synchronization Specifics

r
r that

te. The

used
s. For

his
end

d file,
here is
object.
rtain

if the
s
ion

client

ferred
SYNC responses should return a new <TOKEN> only if new activity was generated for a set of
transactions (e.g. payee, payment, intrabank transfers, payment email, etc.). Alternatively, if a serve
always returns a new <TOKEN> even if no new activity was generated, the server should remembe
the old and new <TOKEN> values are both up-to-date with respect to <REJECTIFMISSING>Y

Each request and response that requires data synchronization will define a synchronization aggrega
aggregate tells the server which kind of data it should synchronize. By convention, these aggregates
always have SYNC as part of their names, for example, <PMTSYNCRQ>. These aggregates can be
on their own to perform explicit synchronization, or as wrappers around one or more new transaction
example, <PMTSYNCRQ> aggregates request synchronization and may include new work.

Some clients can choose to perform an explicit synchronization before sending any new requests. T
practice allows clients to be up-to-date before sending any new requests. Other clients can simply s
new requests as part of the synchronization request.

If a client synchronizes in one file, then sends new work inside a synchronization request in a secon
there is a small chance that additional responses became available between the two connections. T
an even smaller chance that these would be conflicting requests, such as modifications to the same
However, some clients and some requests might require absolute control, so that the user can be ce
that they are changing known data. To support this, synchronization requests can optionally specify
<REJECTIFMISSING> element. The element tells a server that it should reject all enclosed requests
supplied <TOKEN> is out of date before considering the new requests. That is, if any new response
became available, whether related to the incoming requests or not (but in scope of the synchronizat
request), the server should immediately reject the requests. It should still return the new responses. A
can then try again until it finds a stable window to submit the work. See section 6.5for more information
about conflict detection and resolution.

Note: If <REJECTIFMISSING>Y causes enclosed requests to be rejected, this rejection can
be done in one of two ways:

� Embedded requests are completely ignored – they are not included in the response.

� Embedded requests are returned with a 2000 (or 6502 for recent servers) error. This is the pre
approach.

The password change request and response present a special problem. See section 2.5.2for further
information.
OFX 2.0 Specification 916/30/00

s),
tion

t
hether
a
nt in
en,

y,
FI.
6.4.3 Synchronizable Objects

OFX allows synchronization of email (in all message sets), service activations, changes to user
information, stop checks, banking notifications, transfers (both types), recurring transfers (both type
wire transfers, payees, payments, and recurring payments. OFX includes the following synchroniza
request/response pairs.

6.4.4 Token and Full Syncronization Summary

In review, tokens are used to identify a point in an activity continuum. Each client maintains a curren
token that identifies a place on that continuum. When sent to the server, the server can determine w
or not the client is up-to-date and send history if not. For instance, if ten activities have occurred for
particular type of synchronized activity and a client knows about the first eight activities, the token se
the request will show this and the server will respond with the missing two, along with the newest tok
thus bringing the client up to date. Several clients may be kept up-to-date with each other in this wa
presuming all are accessing the same userid/accountid (depending on the activity) within the same

Section Request Response

8.6.4 <ACCTSYNCRQ> <ACCTSYNCRS>

8.7 <CHGUSERINFOSYNCRQ> <CHGUSERINFOSYNCRS>

9.2.4 <MAILSYNCRQ> <MAILSYNCRS>

11.12.1 <STPCHKSYNCRQ> <STPCHKSYNCRS>

11.12.2 <INTRASYNCRQ> <INTRASYNCRS>

11.12.3 <INTERSYNCRQ> <INTERSYNCRS>

11.12.4 <WIRESYNCRQ> <WIRESYNCRS>

11.12.5 <RECINTRASYNCRQ> <RECINTRASYNCRS>

11.12.6 <RECINTERSYNCRQ> <RECINTERSYNCRS>

11.12.7 <BANKMAILSYNCRQ> <BANKMAILSYNCRS>

12.8.2 <PMTMAILSYNCRQ> <PMTMAILSYNCRS>

12.9.4 <PAYEESYNCRQ> <PAYEESYNCRS>

12.10.1 <PMTSYNCRQ> <PMTSYNCRS>

12.10.2 <RECPMTSYNCRQ> <RECPMTSYNCRS>

13.10.2 <INVMAILSYNCRQ> <INVMAILSYNCRS>

14.6 <PRESMAILSYNCRQ> <PRESMAILSYNCRS>
92 6.4 Data Synchronization Specifics

t
an

three
il, a
er, if
a token
for

ith

or
ased on

y that

m. An

on for

onse.
is
il

on
n,
delete

est/
to a

rack
kens

lient-
>0.
ent
ment
tion
The term "activity" denotes a discrete unit before which and after which a token is generated. It is no
necessary for a server to generate a new token for each OFX response it sends. Rather, a server c
generate a token to identify several responses as long as there is no chance that these two or more
responses were generated by two different clients. For instance, if an OFX block is sent containing
bank transfer requests, one token can be generated to represent all three activities. If all requests fa
server does not need to update the token unless failed requests are reported in sync history. Howev
even one activity succeeds, a new token must be generated for the next sync. (If the server updates
when there is no activity representing that token, for example when all requests fail or the request is
sync only, the server must remember that now the current and newer tokens are both "up to date" w
respect to REJECTIFMISSING.)

Note that tokens are not ordered, that is, a client should not assume that they are either incremented
decremented in succeeding updates. The server determines how the tokens are updated/changed b
its own algorithm.

If a request(s) is sent which is subject to synchronization but the request(s) is not "wrapped" in a
synchronization request, the server must still generate a new token internally to represent the activit
occurred. This token is returned in the next synchronization response.

Some OFX transactions are not associated with tokens and no synchronization history is kept for the
example is bank statement download (STMTRQ/STMTRS). A statement download is a read-only
operation from the server. A client can request it again; consequently, there is no data synchronizati
this type of response.

In other cases, one OFX transaction is associated exclusively with a particular synchronization resp
That is, synchronization is associated with only one OFX request/response pair. An example of this
PMTMAILR[Q/S]. PMTMAILRS is the only type of OFX response that will appear in the payment ma
synchronization response (PMTMAILSYNCRS).

Finally, there are several OFX transactions that will cause activity to be saved for later synchronizati
under the umbrella of one synchronization response. An example of this is payment synchronizatio
where payment responses (PMTRS), payment modification responses (PMTMODRS) and payment
responses (PMTCANCRS) can all appear in a payment synchronization response (PMTSYNCRS).

Tokens are generated, maintained and recognized only within the scope of the synchronization requ
response pair. For instance a <TOKEN>50511 sent in a payee synchronization request is unrelated
<TOKEN>50522 sent in a payment synchronization request because the tokens are associated with
different synchronization transactions (PAYEESYNC versus PMTSYNC). While clients must keep t
of the most up-to-date token within each synchronization type, servers must also keep a history of to
and associated activity within each type.

Note that server-initiated activity will also appear in a synchronization response, in addition to user/c
initiated activity. In a token-based sync, this activity is identified by a response containing a <TRNUID
(In a refresh, all TRNUID values are 0.) A payment spawned by a model and appearing in the paym
synchronization response is an example of such activity. In this case, the server will update the pay
synchronization token (associated with PMTSYNCR[Q/S] but not the recurring payment synchroniza
OFX 2.0 Specification 936/30/00

will

ny
ight
ually
making
esolve

that
ending

the
ion

gent

server
ch
, a user
rowser.

tainly
onths

ust
lar

ed
edded
token (associated with RECPMTSYNCR[Q/S]). The next time a client syncs on payments, its token
be out-of-date and the server will return the newer token along with the spawned payment.

This summary pertains to full synchronization implementations only.

6.5 Conflict Detection and Resolution

Conflicts arise whenever two or more clients or servers modify the same data. This can happen to a
object that has a <SRVRTID> that supports change or delete requests. For example, two spouses m
independently modify the same recurring bill payment model. From a server perspective, there is us
no way to distinguish between the same user making two intended changes and two separate users
perhaps unintended changes. Therefore, OFX provides enough tools to allow clients to detect and r
conflicts.

A careful client always synchronizes before sending any new requests. If any responses come back
could affect a user’s pending requests, the client can ask the user whether it should still send those p
requests. Because there is a small chance for additional server actions to occur between the initial
synchronization request and sending the user’s pending requests, extremely careful clients can use
<REJECTIFMISSING> element. Clients can iterate sending pending requests inside a synchronizat
request with <REJECTIFMISSING> and testing the responses to see if they conflict with pending
requests. A client can continue to do this until a window of time exists wherein the client is the only a
trying to modify the server. In reality, this will almost always succeed on the first try.

6.6 Synchronization Options

There are some situations and some types of clients for which it is preferable that the client ask the
to send—by way of a refresh—everything it knows, rather than just a set of changes by way of a syn
response. For example, a client that has not connected often enough may have lost synchronization
may create a new data file, or the user might be using a completely stateless client, such as a Web b

Note: OFX does not require a client to refresh just because it has lost synchronization.

Clients will mainly want to refresh lists of long-lived objects on the server; generally objects with a
<SRVRTID>. A brand new client, or a client that lost synchronization, might want to learn about in-
progress payments by doing a synchronization refresh of the payment requests. It would almost cer
want to do a synchronization refresh of the recurring payment models, because those often live for m
or years.

A client may request a refresh by using <REFRESH>Y instead of the <TOKEN> element. Servers m
send responses that emulate a client creating or adding each of the objects governed by the particu
synchronization request.

When responding to a <REFRESH>Y sync request, servers must send <TRNUID>0 in each contain
transaction wrapper, the standard value for server-generated responses (except responses for emb
transactions).
94 6.5 Conflict Detection and Resolution

dd
dify it
hould

fresh

lly.

e
s a
the data
essed

st
There is no need to recreate a stream of responses that emulate the entire history of the object. An a
response that reflects the current state is sufficient. For example, if you create a model and then mo
several times, even if this history would have been available for a regular synchronization, servers s
only send a single add that reflects the current state.

Due to the large volume of data which might be included in the response, clients should not perform
<MAILSYNCRQ> (or, one of the service-specific equivalents such as <BANKMAILSYNCRQ>) with
<REFRESH>Y.

A client that wants only the current token, without refresh or synchronization, makes requests with
<TOKENONLY>Y.

In all cases, servers should send the current ending <TOKEN> for the synchronization request in re
responses. This allows a client to perform regular synchronization requests in the future.

The following table summarizes the options in a client synchronization request:

Note: Compliant clients should not send synchronization requests matching those listed
below. Nonetheless, servers should handle such requests and respond as described.

� <TOKENONLY>N has the same meaning as <TOKENONLY>Y and should be treated identica

� <REFRESH>N has the same meaning as <REFRESH>Y and should be treated identically.

� If a client embeds transaction requests in a <REFRESH> or <TOKENONLY> sync request, th
server should respond in such a way that the <REFRESH> data or returned <TOKEN> reflect
specific state, after the transactions have processed. Since servers are not required to reduce
about any particular object to a single addition response, embedded transactions may be proc
before or after the <REFRESH> data is retrieved. As with all synchronization responses, the
returned <TOKEN> must reflect the actions of all embedded transactions.

� <REJECTIFMISSING>Y is illegal unless accompanied by <TOKEN>. If received in the same
wrapper as <TOKENONLY> or <REFRESH>, the server should fail that synchronization reque
(as described in section 6.6.1).

Tag Description

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean
OFX 2.0 Specification 956/30/00

wing.

ount
ry.

n that

could

t from
ing
s for
that
ed from

e

6.6.1 Synchronization Errors

When a client sends an unrecognized or “bad” token, the server response should be one of the follo
(Note that <LOSTSYNC> is an optional element):

� Return <TOKEN>-1, <LOSTSYNC>N, with no history

� Return <TOKEN>X (the current token), <LOSTSYNC>N, with no history

� Return <TOKEN>X (the current token), <LOSTSYNC>N, with full history (i.e. treat as if it were a
<TOKEN>0)

If the synchronization request included a bad account number or BANKID, or signon failed, or an acc
was closed, etc. the response should include <TOKEN>–1, optionally <LOSTSYNC>N, and no histo

6.7 Typical Server Architecture for Synchronization

This section describes how an FI can approach supporting synchronization based on the assumptio
modifications to an existing financial server will be kept to a minimum.

The simplest approach is to create a history database separate from the existing server. This history
consist of the actual OFX transaction responses (<xxxTRNRS> aggregates) that are available to a
synchronization request, or simply the information required to re-create the responses upon reques
the client. The history database could index records by token, response type, and any other identify
information for that type, such as account number. Clearly, this database must include all <TRNUID>
all transactions it contains. OFX recommends that <TRNUID>s be stored for as long as possible so
they may be used to detect duplicate client requests even after the original requests have been purg
the synch database.

The diagram below shows a high-level model of the OFX architecture for a financial institution. Notic
that the diagram shows the presence of a history journal.
96 6.7 Typical Server Architecture for Synchronization

r. This

tabase

rather
The server adds responses to the history journal for any action that takes place on the existing serve
is true whether the OFX requests initiate the action or, in the case of recurring payments, it happens
automatically on the server. Once added to the history journal, the server can forget them.

The areas of the OFX server that process synchronization requests need only search this history da
for matching responses that are more recent than the incoming token.

For a refresh request, an OFX server would access the actual bank server to obtain the current state
than recent history.

Periodically the bank server would purge the history server of older entries.

Account
Records

INTERNET
OFX
Server

Teller
Services

Bank Server

History Journal

Client FINANCIAL INSTITUTION
ENVIRONMENT

Transaction
Manager

Synchronization
Request/Response
OFX 2.0 Specification 976/30/00

ment
to the
t,

sponses
e
data.
Only requests that are subject to synchronization need to have entries in the history database. State
downloads do not involve synchronization; therefore, the FI server should not add these responses
history database. Since statement downloads are usually the largest in space and the most frequen
eliminating these saves much of the space a response history might otherwise require.

More sophisticated implementations can save even more space. The history database could save re
in a coded binary form that is more compact than the full OFX response format. Some FIs might hav
much or all of the necessary data already in their servers; consequently, they would not require new
An FI could regenerate synchronization responses rather than recall them from a database.

6.8 Typical Client Processing of Synchronization Results

The diagram below shows a general flowchart of what an OFX client would do with the results of a
synchronization request. Most requests and responses subject to data synchronization contain both
<TRNUID> and <SRVRTID>.

The response is a modification or change in status.

Does the <SRVRTID> in
this response match one
already recorded by the
client?

Client applies all updated
information to its copy of
the matching transaction.

The client should record the
associated <SRVRTID>, if
response status=SUCCESS

This is a response to a
request initiated by this
client.

The response is a new transaction created by another client.

Was the <TRNUID>
returned in the response
created by this client?

Yes

Yes

No

No
Client adds the transaction
to its local list of
transactions.

The response is to an add request from this client.
98 6.8 Typical Client Processing of Synchronization Results

r from
omic

ization

s
his

ple

nt
and
nicate.
6.9 Simultaneous Connections

It is increasingly common for a server to get simultaneous or overlapping requests from the same use
two different front ends. OFX requires a server to process each set of requests sent in a file as an at
action. Servers can deal with the problems that arise with simultaneous use in two ways:

� Allow simultaneous connections, ensure each is processed atomically, and use the data synchron
mechanism to bring the two clients up to date. This is the preferred method.

� Lock out all but one user at a time, returning the error code 15501 for multiple users.

6.10 Synchronization Alternatives

Although it isRECOMMENDED that OFX servers implement full synchronization as described in thi
chapter, an alternate approach, “lite synchronization,” could be easier for some servers to support. T
approach focuses only on error recovery and does not provide any support for multiple clients, multi
data files, or use of backup files. The approach is to preserve the message sets while simplifying the
implementation.

In addition, some clients might prefer to use file-based error recovery with all servers, even if the clie
and some servers support full synchronization. This section first describes file-based error recovery
lite synchronization, and then explains the rules that clients and servers use to decide how to commu

Lite synchronizing servers may support both file-based error recoveryand<REFRESH>Y. This type of
server is called a Refresh-capable Lite Synchronizing Server.

For information on how these types of synchronization are profiled, see section 7.2.1.
OFX 2.0 Specification 996/30/00

sent.
epare
iated

ed by

ion.

sed

er

ring
lient.

ould
g

ut
he
6.10.1 File-Based Error Recovery

Because only full synchronization supports error recovery, an alternative is needed for lite
synchronization. Servers using lite synchronization keep a copy of the entire response file they last
This is the basis for what is often called “file-based error recovery.” Clients requesting that servers pr
for error recovery generate a globally unique ID for each file they send. Two OFX headers are assoc
with error recovery:

� OLDFILEUID—UID of the last request and response that was successfully received and process
the client

� NEWFILEUID—UID of the current file

The format of these is the same as used with <TRNUID> as documented in section 2.4.6.

Servers use the following rules:

� If NEWFILEUID is set to NONE, the client is not requesting file-based error recovery for this sess
The server does not need to save the response file. If NEWFILEUID is set to NONE and
OLDFILEUID matches a previous request file (see below), the client may be ending use of file-ba
error recovery.

� If NEWFILEUID matches a previous request file, the client is requesting error recovery. The serv
should send the matching saved response file.

Note: If NEWFILEUID matches a previous request file then the request file identified by the
NEWFILEUID must contain exactly the same set of transactions as the previous request file.
Servers can reject the file if it contains new or modified transactions. In particular, clients
should disallow new <PINCHRQ> transactions during error recovery. For more information
about <PINCHRQ> and synchronization, see section 2.5.2.

� If NEWFILEUID is not set to NONE and does not match a previous request file, the client is prepa
for error recovery. The server should save the response file in case the data does not reach the c

� If OLDFILEUID is set to NONE, the server may ignore the presence of this header. The server sh
not search for a response file to delete. Clients should initiate file-based error recovery by sendin
OLDFILEUID set to NONE and NEWFILEUID set to a unique value.

� If OLDFILEUID matches a file saved on the server, then OLDFILEUID is a file that the client has
successfully processed and the server can delete it.

� If OLDFILEUID is not set to NONE and does not match a previous request file, the server should
ignore the presence of this header. Either the server has purged the associated request file witho
explicit request from the client or the client is requesting error recovery with identical headers to t
initial request attempt (NEWFILEUID should match a previous request file in this case).

Note: While it may indicate a client error for OLDFILEUID and NEWFILEUID to hold
identical values other than NONE, the server should ignore this OLDFILEUID header. Earlier
rules in this list detail how the server should handle the request file (based solely upon the
NEWFILEUID value).
100 6.10 Synchronization Alternatives

rvers

nt by
uld
les per
her valid

t error
nize
ally.

ot save

te
uld be
te

and

eived

ended
non

en the

tered
ed for
t
ization
A server should not save more than one file per client data file thread (history of FILEUID values). Se
should purge response files in response to an explicit client request (reference in the OLDFILEUID
header) or after some long period (at least 2 months). Clients must not abuse this storage requireme
(for example) setting OLDFILEUID to the header used three request files previously. The server sho
preserve response files on a per-thread basis. This approach would support multiple clients or data fi
user. But, the server has the option to ignore these needs and purge response files as soon as anot
request arrives for the same <USERID>. In either case, if an error recovery attempt comes after the
corresponding error recovery file is purged, the server will not recognize the request as an attempt a
recovery. The server would simply process it as a new request. In this case, the server should recog
duplicate transaction UIDs for client-initiated work, such as payments, and then reject them individu
Server-generated responses would be lost to the client.

A server should not save a response file when it is useless to do so. Specifically, the server should n
a response file when the request fails parsing or when the request was rejected due to a <SONRQ>
problem (e.g. invalid <USERID>).

If all accounts are shared between two (or more) users (for example, husband and wife have separa
online access to the same list of joint accounts and none others), some identifiers may differ and sho
maintained separately by the client. Thus, clients should initiate error recovery and maintain/genera
xxxFILEUID values on a per-user basis.

6.10.1.1 File-Based Error Recovery and Authentication

There are two aspects of error recovery authentication which must be considered, request validation
password validation.

6.10.1.1.1 Request Validation

When error recovery is being attempted the server should first perform signon authentication on the
request file. Once this is done, it should validate that the rest of the transactions in the request file rec
match those of the request file that was archived for the corresponding response file which was also
archived. Recommended matching is defined at two levels:

� Minimal—Verify that the transactions correspond to the archived file

� Recommended—Verify the current request and archived request files exactly match. It is recomm
that checksums for all characters after the </SONRQ> be used to verify an exact match. (The sig
request itself may change between attempts.)

6.10.1.1.2 Password Validation

In all cases, the server must not store response files for the purposes of file-based error recovery wh
<SONRQ> has failed. A saved response file matching the OLDFILEUID header (if any) must not be
deleted when this occurs.In error recovery situations, the possibility exists that the user will have en
the correct password when a request was originally sent, but will mistype the password when prompt
it again during the recovery attempt. The server should respond as it would whenever sign on fails: I
should return 15500 errors in all transaction response aggregates. The server should return synchron
OFX 2.0 Specification 1016/30/00

0 error.

ed in

hem to
m.
ocessed
m
to hold

ction
tinction
.

h the
the
n
relying

ey may
e
ndled
all

this
wrappers with <TOKEN>-1 and any embedded transaction response aggregates with the same 1550
(The response file should contain no <xxxRS> aggregates apart from the <SONRS>.) This particular
situation (sign on failure during an error recovery attempt) merits careful attention to the rules describ
the previous paragraph.

6.10.2 Lite Synchronization

Lite synchronization requires servers to accept all synchronization messages, but does not require t
keep any history or tokens. Responses need to be sent only once and then the server can forget the
Responses to client requests, whether or not they are made inside a synchronization request, are pr
normally. Responses that represent server-initiated work, such as payment responses that arise fro
recurring payments, are sent only in response to synchronization requests. A server does not have
responses in case a second client makes a synchronization request.

Basic lite synchronization servers do not support <REFRESH>Y. These servers may implement
<TOKEN>0 responses as a pseudo-refresh (as described in section 6.10.2.1).Refresh-capable lite
synchronizing servers, however, do support <REFRESH>Y. That, in fact, is the only difference in fun
between a Basic Lite Synch server and a Refresh-capable Lite Synch Server. The purpose of the dis
is to allow a server to provide refresh capability without the burden of supporting full synchronization

For a server accustomed to sending unsolicited responses, lite synchronization should closely matc
current implementation of file-based error recovery. The only difference is that a server should hold
unsolicited responses until the client makes the first appropriate synchronization request; rather tha
automatically adding them to any response file. Once added, the server can mark them as delivered,
on error recovery to ensure actual delivery.

Note: OFX requires a server to authenticate a client in Error Recovery.

6.10.2.1 Lite Synchronization and <REFRESH>

Basic lite synchronization servers do not support <REFRESH>Y. These servers may implement
<TOKEN>0 responses as a pseudo-refresh. If a server does not support <REFRESH>Y requests, th
still choose to respond to a <TOKEN>0 request as if <REFRESH>Y were requested. In this case, th
response should be returned with a <TOKEN>1. This token never again increments and would be ha
as described in section 6.10.2(returning only unsolicited responses). This has the advantage of allowing
unsolicited responses to be discarded immediately after they have been included in a <xxxSYNCRS> (with
<TOKEN>1) response.

Refresh-capable Lite Synchronization servers may support both file-based error recovery and
<REFRESH>Y. OFX 2.0 supports Refresh-capable Lite Synchronization. (Existing clients may ignore
new feature.)

For more information on profiling synchronization support, see section 7.2.1.
102 6.10 Synchronization Alternatives

. If
to

y. A
valid:

these
on by
6.10.3 Relating Synchronization and Error Recovery

Client and server developers should first decide whether or not they will support full synchronization
they can, then they can support file-based error recovery as well, or they can rely on synchronization
perform error recovery. If they adopt only lite synchronization, OFX requires file-based error recover
server describes each of these choices in its server profile records. The following combinations are

� Full synchronization with file-based error recovery

� Full synchronization without separate file-based error recovery

� Lite synchronization with file-based error recovery (with or without <REFRESH>Y support)

Clients request file-based error recovery by including the old and new session UIDs in the header. If
are absent, servers need not save the response file for error recovery. Clients request synchronizati
using those synchronization requests defined throughout this specification.
OFX 2.0 Specification 1036/30/00

s two
sts and
uter
6.11 Examples

Here is an example of full synchronization using bill payment as the service. OFX Payments provide
different synchronization requests and responses, each with their own token; one for payment reque
one for repeating payment model requests. Note that these simplified examples do not include the o
<OFX> layer, <SONRQ>, and so forth.

Client A requests synchronization:

<PMTSYNCRQ>

<TOKEN>123</TOKEN>

<REJECTIFMISSING>N</REJECTIFMISSING>

<BANKACCTFROM>

<BANKID>121000248</BANKID>

<ACCTID>123456789</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

</PMTSYNCRQ>

The server sends in response:

<PMTSYNCRS>

<TOKEN>125</TOKEN>

<LOSTSYNC>N</LOSTSYNC>

<BANKACCTFROM>

<BANKID>121000248</BANKID>

<ACCTID>123456789</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<PMTTRNRS>

<TRNUID>123</TRNUID>

<STATUS>

... status details

</STATUS>

<PMTRS>

... details on a payment response

</PMTRS>

</PMTTRNRS>

<PMTTRNRS>

<TRNUID>546</TRNUID>

<STATUS>

... status details

</STATUS>
104 6.11 Examples

ization
t a later

ing else
<PMTRS>

... details on another payment response

</PMTRS>

</PMTTRNRS>

</PMTSYNCRS>

Client A was missing two payment responses, which the server provides. At this point, client A is
synchronized with the server. Client A now makes a new payment request, and includes a synchron
update as part of the request. This update avoids having to re-synchronize the expected response a
time.

<PMTSYNCRQ>

<TOKEN>125</TOKEN>

<REJECTIFMISSING>N</REJECTIFMISSING>

<BANKACCTFROM>

<BANKID>121000248</BANKID>

<ACCTID>123456789</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<PMTTRNRQ>

<TRNUID>12345</TRNUID>

<PMTRQ>

... details of a new payment request

</PMTRQ>

</PMTTRNRQ>

</PMTSYNCRQ>

The response to this new request:

<PMTSYNCRS>

<TOKEN>126</TOKEN>

<LOSTSYNC>N</LOSTSYNC>

<BANKACCTFROM>

<BANKID>121000248</BANKID>

<ACCTID>123456789</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<PMTTRNRS>

... details on a payment response to the new request

</PMTTRNRS>

</PMTSYNCRS>

The client now knows that the server has processed the payment request it just made, and that noth
has happened on the server since it last synchronized with the server.
OFX 2.0 Specification 1056/30/00

If it

hich
Assume client B was synchronized with respect to payments for this account up through token 125.
called in now and synchronized—with or without making additional requests—it would pick up the
payment response associated with token 126. It records the same information that was in client A, w
would give both clients a complete picture of payment status.
106 6.11 Examples

ral
rted, and
e
ny
the

llections
ice.

e sets.
server

to

lf is a

y route

will
essage
ow

ld not
sponses
file.

rver
an
CHAPTER 7 FI PROFILE

7.1 Overview

OFX clients use the profile to learn the capabilities of an OFX server. This information includes gene
properties such as account types supported, user password requirements, specific messages suppo
how the client should batch requests and where to send the requests. A client obtains a portion of th
profile when a user first selects an FI. The client obtains the remaining information prior to sending a
actual requests to that FI. The server uses a time stamp to indicate whether the server has updated
profile, and the client checks periodically to see if it should obtain a new profile.

In more detail, a profile response contains the following sections, which a client can request
independently:

� Message Sets – list of services and any general attributes of those services. Message sets are co
of messages that are related functionally. They are generally subsets of what users see as a serv

� Signon realms – FIs can require different signons (user ID and/or password) for different messag
Because there can only be one signon per <OFX> block, a client needs to know which signon the
requires and then provide the right signon for the right batch of messages.

The profile message is itself a message set. In files, OFX uses the <PROFMSGSETV1> aggregate
identify this profile message set.

The following sections describe the general use of profile information.

7.1.1 Message Sets

A message set may be thought of as representing an available financial service. A message set itse
collection of related messages. For example, Chapter 11, "Banking,"defines several message sets:
statement download, credit card statement download, intrabank transfers, and so forth. A server ma
all of the messages in a message set to a single URL and merge their versions together.

Clients and servers generally use message sets as the granularity to decide what functionality they
support. A “banking” server can choose to support the statement download and intrabank transfer m
sets, but not the wire transfer message set. Attributes are available in many cases to further define h
OFX supports a message set.

The profile applies only to the requests a client might expect the server to honor. That is, clients shou
send requests to servers unless support is indicated. However, the server may send unsupported re
in a sync response as information is entered out of band. A client is required to at least parse such a

Clients should assume the burden of checking the profile and not sending a transaction which the se
does not support. If the client goes ahead and sends such a transaction, the server may either return
OFX 2.0 Specification 1076/30/00

ng no
lement

those
ether

ets, and
hould
ich
st

sion
HTTP 400 syntax error, or ignore unsupported elements and aggregates. In the latter case, assumi
other problems occur in processing that request, servers may return warning code 2028 (Request e
unknown). The response file should not contain the unsupported elements or aggregates.

Each portion of the OFX specification that defines messages also defines the message set to which
messages belong. This includes what additional attributes are available for those messages and wh
OFX requires the message set or it is optional.

7.1.2 Version Control

Message sets are the basis of version control. Over time there will be new versions of the message s
at any given time servers will likely want to support more than one version of a message set. Clients s
also be capable of supporting as many versions as possible. Through the profile, clients discover wh
versions are supported for each message set. Clients and servers exchange messages at the highe
common level for each message set.

If banking version 1 is at one URL (A) and billpay version 1 is at another URL (B), both may need ver
1 of signon to be used. In that case, <MSGSETCORE> inside <BANKMSGSETV1> would refer to
<URL>A and <MSGSETCORE> inside <BILLPAYMSGSETV1> would refer to <URL>B, but
<MSGSETCORE> inside <SIGNONMSGSETV1>may refer to either URL or to some other. As
mentioned in Section 2.5.4, the <URL> included in <SIGNONMSGSETV1> does not restrict where the
<SIGNONMSGSRQV1> wrapper may be sent.
108 7.1 Overview

ute
ssages in
ere
tible

ts a

e first
word

profile
r

te or
e the
s with
7.1.3 Batching and Routing

To allow FIs to set up different servers for different message sets, different versions, or to directly ro
some messages to third party processors, message sets define the URL to which a server sends me
that message set. Each version of a message set can have a different URL. In the common case wh
many or all message sets are sent to a single URL, clients will consolidate messages across compa
message sets. Clients may consolidate when all of the following are true:

� Message sets have the same URL;

� Message sets have a common security level; and

� Message sets have the same signon realm.

Note: Signon messages can be sent with all other message sets even if the
<SIGNONMSGSET> contains incompatible settings for the URL, security level, or signon
realm. The message set information for signon messages is used only if the signon message is
sent by itself. Otherwise, the settings are inherited from the accompanying service message set.

The same message set may be supported by multiple servers. In this case, each server that suppor
particular message set must have a unique URL.

7.1.4 Client Signon for Profile Requests

Clients must include a signon request <SONRQ> with every message, including profile requests. Th
time that a client requests the FI profile, the signon request will be present, but the user ID and pass
will not be valid and will be ignored by the server.

Note: Since elements cannot be set to a blank value, <USERID> and/or <USERPASS> may
be set to lower case “anonymous” followed by 23 zeroes.

Once the user has enrolled and received his or her user ID and password, the client must request the
again, even if the profile is not yet out-of-date. Once it has received a successful <PROFRS> (with o
without a profile download) while signed on as the user, the client must not log in anonymously when
sending any later <PROFRQ> to this server.

At this point, the server can respond with a profile response that indicates that the profile is up-to-da
return a new FI profile in response. If the FI wants to return a customer-specific profile, the FI must us
second approach. Servers must handle <PROFRQ> without an error whether or not a request arrive
an anonymous <SONRQ>.

Note: OFX 1.0.2 business rules violate these restrictions, which were added in later versions.
Clients interacting with 2.0 servers based on 1.0.2 business rules should gracefully handle
<PROFRS> errors in their first per-user attempt, reverting to anonymous requests for
subsequent requests (until the next response with <STATUS><CODE>0, when they should
once again make a per-user attempt to retrieve the profile). Servers interacting with 2.0 clients
based on 1.0.2 business rules should not require support for customer-specific profiles. Servers
OFX 2.0 Specification 1096/30/00

t’s
r the

the
ent can

.

e a

L and/
correcting problems with per-user <PROFRQ> requests (which previously caused error
responses) must update the FI Profile to tell compliant clients to retry.

For more information about signon requests, refer to section 2.5.

7.1.5 Profile Request <PROFRQ>

A profile request indicates which profile components a client desires. It also indicates what the clien
routing capability is. Profiles returned by the FI must be compatible with the requested routing style, o
server returns an error.

Profile requests are not subject to synchronization.

Profile requests must appear within a <PROFTRNRQ> transaction wrapper.

The SERVICE option supports clients that can route bill payment messages to a separate URL from
rest of the messages. Because the exact mapping of message sets to the general concept of bill paym
vary by client and by locale, this specification does not provide precise rules for the SERVICE option
Each client will define its requirements.

Tag Description

<PROFRQ> Profile-request aggregate

<CLIENTROUTING> Identifies client routing capabilities, see table below

<DTPROFUP> Date and time client last received a profile update,datetime

</PROFRQ>

Tag Description

NONE Client cannot perform any routing. All URLs must be the same. All message sets shar
single signon realm.

SERVICE Client can perform limited routing. See details below.

MSGSET Client can route at the message-set level. Each message set can have a different UR
or signon realm.
110 7.1 Overview

d time

>
-

onse

n

7.2 Profile Response <PROFRS>

To determine whether the client has the latest version of the FI profile, the server checks the date an
passed by the client in <DTPROFUP>.

If the client has the latest version of the FIs profile, the server returns status code 1 in the <STATUS
aggregate of the profile-transaction aggregate <PROFTRNRS>. The server does not return a profile
response aggregate <PROFRS>.

Note: Not sending a response aggregate in this case is an exception to rules outlined in
sections 2.4.6and 3.1.5.

If the client does not have the latest version of the FI profile, the server responds with the profile-resp
aggregate <PROFRS> in the profile-transaction aggregate <PROFTRNRS>. The response includes
message set descriptions, signon information, and general contact information.

Tag Description

<PROFRS> Profile-response aggregate

<MSGSETLIST> Beginning list of message set information

<xxxMSGSET > One or more message set aggregates

</xxxMSGSET>

</MSGSETLIST>

<SIGNONINFOLIST> Beginning of signon information

<SIGNONINFO> Zero or more signon information aggregates.

Though the DTD allows an empty <SIGNONINFOLIST>, servers should profile
at list one signon realm (include a minimum of one <SIGNONINFO> aggregate i
the <PROFRS> response).

</SIGNONINFO>

</SIGNONINFOLIST>

<DTPROFUP> Time this was updated on server,datetime

<FINAME> Name of institution,A-32

<ADDR1> FI address, line 1,A-32

<ADDR2> FI address, line 2,A-32

<ADDR3> FI address, line 3. Use of <ADDR3> requires the presence of <ADDR2>,A-32

<CITY> FI address city,A-32

<STATE> FI address state,A-5

<POSTALCODE> FI address postal code,A-11

<COUNTRY> FI address country; 3-letter country code from ISO/DIS-3166,A-3
OFX 2.0 Specification 1116/30/00

egate for

n change

in

ch
7.2.1 Message Set

An aggregate describes each message set supported by an FI. Message sets in turn contain an aggr
each version of the message set that is supported. For a message set namedxxx, the convention is to name
the outer aggregate <xxxMSGSET> and the tag for each version <xxxMSGSETVn>. The reason for
message set-specific aggregates is that the set of attributes depends on the message set. These ca
from version to version, so there are version-specific aggregates as well.

The general form of the response is:

The<xxx MSGSETVn> aggregate has the following form:

<CSPHONE> Customer service telephone number,A-32

<TSPHONE> Technical support telephone number,A-32

<FAXPHONE> Fax number,A-32

<URL> URL for general information about FI (not for sending data),URL

<EMAIL> E-mail address for FI,A-80

</PROFRS>

Tag Description

<xxxMSGSET > Service aggregate

<xxxMSGSETVn > Version-of-message-set aggregate, <xxxMSGSETV1> is required. As mentioned
Sections 14.7.2and 14.7.3, <PRESDIRMSGSETV1> and <PRESDLVMSGSETV1>
may appear one or more times.

</xxxMSGSETVn >

</xxxMSGSET >

Tag Description

<xxx MSGSETVn> Message-set-version aggregate

<MSGSETCORE> Common message set information aggregate.

</MSGSETCORE>

Message-set
specific

Zero or more attributes specific to this version of this message set, as defined by ea
message set

</xxx MSGSETVn>

Tag Description
112 7.2 Profile Response <PROFRS>

e

t

h

The common message set information <MSGSETCORE> is as follows:

Note: For all message sets currently defined in OFX, <TRANSPSEC>Y must be specified.

Note: Within a <MSGSETCORE> aggregate, the <VER> element defines the version number
of that message set. It does not refer to the version number of the OFX specification or the
DTD files. For more information about message sets and version numbers, refer to section
2.4.5.

Tag Description

<MSGSETCORE> Common-message-set-information aggregate

<VER> Version number of the message set, (for example, <VER>1 for version 1 of the
message set),N-5

Because this information is already provided by the surrounding <xxxMSGSETVn>
wrapper, <VER> should be ignored by OFX clients. Nonetheless, servers should us
the supported value (<VER>1) consistent with that wrapper.

<URL> URL where messages in this set are to be sent,URL

<OFXSEC> Security level required for this message set; seeChapter 4, "OFX Security."NONE
or TYPE 1.

<TRANSPSEC> Y if transport-level security must be used, N if not used; seeChapter 4, "OFX
Security." Boolean

<SIGNONREALM> Signon realm to use with this message set,A-32

<LANGUAGE> 1 or more.

Language supported,language.

If more than one language is supported, multiple <LANGUAGE> elements can be
sent.

<SYNCMODE> FULL for full synchronization capability

LITE for lite synchronization capability

See Chapter 6, "Data Synchronization,"for more information.

<REFRESHSUPT> Y if server supports <REFRESH>Y within synchronizations. This option is irrelevan
for full synchronization servers. Clients must ignore <REFRESHSUPT> (or its
absence) if the profile also specifies <SYNCMODE>FULL. For lite synchronization,
the default is N. Without <REFRESHSUPT>Y, lite synchronization servers are not
required to support <REFRESH>Y requests,Boolean

<RESPFILEER> Y if server supportsfile-based error recovery, Boolean

See Chapter 6, "Data Synchronization,"for more information.

<SPNAME> Service provider name,A-32

Some financial institutions out-source their OFX servers to a service provider. In suc
cases, the SPNAME element should be included in the MSGSETCORE.

</MSGSETCORE>
OFX 2.0 Specification 1136/30/00

are used

educe

.

st
Note: Within a message set, there can be more than one <MSGSETCORE> aggregate with the
same value for <VER>, or the same value for <URL>, but not the same value for both. The pair
must be unique for each instance of <MSGSETCORE> within a message set. Multiple
<MSGSETCORE>s with the same value for <VER> are used in instances such as signon or
registration, which may have the same version sent to multiple URLs for different services.

7.2.2 Signon Realms

A signon realm identifies a set of messages that can be accessed using the same password. Realms
to disassociate signons from specific services, allowing FIs to require different signons for different
message sets. In practice, FIs will want to use the absolute minimum number of realms possible to r
the user’s workload.

Tag Description

<SIGNONINFO> Signon-information aggregate

<SIGNONREALM> Identifies this realm,A-32

<MIN> Minimum number of password characters,N-2

<MAX> Maximum number of password characters,N-2

<CHARTYPE> Type of characters allowed in password:

ALPHAONLY Password may not contain numeric characters.
The server would allow “abbc”, but not “1223” or
“a122”.

NUMERICONLY Password may not contain alphabetic characters
The server would allow “1223”, but not “abbc” or
“a122”.

ALPHAORNUMERIC Password may contain alphabetic or numeric
characters (or both). The server would allow
“abbc”, “1223”, or “a122”.

ALPHAANDNUMERIC Password must contain both alphabetic and
numeric characters. The server would allow
“a122”, but not “abbc” or “1223”.

<CASESEN> Y if password is case-sensitive,Boolean

<SPECIAL> Y if special characters are allowed over and above those characters allowed by
<CHARTYPE> and <SPACES>,Boolean

<SPACES> Y if spaces are allowed over and above those characters allowed by <CHARTYPE>
and <SPECIAL>,Boolean

<PINCH> Y if server supports <PINCHRQ> (PIN change requests),Boolean

<CHGPINFIRST> Y if server requires clients to execute <PINCHRQ> as part of first signon. Clients mu
ignore <CHGPINFIRST> if the profile also specifies <PINCH>N.Boolean

</SIGNONINFO>
114 7.2 Profile Response <PROFRS>

rofile
nse, it is

the
7.2.3 Status Codes

7.3 Profile Message Set Profile Information

The profile message set functions the same way as all other message sets; therefore, it contains a p
description for that message set. Because <PROFMSGSET> is always part of a message set respo
described here. Servers must include the <PROFMSGSET> as part of the profile response
<MSGSETLIST>. There are no attributes, but the aggregate must be present to indicate support for
message set.

Value Meaning

0 Success (INFO)

1 Client is up-to-date (INFO)

2000 General error (ERROR)

Tag Description

<PROFMSGSET> Message-set-profile-information aggregate

<PROFMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information

</MSGSETCORE>

</PROFMSGSETV1>

</PROFMSGSET>
OFX 2.0 Specification 1156/30/00

116 7.3 Profile Message Set Profile Information

nt
ount
e

ign-up

ers

se

e
X.
and a

by
iled

nd
hone,
lients

ion
clients
CHAPTER 8 ACTIVATION & A CCOUNT INFORMATION

8.1 Overview

The Signup message set defines three messages to help users get setup with their FI:

� Enrollment – informs FI that a user wants to use OFX and requests that a password be returned

� Accounts – asks the FI to return a list of accounts and the services supported for each account

� Activation – allows a client to tell the FI which services a user wants on each account

There is also a message to request name and address changes.

Clients use the account information request on a regular basis to look for changes in a user’s accou
information. A time stamp is part of the request so that a server has to report only new changes. Acc
activation requests are subject to data synchronization, and will allow multiple clients to learn how th
other clients have been enabled.

In OFX request files, the <SIGNUPMSGSRQV1> aggregate identifies the Signup messages.

8.2 Approaches to User Sign-Up with OFX

The message sets in this chapter are designed to allow both FIs and clients to support a variety of s
procedures. There are four basic steps a user needs to go through to complete the sign-up:

1. Select the FI.OFX does not define this step or provide message sets to support it. Client develop
and FIs can let a user browse or search this information on a web site, or might define additional
message sets to do this within the client. At the conclusion of this step, the client will have some
minimal profile information about the FI, including the set of services supported and the URL to u
for the next step.

2. Enrollment and password acquisition.In this step, the user identifies and authenticates itself to th
FI without a password. In return, the user obtains a password (possibly temporary) to use with OF
FIs can perform this entire step over the telephone, through a combination of telephone requests
mailed response, or at the FI web site. FIs can also use the OFX enrollment message to do this
means of the client. The response can contain a temporary password or users can wait for a ma
welcome letter containing the password.

3. Account Information. In this step, the user obtains a list of accounts available for use with OFX, a
which specific services are available for each account. Even if users have enrolled over the telep
clients will still use this message set to help users properly set up the accounts within the client. C
periodically check back with the FI for updates.

4. Service Activation.The last step is to activate specific services on specific accounts. The activat
messages support this step. Synchronization is applied to these messages to ensure that other
are aware of activated services.
OFX 2.0 Specification 1176/30/00

ht
and 4

ight
es

many-

to see

each
t

ave to
nd

ay of
tial

ill
nt
s code:
The combination of media-interface through which an FI accomplishes these steps can vary. FIs mig
wish to do steps two through four over the telephone. Clients will still use OFX messages in steps 3
to automatically set up the client based on the choices made by the user over the phone. Other FIs m
wish to have the entire user experience occur within the client. Either way, the OFX sign-up messag
support the process.

8.3 Users and Accounts

To support the widest possible set of FIs, OFX assumes that individual users and accounts are in a
to-many relationship. Consider a household with three accounts:

� Checking 1 – held individually by one spouse

� Checking 2 – held jointly by both

� Checking 3 – held individually by the other spouse

Checking 2 should be available to either spouse, and the spouse holding Checking 1 should be able
both Checking 1 and 2.

OFX expects FIs to give each user their own user ID and password. Each user will go through the
enrollment step separately. A given account need only be activated once for a service; not once for
user. Clients will use the account information and activation messages to combine information abou
jointly held accounts.

If an FI prefers to have a single user ID and password per household or per master account, it will h
make this clear to users through the enrollment process. It is up to the FI to assign a single user ID a
password that can access all three of the checking accounts described above.

8.4 Enrollment and Password Acquisition

The main purpose of the enrollment message is to communicate a user’s intent to access the FI by w
OFX and to acquire a password for future use with OFX. Some FIs might return a user ID and an ini
password in the enrollment response, while others will send them by way of regular mail.

Note: The client may not know the user ID and password when it sends the enrollment
request, in such a case the <USERID> and/or <USERPASS> may be set to lower case
“anonymous” followed by 23 zeroes.

Enrollment requests are not subject to synchronization. If the client does not receive a response, it w
simply re-request the enrollment. If a user successfully enrolls from another client before the first clie
obtains a response, the server should respond to subsequent requests from the first client with statu

13501 - user already enrolled.
118 8.3 Users and Accounts

he

are
s that
Is
either
ed to
rpret

nt

itimate

this is

h

8.4.1 User IDs

The OFX <SONRQ> requires a user ID to uniquely identify a user to an FI. The server must accept t
user ID with or without punctuation.

Many FIs in the United States use social security numbers (SSNs) as the ID. Others create IDs that
unrelated to the users’ SSNs. Some FIs have existing user IDs that they use for other online activitie
they want to use for OFX as well. FIs might also create new IDs specifically for OFX. Finally, some F
might assign IDs while others might allow users to create them. Because users do not usually know
their OFX sign-on user ID or their password at time of enrollment, the enrollment response is design
return both. The enrollment request allows users to optionally provide a user ID, which an FI can inte
as their existing online ID or a suggestion for what their new user ID should be. Ideally, the enrollme
process should explain ID syntax to users.

8.4.2 Enrollment Request <ENROLLRQ>

The enrollment request captures enough information to identify and authenticate a user as being leg
and that it has a relationship with the FI.

FIs might require that an account number be entered as part of the identification process. However,
discouraged since the account information request is designed to automatically obtain all account
information, avoiding the effort and potential mistakes of a user-supplied account number.

It is RECOMMENDED that FIs provide detailed specifications for user IDs and passwords along wit
information about the services available when a user is choosing an FI.
OFX 2.0 Specification 1196/30/00

n a

FIs
e
hone.
The enrollment request must appear within an <ENROLLTRNRQ> transaction wrapper.

This enrollment request is intended for use only by individuals. Business enrollment will be defined i
later release.

8.4.3 Enrollment Response <ENROLLRS>

The main purpose of the enrollment response is to acknowledge the request. In those cases where
permit delivery of an ID and a temporary password, the response also provides for this. Otherwise th
server will send the real response to the user by way of regular mail, electronic mail, or over the telep

Tag Description

<ENROLLRQ> Enrollment-request aggregate

<FIRSTNAME> First name of user,A-32

<MIDDLENAME> Middle name of user,A-32

<LASTNAME> Last name of user,A-32

<ADDR1> Address line 1,A-32

<ADDR2> Address line 2,A-32

<ADDR3> Address line 3. Use of <ADDR3> requires the presence of <ADDR2>,A-32

<CITY> City, A-32

<STATE> State or province,A-5

<POSTALCODE> Postal code,A-11

<COUNTRY> 3-letter country code from ISO/DIS-3166,A-3

<DAYPHONE> Daytime telephone number,A-32

<EVEPHONE> Evening telephone number,A-32

<EMAIL> Electronic e-mail address,A-80

<USERID> Actual user ID if already known, or preferred user ID if user can choose,A-32

<TAXID> ID used for tax purposes (such as SSN), may be same as user ID,A-32

<SECURITYNAME> Mother’s maiden name or equivalent,A-32

<DATEBIRTH> Date of birth,date

<xxxACCTFROM> An account description aggregate for an existing account at the FI, for
identification purposes only. For example, <BANKACCTFROM> or
<INVACCTFROM>.

</xxxACCTFROM>

</ENROLLRQ>
120 8.4 Enrollment and Password Acquisition

rver is
If enrollment is successful, but the server does not return the ID and password in the response, a se
REQUIRED to use status code 13000 and provide some information to the user by means of the
<MESSAGE> element in the <STATUS> aggregate about what to expect next.

The enrollment response must appear within an <ENROLLTRNRS> transaction wrapper.

8.4.4 Enrollment Status Codes

Tag Description

<ENROLLRS> Enrollment-response aggregate

<TEMPPASS> Temporary password,A-32

<USERID> User ID,A-32

<DTEXPIRE> Time the temporary password expires (if <TEMPPASS> included),datetime

</ENROLLRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

13000 User ID & password will be sent out-of-band (INFO)

13500 Unable to enroll user (ERROR)

13501 User already enrolled (ERROR)

15508 Transaction not authorized (ERROR)
OFX 2.0 Specification 1216/30/00

8.4.5 Examples

An enrollment request:

<ENROLLTRNRQ>

<TRNUID>12345</TRNUID>

<ENROLLRQ>

<FIRSTNAME>Joe</FIRSTNAME>

<MIDDLENAME>Lee</MIDDLENAME>

<LASTNAME>Smith</LASTNAME>

<ADDR1>21 Main St.</ADDR1>

<CITY>Anytown</CITY>

<STATE>TX</STATE>

<POSTALCODE>87321</POSTALCODE>

<COUNTRY>USA</COUNTRY>

<DAYPHONE>123-456-7890</DAYPHONE>

<EVEPHONE>987-654-3210</EVEPHONE>

<EMAIL>jsmith@isp.com</EMAIL>

<USERID>jls</USERID>

<TAXID>123-456-1234</TAXID>

<SECURITYNAME>jbmam</SECURITYNAME>

<DATEBIRTH>19530202</DATEBIRTH>

</ENROLLRQ>

</ENROLLTRNRQ>

And the reply might be:

<ENROLLTRNRS>

<TRNUID>12345</TRUNID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<ENROLLRS>

<TEMPPASS>changeme</TEMPPASS>

<USERID>jls</USERID>

<DTEXPIRE>20000105</DTEXPIRE

</ENROLLRS>

</ENROLLTRNRS>
122 8.4 Enrollment and Password Acquisition

the

ser a
ose

these
t from

a
le
uests

ransit

s even

ice-
ides

ess the

r

no
hen
8.5 Account Information

Account information requests ask a server to identify and describe all of the accounts accessible by
signed-on user. The definition ofall is up to the FI. At a minimum, it isRECOMMENDED that a server
include information about all accounts that it can activate for one or more OFX services. To give the u
complete picture of his relationship with an FI, FIs can give information on other accounts, even if th
accounts are available only for limited OFX services.

Some service providers do not have prior knowledge of user account information. The profile allows
servers to report this, and clients then know to ask users for account information rather than reading i
the server.

Clients can perform several tasks for users with this account information. First, the information helps
client set up a user for online services by giving it a precise list of its account information and availab
services for each. Clients can set up their own internal state as well as prepare service activation req
with no further typing by users. This can eliminate data entry mistakes in account numbers, routing t
numbers, and so forth.

Second, FIs can provide limited information on accounts that would not ordinarily be suitable to OFX
services. For example, a balance-only statement download would be useful for certificates of deposit
though a customer or an FI might not want or allow CDs to be used for full statement download.

For each account, there is one <ACCTINFO> aggregate returned. The aggregate includes one serv
specific account information aggregate for each service available to that account. That, in turn, prov
the service-specific account identification. Common to each service-specific account information
aggregate is the <SVCSTATUS> element, which indicates the status of this service on this account.

A server should return joint accounts (accounts for which more than one user ID can be used to acc
account) for either user.

Requests and responses include a <DTACCTUP> element. Responses contain the last time a serve
updated the information. Clientsare REQUIRED to send this in a subsequent request, and servers are
REQUIRED to compare this to the current modification time and only send information if it is more
recent. The server sends the entire account information response if the client’s time is older; there is
attempt to incrementally update specific account information. <ACCTINFORS> should not be sent w
the client is up-to-date.

Note: Not sending a response aggregate in the case of <ACCTINFORS> is an exception to the
rules outlined in 2.4.6and 3.1.5.
OFX 2.0 Specification 1236/30/00

8.5.1 Request <ACCTINFORQ>

The <ACCTINFORQ> request must appear within an <ACCTINFOTRNRQ> transaction wrapper.

8.5.2 Response <ACCTINFORS>

The <ACCTINFORS> response must appear within an <ACCTINFOTRNRS> transaction wrapper.

Tag Description

<ACCTINFORQ> Account-information-request aggregate

<DTACCTUP> Last <DTACCTUP> received in a response,datetime

</ACCTINFORQ>

Tag Description

<ACCTINFORS> Account-information-response aggregate

<DTACCTUP> Date and time of last update to this information on the server,datetime

<ACCTINFO> Zero or more account information aggregates

Left out of the response when nothing is found for the current user.

Note: When <DTACCTUP> indicates the client is up-to-date, server should
not return surrounding <ACCTINFORS>.

</ACCTINFO>

</ACCTINFORS> End of account information response
124 8.5 Account Information

rs
8.5.3 Account Information Aggregate <ACCTINFO>

Note: A server uses the <DESC> field to convey the FI’s preferred name for the account, such
as “PowerChecking.” It should not include the account number.

8.5.4 Status Codes

Tag Description

<ACCTINFO> Account-information-record aggregate

<DESC> Description of the account,A-80

<PHONE> Telephone number for the account,A-32

<xxxACCTINFO> Service-specific account information, defined in each service chapter.
Some services may include additional elements. Refer to service chapte
for details.

<xxxACCTFROM> Service-specific account identification. For a given servicexxx, there can
be at most one <xxxACCTINFO> returned. For example, you cannot
return two <BANKACCTINFO> aggregates.

</xxxACCTFROM>

<SVCSTATUS> AVAIL = Available, but not yet requested

PEND = Requested, but not yet available

ACTIVE = In use

</xxxACCTINFO>

</ACCTINFO>

Code Meaning

0 Success (INFO)

1 Client is up-to-date (INFO)

2000 General error (ERROR)
OFX 2.0 Specification 1256/30/00

8.5.5 Examples

An account information request:

<ACCTINFOTRNRQ>

<TRNUID>12345</TRNUID>

<ACCTINFORQ>

<DTACCTUP>19990101</DTACCTUP>

</ACCTINFORQ>

</ACCTINFOTRNRQ>

And a response for a user with access to one account, supporting banking:

<ACCTINFOTRNRS>

<TRNUID>12345</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<ACCTINFORS>

<DTACCTUP>19990102</DTACCTUP>

<ACCTINFO>

<DESC>Power Checking</DESC>

<PHONE>8002223333</PHONE>

<BANKACCTINFO>

<BANKACCTFROM>

<BANKID>1234567789</BANKID>

<ACCTID>12345</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<SUPTXDL>Y</SUPTXDL>

<XFERSRC>Y</XFERSRC>

<XFERDEST>Y</XFERDEST>

<SVCSTATUS>ACTIVE</SVCSTATUS>

</BANKACCTINFO>

</ACCTINFO>

</ACCTINFORS>

</ACCTINFOTRNRS>
126 8.5 Account Information

rvice
o inform

lable
enter

vation
hange

based

d
e.

al-world
8.6 Service Activation

Clients inform FIs that they wish to start, modify, or terminate a service for an account by sending se
activation requests. These are subject to data synchronization, and servers should send responses t
clients of any changes, even if the changes originated on the server.

Clients use these records during the initial user sign-up process. Once a client learns about the avai
accounts and services (by using the account information request above, or by having a user directly
the required information), it sends a series of service ADD requests.

If a user changes any of the identifying information about an account, the client sends a service acti
request containing both the old and the new account information. Servers should interpret this as a c
in the account, not a request to transfer the service between two existing accounts, and all account-
information such as synchronization tokens should continue. If a user or FI is reporting that a service
should be moved between two existing accounts, service must be terminated for the old account an
started for the new account. The new account will have reset token histories, as with any new servic

Each service to be added, changed, or removed is contained in its own request because the same re
account might require different <xxxACCTFROM> aggregates depending on the type of service.

8.6.1 Activation Request <ACCTRQ>

The <ACCTRQ> request must appear within an <ACCTTRNRQ> transaction wrapper.

Tag Description

<ACCTRQ> Account-service-request aggregate

Action identification. Specify
either <SVCADD>,
<SVCCHG>, or <SVCDEL>

Action aggregate, either <SVCADD>, <SVCCHG>, or <SVCDEL>

<SVCADD>

</SVCCADD>

-or-

Service-addition aggregate

<SVCCHG>

</SVCCHG>

-or-

Service-change aggregate

<SVCDEL>

</SVCDEL>

Service-deletion aggregate

<SVC> Service to be added/changed/deleted
BANKSVC = Banking service
BPSVC = Payments service
INVSVC = Investments
PRESSVC = Bill presentment service

</ACCTRQ>
OFX 2.0 Specification 1276/30/00

rvice
sent
Q>

M> is
as to
has

>

8.6.1.1 Service Add Aggregate <SVCADD>

When a client sends a <SVCADD> to a financial institution routing particular messages to another se
provider, it is up to the financial institution to determine whether or not an <ENROLLRQ> needs to be
to the service provider along with the <SVCADD>. The FI may choose to always send an <ENROLLR
and ignore the 13550 error message responses, though this would only be reliable if <xxxACCTFRO
included in the <ENROLLRQ>. The FI may also choose to keep a database of enrolled services, so
send an <ENROLLRQ> only when the client is sending a <SVCADD> for a new service. The FI also
the option of sending <ENROLLRQ>s to all service providers when the client sends the initial
<ENROLLRQ> to the FI.

8.6.1.2 Service Change Aggregate <SVCCHG>

8.6.1.3 Service Delete Aggregate <SVCDEL>

Tag Description

<SVCADD> Service-addition aggregate

<xxx ACCTTO> Service-specific-account-identification aggregate (for example,
<BANKACCTTO> or <INVACCTTO>)

</xxx ACCTTO>

</SVCADD>

Tag Description

<SVCCHG> Service-change aggregate

<xxx ACCTFROM> Service-specific-account-identification aggregate (for example,
<BANKACCTFROM> or <INVACCTFROM>)

</xxx ACCTFROM>

<xxx ACCTTO> Service-specific-account-identification aggregate (for example, <BANKACCTTO
or <INVACCTTO>)

</xxx ACCTTO>

</SVCCHG>

Tag Description

<SVCDEL> Service-deletion aggregate

<xxx ACCTFROM> Service-specific-account-identification aggregate (for example,
<BANKACCTFROM> or <INVACCTFROM>)

</xxx ACCTFROM>

</SVCDEL>
128 8.6 Service Activation

8.6.2 Activation Response <ACCTRS>

The <ACCTRS> response must appear within an <ACCTTRNRS> transaction wrapper.

Tag Description

<ACCTRS> Account-service-response aggregate

Action identification. Specify
either <SVCADD>,
<SVCCHG>, or <SVCDEL>

<SVCADD>

</SVCADD>

-or-

Service-addition aggregate

<SVCCHG>

</SVCCHG>

-or-

Service-change aggregate

<SVCDEL>

</SVCDEL>

Service-deletion aggregate

<SVC> Service to be added/changed:

BANKSVC = Banking service
BPSVC = Payments service
INVSVC = Investments
PRESSVC = Bill Presentment service

<SVCSTATUS> AVAIL = Available, but not yet requested

PEND = Requested, but not yet available

ACTIVE = In use

</ACCTRS>
OFX 2.0 Specification 1296/30/00

8.6.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN>
(ERROR)

13502 Invalid service (ERROR)

15508 Transaction not authorized (ERROR)
130 8.6 Service Activation

these
nd
8.6.4 Service Activation Synchronization

Service activation requests are subject to the standard data synchronization protocol. The scope of
requests and the <TOKEN> is the user ID. The request and response tags are <ACCTSYNCRQ> a
<ACCTSYNCRS>.

8.6.4.1 Request <ACCTSYNCRQ>

8.6.4.2 Response <ACCTSYNCRS>

Tag Description

<ACCTSYNCRQ> Activation synchronization request aggregate

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<ACCTTRNRQ> Account-service-request transactions (0 or more)

</ACCTTRNRQ>

</ACCTSYNCRQ>

Tag Description

<ACCTSYNCRS> Payee-list-request aggregate

<TOKEN> New synchronization token,token

<ACCTTRNRS> Account-service-response transactions (0 or more)

</ACCTTRNRS>

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the
server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in the
server’s history table.Boolean

</ACCTSYNCRS>
OFX 2.0 Specification 1316/30/00

8.6.5 Examples

Activating a payment:

<ACCTTRNRQ>

<TRNUID>12345</TRNUID>

<ACCTRQ>

<SVCADD>

<BANKACCTTO>

<BANKID>1234567789</BANKID>

<ACCTID>12345</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTTO>

</SVCADD>

<SVC>BPSVC

</ACCTRQ>

</ACCTTRNRQ>

A response:

<ACCTTRNRS>

<TRNUID>12345</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<ACCTRS>

<SVCADD>

<BANKACCTTO>

<BANKID>1234567789</BANKID>

<ACCTID>12345</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTTO>

</SVCADD>

<SVC>BPSVC</SVC>

<SVCSTATUS>ACTIVE</SVCSTATUS>

</ACCTRS>

</ACCTTRNRS>
132 8.6 Service Activation

the

t
of the

lds in

ges
8.7 Name and Address Changes

Users may request that an FI update the official name, address, phone, and e-mail information using
<CHGUSERINFORQ>. All modified and unmodified elements are submitted in a change user
information request, <CHGUSERINFORQ>. The lack of inclusion of a field in a change user reques
when that field was previously populated implies its deletion on the server. The response reports all
current values. If the USERID element is not present in CHGUSERINFO, then the USERID from the
SONRQ is assumed to be the identifier for the user in question. For security reasons, some of the fie
the <ENROLLRQ> cannot be changed online, such as tax ID and userID.

The transaction tags are <CHGUSERINFOTRNRQ> and <CHGUSERINFOTRNRS>. These messa
are subject to synchronization, <CHGUSERINFOSYNCRQ>, and <CHGUSERINFOSYNCRS>.

8.7.1 Change User Information Request <CHGUSERINFORQ>

Tag Description

<CHGUSERINFORQ> Change-user-information-request aggregate

<FIRSTNAME> First name of user,A-32

<MIDDLENAME> Middle name of user,A-32

<LASTNAME> Last name of user,A-32

<ADDR1> Address line 1,A-32

<ADDR2> Address line 2. Use of <ADDR2> requires the presence of <ADDR1>,A-32

<ADDR3> Address line 3. Use of <ADDR3> requires the presence of <ADDR2>,A-32

<CITY> City, A-32

<STATE> State or province,A-5

<POSTALCODE> Postal code,A-11

<COUNTRY> 3-letter country code from ISO/DIS-3166,A-3

<DAYPHONE> Daytime telephone number,A-32

<EVEPHONE> Evening telephone number,A-32

<EMAIL> Electronic e-mail address,A-80

</CHGUSERINFORQ>
OFX 2.0 Specification 1336/30/00

8.7.2 Change User Information Response <CHGUSERINFORS>

8.7.3 Status Codes

Tag Description

<CHGUSERINFORS> Change-user-information-request aggregate

<FIRSTNAME> First name of user,A-32

<MIDDLENAME> Middle name of user,A-32

<LASTNAME> Last name of user,A-32

<ADDR1> Address line 1,A-32

<ADDR2> Address line 2. Use of <ADDR2> requires the presence of <ADDR1>,A-32

<ADDR3> Address line 3. Use of <ADDR3> requires the presence of <ADDR2>,A-32

<CITY> City, A-32

<STATE> State or province,A-5

<POSTALCODE> Postal code,A-11

<COUNTRY> 3=letter country code from ISO/DIS-3166,A-3

<DAYPHONE> Daytime telephone number,A-32

<EVEPHONE> Evening telephone number,A-32

<EMAIL> Electronic e-mail address,A-80

<DTINFOCHG> Date and time of updatedatetime

</CHGUSERINFORS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN>
(ERROR)

13503 Cannot change user information (ERROR)

15508 Transaction not authorized (ERROR)
134 8.7 Name and Address Changes

ope of

y
.

8.7.4 Change User Information Synchronization

Change user information requests are subject to the standard data synchronization protocol. The sc
these requests and the <TOKEN> is the user ID. The request and response tags are
<CHGUSERINFOSYNCRQ> and <CHGUSERINFOSYNCRS>.

8.7.4.1 Request <CHGUSERINFOSYNCRQ>

8.7.4.2 Response <CHGUSERINFOSYNCRS>

Tag Description

<CHGUSERINFOSYNCRQ> Activation synchronization request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<CHGUSERINFOTRNRQ> Change user information request transactions (0 or more)

</CHGUSERINFOTRNRQ>

</CHGUSERINFOSYNCRQ>

Tag Description

<CHGUSERINFOSYNCRS> Payee-list-request aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entr
in the server’s history table. In this case, some responses have been lost

N if the token in the synchronization request is newer than or matches a
token in the server’s history table.Boolean

<CHGUSERINFOTRNRS> Change user information response transactions (0 or more)

<CHGUSERINFOTRNRS>

</CHGUSERINFOSYNCRS>
OFX 2.0 Specification 1356/30/00

ce
s
users

nt
8.8 Signup Message Set Profile Information

A server must include the following aggregates as part of the profile <MSGSETLIST> response, sin
every server must support at least the account information and service activation messages. Server
indicate how enrollment should proceed: via the client, a given web page, or a text message directing
to some other method (such as a phone call).

Tag Description

<SIGNUPMSGSET> Signup-message-set-profile-information aggregate

<SIGNUPMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information, defined in Chapter 7, "FI Profile"

</MSGSETCORE>

Enrollment options. Choose one of
<CLIENTENROLL>,
<WEBENROLL>, or
<OTHERENROLL>.

<CLIENTENROLL> Client-based enrollment supported

<ACCTREQUIRED> Y if account number is required as part of enrollment,Boolean

</CLIENTENROLL>

-or-

<WEBENROLL> Web-based enrollment supported

<URL> URL to start enrollment process,URL

</WEBENROLL>

-or-

<OTHERENROLL> Some other enrollment process

<MESSAGE> Message to consumer about what to do next (for example, a phone
number),A-80

</OTHERENROLL>

<CHGUSERINFO> Y if server supports client-based user information changes,Boolean

<AVAILACCTS> Y if server can provide information on accounts with SVCSTATUS
available, N means client should expect to ask user for specific accou
information,Boolean

<CLIENTACTREQ> Y if server allows clients to make service activation requests
(<ACCTRQ>), N if server will only advise clients via synchronization
of service additions, changes, or deletions.Boolean

</SIGNUPMSGSETV1>

</SIGNUPMSGSET>
136 8.8 Signup Message Set Profile Information

OFX 2.0 Specification 1376/30/00

138 8.8 Signup Message Set Profile Information

of

so that
e Web
age

an
sends
r 2,

at a

original
e FI is
p

CHAPTER 9 CUSTOMER TO FI COMMUNICATION

9.1 The E-Mail Message Set

The e-mail message set includes two messages: generic e-mail and generic MIME requests by way
URLs. In OFX files, the message set name is EMAILMSGSV1.

9.2 E-Mail Messages

OFX allows consumers and FIs to exchange messages. The message body can be placed in HTML
FIs can provide some graphic structure to the message. Keep in mind that, as with regular World Wid
browsing, an OFX client might not support some or all of the HTML formatting, so the text of the mess
must be clear on its own. Clients can request the server to send graphics (the images referenced in
 tag) as part of the response file, or clients can separately request those elements. If a server
images, it should use the standard procedure for incorporating external data as described in Chapte
"Structure."Servers are not required to support HTML or to send images, even if the client asks.

A user or an FI can originate a message. E-mail messages are subject to data synchronization so th
server can send a response again if it is lost or if multiple clients use it.

Because e-mail messages cannot be replied to immediately, the response should just echo back the
message (so that data synchronization will get this original e-mail message to other clients). When th
ready to reply, it should generate an unsolicited response (<TRNUID>0) and the client will pick this u
during synchronization.

Client Sends Server Responds

Account information

From, To

Subject

Message

Account information

From, To

Subject

Message

Type
OFX 2.0 Specification 1396/30/00

a

ponse

e best.
9.2.1 Regular vs. Specialized E-Mail

Several services with OFX define e-mail requests and responses that contain additional information
specific to that service. To simplify implementation for OFX clients and servers, this section defines
<MAIL> aggregate that OFX uses in all e-mail requests and responses. For regular e-mail, the only
additional information is an account-from aggregate and whether to include images in the e-mail res
or not.

When users want to send messages about service-specific problems, service-specific messages ar
However, when service-specific mail transactions are not available, general mail is acceptable.

9.2.2 Basic <MAIL> Aggregate

Tag Description

<MAIL> Core e-mail aggregate

<USERID> User ID such as SSN,A-32

<DTCREATED> When message was created,datetime

<FROM> Who the message is from,A-32

<TO> Who the message should be delivered to,A-32

<SUBJECT> Subject of message (plain text, not HTML),A-60

<MSGBODY> Body of message, HTML-encoded or plain text depending on <USEHTML>,

HTML-encoded text -A-10000

Plain text -A-2000

<INCIMAGES> Include images in the message body.Boolean

<USEHTML> Y for HTML-formatted text. N for plain text. See section 9.2.2.2for more information.
Boolean

</MAIL>
140 9.2 E-Mail Messages

or

es in

sage

tted
t,
port

the

se,

n

,

9.2.2.1 <INCIMAGES>

The meaning of the <INCIMAGES> element depends on whether the element appears in a request
response.

When used in a request, <INCIMAGES> indicates whether the client accepts mail that includes imag
the message body.

When used in a response, <INCIMAGES> indicates whether the server included images in the mes
body.

9.2.2.2 <USEHTML>

The meaning of the <USEHTML> element depends on whether the element appears in a request or
response.

When used in a request, <USEHTML> indicates whether the client sends and accepts HTML-forma
text in the message body. If a server receives a <xxxMAILSYNCRQ> request with <USEHTML>Y se
the server should process the request whether or not it supports HTML mail. If a server does not sup
HTML mail, it should simply set the <USEHTML> flag to N in any transactions which are returned in
sync response.

When used in a request... Description

<INCIMAGES>Y The client accepts mail that includes images in the message body. In this ca
the server can choose whether to send images in the response.

<INCIMAGES>N The client does not accept mail that includes images in the message body. I
this case, the server must not send images in the response.

When used in a response… Description

<INCIMAGES>Y The server included images in the message body.

<INCIMAGES>N The server did not include images in the message body.

When used in a request… Description

<USEHTML>Y The client is including HTML-formatted text in the message body. In addition
the client will accept mail responses that include HTML-formatted text in the
message body. In this case, a server can choose whether to respond with
HTML-formatted text or plain text.

<USEHTML>N The client is not including HTML-formatted text in the message body. In
addition the client will not accept mail responses that include HTML-
formatted text in the message body.
OFX 2.0 Specification 1416/30/00

tted

and

rior
of the

s to
When used in a response, <USEHTML> indicates whether the message body includes HTML-forma
text or plain text.

Note: When using HTML for the message body, clients and servers are REQUIRED to
enclose the HTML in a CDATA section to protect the HTML markup: <![CDATA[... html ...
]]>. For an example, see section 9.2.5.

9.2.3 E-Mail <MAILRQ> <MAILRS>

E-mail is subject to synchronization. The transaction aggregate is <MAILTRNRQ> / <MAILTRNRS>
the synchronization aggregate is <MAILSYNCRQ> / <MAILSYNCRS>.

In a response, the <TRNUID> is zero if this is an unsolicited message or an out-of-band reply to a p
email request. Immediate responses (acknowledgments) to a request should contain the <TRNUID>
user’s original message. It is RECOMMENDED that servers include the <MESSAGE> of the user’s
message as part of the reply <MESSAGE>. The <MESSAGE> contents can include carriage return
identify desired line breaks.

When used in a response… Description

<USEHTML>Y The server is including HTML-formatted text in the message body.

<USEHTML>N The server is including only plain text in the message body.

Tag Description

<MAILRQ> E-mail-message-request aggregate

<MAIL> Core e-mail aggregate

</MAIL>

</MAILRQ>

Tag Description

<MAILRS> E-mail-message-response aggregate

<MAIL> Core e-mail aggregate

</MAIL>

</MAILRS>
142 9.2 E-Mail Messages

9.2.3.1 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

15508 Transaction not authorized (ERROR)

16500 HTML not allowed (ERROR)

16501 Unknown mail To: (ERROR)
OFX 2.0 Specification 1436/30/00

to a
l was
n

ail is
9.2.4 E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS>

E-mail presents a special case with regards to synchronization. Since FIs will not immediately reply
user’s e-mail, the response to the user’s e-mail only echoes the request and confirms that the e-mai
successfully received. The client receives the real response to the e-mail following a synchronizatio
request.

Note that this synchronization action expects only the basic <MAILRS> responses. Specialized e-m
received by means of their own synchronization requests.

Tag Description

<MAILSYNCRQ> E-mail-synchronization-request aggregate

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<INCIMAGES> Y if the client accepts mail with images in the message body, N if the client does
not accept mail with images in the message body,Boolean

<USEHTML> Y if client wants an HTML response, N if client wants plain text,Boolean

<MAILTRNRQ> Mail-transaction-request aggregate (0 or more)

</MAILTRNRQ>

</MAILSYNCRQ>
144 9.2 E-Mail Messages

nce the
9.2.5 E-Mail Example

In this example, a consumer requests information about the checking statement just downloaded. Si
financial institution will not immediately answer the inquiry, the immediate response only echoes the
consumer’s request and confirms that the request was successfully received.

The client receives the real response at a later time following a mail synchronization request. For an
example of the mail synchronization request and response, see section 9.2.5.1.

Note: This example omits the <OFX> top level and the signon <SONRQ>. Since this example
uses HTML for the message body, it must protect the HTML content in an CDATA-marked
section.

The request:

<MAILTRNRQ>

<TRNUID>54321</TRNUID>

<MAILRQ>

<MAIL>

<USERID>123456789</USERID>

<FROM>James Hackleman</FROM>

<TO>Noelani Federal Savings</TO>

<SUBJECT>What do I need to earn interest?</SUBJECT>

<DTCREATED>19990305</DTCREATED>

<MSGBODY><![CDATA[<HTML><BODY>I didn’t earn any interest this
month. Can you please tell me what I need to do to earn interest on this
account?</BODY></HTML>

]]></MSGBODY>

<INCIMAGES>N</INCIMAGES>

<USEHTML>Y</USEHTML>

</MAIL>

Tag Description

<MAILSYNCRS> E-mail-synchronization-response. aggregate

<TOKEN> Server history marker,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the
server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in the
server’s history table.Boolean

<MAILTRNRS> Missing e-mail response transactions (0 or more)

</MAILTRNRS>

</MAILSYNCRS>
OFX 2.0 Specification 1456/30/00

EN>
</MAILRQ>

</MAILTRNRQ>

The response from the FI:

<MAILTRNRS>

<TRNUID>54321</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<MAILRS>

<MAIL>

<USERID>123456789</USERID>

<FROM>James Hackleman</FROM>

<TO>Noelani Federal Savings</TO>

<SUBJECT>What do I need to earn interest?</SUBJECT>

<DTCREATED>19990305</DTCREATED>

<MSGBODY><![CDATA[<HTML><BODY>I didn’t earn any interest this
month. Can you please tell me what I need to do to earn interest on this
account?</BODY></HTML>]]></MSGBODY>

<INCIMAGES>N</INCIMAGES>

<USEHTML>Y</USEHTML>

</MAIL>

</MAILRS>

</MAILTRNRS>

9.2.5.1 E-Mail Synchronization Example

In the following example, the client has not yet received the reply to the e-mail sent in the previous
example, so its <TOKEN> is one less than the server’s. The server replies by giving the current <TOK
and the missed response.

<MAILSYNCRQ>

<TOKEN>101</TOKEN>

<REJECTIFMISSING>N</REJECTIFMISSING>

<INCIMAGES>N</INCIMAGES>

<USEHTML>Y</USEHTML>

</MAILSYNCRQ>

<MAILSYNCRS>

<TOKEN>102</TOKEN>

<MAILTRNRS>
146 9.2 E-Mail Messages

<TRNUID>0</TRNUID> <!-- server initiated response -->
<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<MAILRS>

<MAIL>

<USERID>123456789</USERID>

<DTCREATED>19990307</DTCREATED>

<FROM>Noelani Federal Savings</FROM>

<TO>James Hackleman</TO>

<SUBJECT>Re: What do I need to earn interest?</SUBJECT>

<MSGBODY>><![CDATA[<HTML><BODY>You need to maintain $1000 in
this account to earn interest. Because your balance was only $750 this
month, no interest was earned. You could also switch to our new Checking
Extra plan that always pays interest. Call us or check our web page
http://www.fi.com/check-plans.html for more information.

Sincerely,

Customer Service Department

Original message:

I didn’t earn any interest this month. Can you please tell me what I
need to do to earn interest on this account?</BODY></HTML>]]></MSGBODY>

<INCIMAGES>N</INCIMAGES>

<USEHTML>Y</USEHTML>

</MAIL>

</MAILRS>

</MAILTRNRS>

</MAILSYNCRS>
OFX 2.0 Specification 1476/30/00

fetch
y, and
ines a
s

rver

X

ntent
le

r type,
9.3 Get HTML Page

Some responses (<PROFRS> and <FINDBILLERRS> for example) contain values that are URLs
intended to be separately fetched by clients. Clients can use their own HTTP libraries to perform this
outside of the OFX specification. However, to insulate clients against changes in transport technolog
to allow for fetches that require the protection of an authenticated signon by a specific user, OFX def
transaction roughly equivalent to an HTTP Get. Any MIME type can be retrieved, including images a
well as HTML pages.

When a <GETMIMERQ> request appears in a request file and no error occurs in processing, the se
must return a response file containing multiple entities (defined in the MIME protocol to include the
MIME headers and content for one part of the transmission). Such a response file has content type
“multipart/x-mixed-replace”, as discussed in section 2.1. One entity contains the OFX response. Other
entities contain the content of individual retrievals corresponding to each <GETMIMERS> in the OF
entity.

When multiple <GETMIMERS> responses (corresponding to successful <GETMIMERQ> requests)
appear in an OFX response entity, the server must return individual entities in the same order as the
corresponding response aggregates. Since the OFX response itself should be the only entity with co
type “application/x-ofx” in the response file, the client may find the retrieved information in predictab
locations within the multipart response.

9.3.1 MIME Get Request and Response <GETMIMERQ>
<GETMIMERS>

The following table lists the components of a request:

The response simply echoes the URL. The actual response, whether HTML, an image, or some othe
is always sent as a separate part of the file using multipart MIME.

Tag Description

<GETMIMERQ> Get-MIME-request aggregate

<URL> URL, URL

</GETMIMERQ>

Tag Description

<GETMIMERS> Get-MIME-response aggregate

<URL> URL, URL

</GETMIMERS>
148 9.3 Get HTML Page

9.3.1.1 Status Codes

9.3.2 MIME Example

A request:

<GETMIMETRNRQ>

<TRNUID>54321</TRNUID>

<GETMIMERQ>

<URL>http://www.fi.com/apage.html</URL>

</GETMIMERQ>

</GETMIMETRNRQ>

A response – the full file is shown here to illustrate the use of multipart MIME:

HTTP 1.0 200 OK

Content-Type: multipart/x-mixed-replace; boundary =boundary =XYZZY24x7

--XYZZY24x7

Content-Type: application/x-ofx
Content-Length: 8732

<?xml version="1.0"?>

<?OFX OFXHEADER="200" VERSION="200" SECURITY="NONE" OLDFILEUID="NONE"
NEWFILEUID="NONE"?>

<OFX>

<!-- signon not shown

message set wrappers not shown -->

<GETMIMETRNRS>

<TRNUID>54321</TRNUID>

<STATUS>

<CODE>0</CODE>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2019 Duplicate request (ERROR)

16502 Invalid URL (ERROR)

16503 Unable to get URL (ERROR)
OFX 2.0 Specification 1496/30/00

<SEVERITY>INFO</SEVERITY>

</STATUS>

<GETMIMERS>

<URL>http://www.fi.com/apage.html</URL>

</GETMIMERS>

</GETMIMETRNRS>

</OFX>

--XYZZY24x7

Content-Type: text/html

<HTML>

<!-- standard HTML page -->

</HTML>

--XYZZY24x7--
150 9.3 Get HTML Page

ust be
ou
9.4 E-Mail Message Set Profile Information

If either or both of the messages in the e-mail message set are supported, the following aggregate m
included in the profile <MSGSETLIST> response. If <EMAILMSGSET> is supported by the server, y
must also support <MAILSYNCRQ>.

Tag Description

<EMAILMSGSET> E-mail-message-set-profile-information aggregate

<EMAILMSGSETV1> Opening tag for V1 of the message set profile information

<MSGSETCORE> Common message set information, defined in Chapter 7, "FI Profile"

</MSGSETCORE>

<MAILSUP> Y if server supports <MAILRQ> request. N if server supports only the
<MAILSYNCRQ> request.Boolean

<GETMIMESUP> Y if server supports get MIME message,Boolean

</EMAILMSGSETV1>

</EMAILMSGSET>
OFX 2.0 Specification 1516/30/00

152 9.4 E-Mail Message Set Profile Information

e useful
er can

tes
erver,
actions

e user
or

equest
long
onses,
CHAPTER 10 RECURRING TRANSACTIONS

OFX enables users to automate transactions that occur on a regular basis. Recurring transactions ar
when a customer has payments or transfers, for example, that repeat at regular intervals. The custom
create a “model” at the server for automatic generation of these instructions. The model in turn crea
payments or transfers until it is canceled or expires. After the user creates a recurring model at the s
the server can relieve the user from the burden of creating these transactions; it generates the trans
on its own, based on the operating parameters of the model.

10.1 Creating a Recurring Model

The client must provide the following information to create a model:

� Type of transaction generated by the model (payment or transfer)

� Frequency of recurring transaction

� Total number of recurring transactions to generate

� Service-specific information, such as transfer date, payment amount, payee address

The model creates each transaction some time before its due date, usually thirty days. This allows th
to retrieve the transactions in advance of posting. This also gives the user the opportunity to modify
cancel individual transactions without changing the recurring model itself.

When a model is created, it can generate several transactions immediately. The model does not
automatically return responses for the newly created transactions. It returns a response only to the r
that was made to create the model. For this reason, clients should send a synchronization request a
with the request to create a model. This allows the server to return the newly created transaction resp
as well as the response to the request to set up a new model.
OFX 2.0 Specification 1536/30/00

passed
10.2 Recurring Instructions <RECURRINST>

The Recurring Instructions aggregate is used to specify the schedule for a repeating instruction. It is
to the server when a recurring transfer or payment model is first created.

10.2.1 Values for <FREQ>

Rules for calculating recurring dates of WEEKLY, BIWEEKLY, and TWICEMONTHLY are as follows:

� WEEKLY = starting date for first transaction, starting date + 7 days for the second

� TWICEMONTHLY = starting date for first, starting date + 15 days for the second

� BIWEEKLY = starting date for first, starting date + 14 days for the second

Tag Description

<RECURRINST> Recurring-Instructions aggregate

<NINSTS> Number of instructions

If this element is absent, the schedule is open-ended,N-3

<FREQ> Frequency, see section 10.2.1

</RECURRINST>

Value Description

WEEKLY Weekly

BIWEEKLY Biweekly

TWICEMONTHLY Twice a month

MONTHLY Monthly

FOURWEEKS Every four weeks

BIMONTHLY Bimonthly

QUARTERLY Quarterly

SEMIANNUALLY Semiannually

ANNUALLY Annually
154 10.2 Recurring Instructions <RECURRINST>

r

Y

nthly
Examples:
Start date of May 2: next transaction date for WEEKLY is May 9; TWICEMONTHLY is May 17; next transfe
date for BIWEEKLY is May 16.

Start date of May 20: next date for WEEKLY is May 27; TWICEMONTHLY is June 4; next date for BIWEEKL
is June 3.

TWICEMONTHLY recurring transactions will occur each month on those days adjusting for weekends and
holidays. BIWEEKLY will occur every 14 days.

10.2.2 Examples

The following example illustrates the creation of a repeating payment. The payment repeats on a mo
basis for 12 months. All payments are for $395.

The request:

.

.

.

<RECPMTRQ>

<RECURRINST>

<NINSTS>12</NINSTS>

<FREQ>MONTHLY</FREQ>

</RECURRINST>

<PMTINFO>

<BANKACCTFROM>

<BANKID>555432180</BANKID>

<ACCTID>763984</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>395.00</TRNAMT>

<PAYEEID>77810</PAYEEID>

<PAYACCT>444-78-97572</PAYACCT>

<DTDUE>19991115</DTDUE>

<MEMO>Auto loan payment</MEMO>

</PMTINFO>

</RECPMTRQ>

.

.

.

OFX 2.0 Specification 1556/30/00

The response includes the <RECSRVRTID> that the client can
use to cancel or modify the model:

.

.

.

<RECPMTRS>

<RECSRVRTID>387687138</RECSRVRTID>

<RECURRINST>

<NINSTS>12</NINSTS>

<FREQ>MONTHLY</FREQ>

</RECURRINST>

<PMTINFO>

<BANKACCTFROM>

<BANKID>555432180</BANKID>

<ACCTID>763984</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>395.00</TRNAMT>

<PAYEEID>77810</PAYEEID>

<PAYACCT>444-78-97572</PAYACCT>

<DTDUE>19991115</DTDUE>

<MEMO>Auto loan payment</MEMO>

</PMTINFO>

</RECPMTRS>

.

.

.

156 10.2 Recurring Instructions <RECURRINST>

ed from
cord of

request,

:

of any

to
odify

e

del is

en
tion

hat it

ation
ellation
10.3 Retrieving Transactions Generated by a Recurring
Model

Once created, a recurring model independently generates instructions. At the time the instance is
generated, its status is pending. At this point, the pending/spawned transaction is treated as a single
transaction, and the rules for what happens to this transaction are the same as if it had been generat
an explicit request. Since the client has not directly generated these transactions, the client has no re
their creation. To enable users to modify and/or cancel these transactions, the client must use data
synchronization in order to retrieve these transactions. (Some message sets also support an inquiry
which may be used once the SRVRTID of the transaction is obtained via synchronization.)

The client has two purposes for synchronizing state with the server with respect to recurring models

� Retrieve any added, modified, or canceled recurring models

� Retrieve any added, modified, or canceled transactions generated by any models

The client must be able to synchronize with the state of any models at the server, as well as the state
transactions generated by the server.

10.4 Modifying and Canceling Individual Transactions

Once created and retrieved by the customer, recurring payments and transfers are almost identical
customer-created payments or transfers. As with ordinary payments or transfers, you can cancel or m
transactions individually. However, because servers generate these transfers, they are different in th
following respects:

� Recurring transactions must be retrieved as part of a synchronization request.

� Recurring transactions are related to a model. A server can modify or cancel transactions if the mo
modified or canceled.

10.5 Modifying and Canceling Recurring Models

A recurring model can be modified or canceled. When a model is modified, all transactions that it
generates in the future will change as well. The client can indicate whether transactions that have be
generated, but have not been sent, should be modified as well. The actual elements within a transac
that can be modified differ by service. See the recurring sections within Chapter 11, "Banking,"and
Chapter 12, "Payments,"for details. When a model is cancelled, the server cancels any transactions t
has not yet sent.

If a client indicates that the modification or cancellation of a model should also affect its pending
transactions, those individual modifications/cancellations must appear in the appropriate synchroniz
response the next time a synchronization request is made. For example, a recurring payment canc
OFX 2.0 Specification 1576/30/00

the

The
and

hown
ts
mple
request that affects pending payments should cause payment cancellation responses to show up in
payment synchronization response for all pending payments belonging to the model.

10.5.1 Examples

Canceling a recurring payment model requires the client to pass the <RECSRVRTID> of the model.
client requests that pending payments also be canceled. The server cancels the model immediately
notifies the client that the model was canceled.

The request:

.

.

.

<RECPMTCANCRQ>

<RECSRVRTID>387687138</RECSRVRTID>

<CANPENDING>Y</CANPENDING>

</RECPMTCANCRQ>

.

.

.

The response:
.

.

.

<RECPMTCANCRS>

<RECSRVRTID>387687138</RECSRVRTID>

<CANPENDING>Y</CANPENDING>

</RECPMTCANCRS>

.

.

.

The server also cancels any payments that have been generated but not executed. In the example s
above, the client would not learn of this immediately. To receive notification that all pending paymen
were canceled, the client would need to send a synchronization request in the file. The following exa
illustrates this.
158 10.5 Modifying and Canceling Recurring Models

The next request file contains a synchronization request:

.

.

.

<PMTSYNCRQ>

<TOKEN>12345</TOKEN>

<REJECTIFMISSING>N</REJECTIFMISSING>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

</PMTSYNCRQ>

.

.

.

The response file contains one response (assuming one payment was pending).

.

.

.

<PMTSYNCRS>

<TOKEN>123456</TOKEN>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<PMTTRNRS>

<TRNUID>0</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PMTCANCRS>

<SRVRTID>1030155</SRVRTID>

</PMTCANCRS>

</PMTTRNRS>

</PMTSYNCRS>

.

.

OFX 2.0 Specification 1596/30/00

e file as
he

at
nge and/

e),
Note that because requests are not guaranteed to be executed in order, a PMTSYNCRQ in the sam
the RECPMTCANCRQ would not guarantee that the cancelled payments would be returned, since t
PMYSYNCRQ might be executed first. This is the reason two OFX files are required in the example
above.

10.6 Expired Models

A model should (preferably) expire after the last pending transfer/payment has been executed for th
model, rather than when the last transfer/payment has been spawned. This enables the user to cha
or cancel the model (possibly, with the <MODPENDING>Y or <CANPENDING>Y flags) during this
period.

Models should show up in synchronization responses even after they have expired (at least for a tim
since the RECSRVRTID will be in payment synchronization responses and a client needs to find the
corresponding model. Servers may safely remove this information shortly after the final payment or
transfer has posted to the source account.
160 10.6 Expired Models

ir
ount
that
a

at
ables

, such

more
for
ome

load
ment
CHAPTER 11 BANKING

OFX enables financial institution (FI) customers to keep their finances up-to-date and to manage the
bank accounts conveniently in several ways. Customers can download transactions and update acc
balances on a daily basis. They can retrieve a closing statement that contains the same information
they are accustomed to seeing on a paper statement. They can transfer funds between accounts at
financial institution, either immediately upon going online or on a regular schedule. Customers can
schedule transfers between accounts on a recurring basis and can transfer funds between accounts
different financial institutions. If necessary, customers can request a wire funds transfer. OFX also en
requests to stop payment on pending checks.

Using customer notification, an FI can notify customers of important events regarding their accounts
as returned checks or deposits.

11.1 Consumer and Business Banking

OFX supports banking for both consumers and businesses. Some customers might use some areas
heavily within OFX Banking (such as credit card download); other areas might be more appropriate
businesses (such as wire transfers). Yet all of the functionality defined for Banking is appropriate to s
extent for both consumer and business applications.

11.2 Credit Card Data

Credit card data is available to OFX clients through the statement download facility. Statement down
provides a way to download credit card transaction data and balances on an as-needed basis. State
closing information can be made available to clients as well.

11.3 Common Banking Aggregates

This section describes several aggregates used throughout the Banking portion of OFX.
OFX 2.0 Specification 1616/30/00

nough
d

11.3.1 Banking Account <BANKACCTFROM> and <BANKACCTTO>

OFX uses the Banking Account aggregates to identify an account at an FI. The aggregates contain e
information to uniquely identify an account for the purposes of statement download, bill payment, an
funds transfer. <CCACCTFROM> identifies credit card accounts; see section 11.3.2.

Tag Description

<BANKACCTFROM> Bank-account-from aggregate

<BANKID> Bank identifier,A-9

Use of this field by country:

COUNTRY

BEL

CAN

CHE

DEU

ESP

FRA

GBR

ITA

NLD

USA

Interpretation

Bank code

Routing and transit number

Clearing number

Bankleitzahl

Entidad

Banque

Sort code

ABI

Not used (field contents ignored)

Routing and transit number

<BRANCHID> Branch identifier. May be required for some non-US banks,A-22

Use of this field by country:

COUNTRY

BEL

CAN

CHE

DEU

ESP

FRA

GBR

ITA

NLD

USA

Interpretation

Not present

Not present

Not present

Not present

Oficina

Agence

Not present

CAB

Not present

Not present

<ACCTID> Account number,A-22

<ACCTTYPE> Type of account, see section 11.3.1.1
162 11.3 Common Banking Aggregates

<ACCTKEY> Checksum,A-22

Use of this field by country:

COUNTRY

BEL

CAN

CHE

DEU

ESP

FRA

GBR

ITA

NLD

USA

Interpretation

Check digits

Not present

Not present

Not present

D.C.

Clé

Not present

CIN

Not present

Not present

</BANKACCTFROM>

Tag Description
OFX 2.0 Specification 1636/30/00

Tag Description

<BANKACCTTO> Bank-account-to aggregate

<BANKID> Bank identifier,A-9

Use of this field by country:

COUNTRY

BEL

CAN

CHE

DEU

ESP

FRA

GBR

ITA

NLD

USA

Interpretation

Bank code

Routing and transit number

Clearing number

Bankleitzahl

Entidad

Banque

Sort code

ABI

Not used (field contents ignored)

Routing and transit number

<BRANCHID> Branch identifier. May be required for some banks,A-22

Use of this field by country:

COUNTRY

BEL

CAN

CHE

DEU

ESP

FRA

GBR

ITA

NLD

USA

Interpretation

Not present

Not present

Not present

Not present

Oficina

Agence

Not present

CAB

Not present

Not present

<ACCTID> Account number,A-22

<ACCTTYPE> Type of account, see section 11.3.1.1

<ACCTKEY> Checksum,A-22

Use of this field by country:
164 11.3 Common Banking Aggregates

11.3.1.1 Account Types for <ACCTTYPE>Elements

COUNTRY

BEL

CAN

CHE

DEU

ESP

FRA

GBR

ITA

NLD

USA

Interpretation

Check digits

Not present

Not present

Not present

D.C.

Clé

Not present

CIN

Not present

Not present

</BANKACCTTO>

Type Description

CHECKING Checking

SAVINGS Savings

MONEYMRKT Money Market

CREDITLINE Line of credit

Tag Description
OFX 2.0 Specification 1656/30/00

te
s and
card
11.3.2 Credit Card Account <CCACCTFROM> and <CCACCTTO>

OFX uses the Credit Card Account aggregate to identify a credit card account at an FI. The aggrega
contains enough information to uniquely identify an account for the purposes of statement download
funds transfer. It is not necessary to support the Credit Card Message Set in order to use the Credit
account aggregate.

The <CCACCTTO> aggregate contains the same elements.

Tag Description

<CCACCTFROM> Credit-card-account-from aggregate

<ACCTID> Account number,A-22

<ACCTKEY> Checksum for international banks,A-22

</CCACCTFROM>
166 11.3 Common Banking Aggregates

ludes
11.3.3 Bank Account Information <BANKACCTINFO>

OFX uses the bank account information aggregate to download account information from an FI. It inc
account number specification in <BANKACCTFROM> as well as the status of the service.

Tag Description

<BANKACCTINFO> Bank-account-information aggregate

<BANKACCTFROM> Bank-account-from aggregate

</BANKACCTFROM>

<SUPTXDL> Y if account supports transaction detail downloads, N if it is balance-only,
Boolean

<XFERSRC> Y if account is enabled as a source for an intrabank or interbank transfer,Boolean

<XFERDEST> Y if account is enabled as a destination for an intrabank or interbank transfer,
Boolean

<SVCSTATUS> Status of the account

AVAIL = Available, but not yet requested

PEND = Requested, but not yet available

ACTIVE = In use

</BANKACCTINFO>
OFX 2.0 Specification 1676/30/00

I. It

tifies
r.

just
4 and
the
r this
11.3.4 Credit Card Account Information <CCACCTINFO>

OFX uses the credit card account information aggregate to download account information from an F
includes credit card number specification in <CCACCTFROM> as well as the status of the service.

11.3.5 Transfer Information <XFERINFO>

Many of the transfer requests and responses use an <XFERINFO> aggregate. This aggregate iden
accounts that are part of the transfer, amount of money to be transferred, and the date of the transfe

The <DTDUE> in a response may have been adjusted by a server. For example, the server may ad
<DTDUE> to comply with non-processing days. If a client sends a request to make a transfer on July
July 4 happens to be a non-processing day, the <DTDUE> in the response may be July 4 (because
server hasn’t adjusted it yet), July 5 (because this server rolls dates forward), or some other date. Fo
reason, a client should pay attention to the <DTDUE> in the response.

Tag Description

<CCACCTINFO> Credit-card-account-information aggregate

<CCACCTFROM> Credit-card-account-from aggregate

</CCACCTFROM>

<SUPTXDL> Y if account supports transaction detail downloads, N if it is balance-only,
Boolean

<XFERSRC> Y if account is enabled as a source for an intrabank or interbank transfer,Boolean

<XFERDEST> Y if account is enabled as a destination for an intrabank or interbank transfer,
Boolean

<SVCSTATUS> Status of the account

AVAIL = Available, but not yet requested

PEND = Requested, but not yet available

ACTIVE = In use

</CCACCTINFO>
168 11.3 Common Banking Aggregates

Tag Description

<XFERINFO> Transfer-information aggregate

Account-from options.
Choose either
<BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

Account-to options. Choose
either <BANKACCTTO> or
<CCACCTTO>.

<BANKACCTTO> Account-to aggregate, see section 11.3.1

</BANKACCTTO>

-or-

<CCACCTTO> Credit-card-account-to aggregate, see section 11.3.2

</CCACCTTO>

<TRNAMT> Amount of the transfer,amount

This amount should be specified as a positive number.

<DTDUE> Date that the transfer is to be sent. If the client does not specify <DTDUE>, the
transfer occurs as soon as possible. <DTDUE> is required for scheduled or
repeating transfers,datetime

</XFERINFO>
OFX 2.0 Specification 1696/30/00

retation
11.3.6 Transfer Processing Status <XFERPRCSTS>

The Transfer Processing Status aggregate contains the current processing status for a transfer. This
aggregate is intended to describe status changes to the associated transfer after creation. The interp
of the date value depends on the value of <XFERPRCCODE>.

11.3.6.1 Transfer Processing Status Values <XFERPRCCODE>

Tag Description

<XFERPRCSTS> Transfer processing status aggregate

<XFERPRCCODE> See section 11.3.6.1

<DTXFERPRC> Transfer processing date; value depends on <XFERPRCCODE>

</XFERPRCSTS>

Value Description

WILLPROCESSON Will be processed on <DTXFERPRC>

POSTEDON Posted on <DTXFERPRC>

NOFUNDSON Funds not available to make transfer on <DTXFERPRC>

CANCELEDON User canceled payment on <DTXFERPRC>

FAILEDON Unable to make transfer for unspecified reasons on <DTXFERPRC>
170 11.3 Common Banking Aggregates

f a
.

paper

of
pplied

te in the

line of
r 13,

the
it can
11.4 Downloading Transactions and Balances

Statement download allows a customer to receive transactions and balances that are typically part o
regular paper statement. Clients can retrieve transactions and balances on a daily basis if they wish
Coupled with the information returned by statement closing information request (see section 11.5), a client
can construct an “electronic statement” that contains all of the information that appears on a regular
statement.

Clients typically allow customers to view these transactions and guide customers through a process
updating their account registers based on the downloaded transactions. By using transaction IDs su
by financial institutions, OFX makes it possible for clients to ensure that a server downloads each
transaction only once. The request also contains starting and ending dates to limit the amount of
downloaded data. Clients can remember the last date they received data and use it as the starting da
next request.

The messages in this chapter are appropriate for checking, savings, money market, credit card, and
credit accounts. Investment statement download is a superset of bank statement download. Chapte
"Investments,"describes the messages specific to investment statement download.

Statement download requires the client to designate an account for the download, and to indicate if
server should download transactions and/or balances. If the client wishes to download transactions,
specify a date range that the transactions fall within.

The server returns transactions that match the date range (if the client specifies one), and balance
information for the account.

Client Sends Server Responds

Account information

Include transactions?

Date range

Transactions

Cycle-ending information
OFX 2.0 Specification 1716/30/00

ds

uest

d

on
11.4.1 Bank Statement Download

A client can request a download of balances separately from transaction detail. The server downloa
transactions only if the <INCTRAN> aggregate is present and the <INCLUDE> flag is set to Y. The
current ledger balance (and balance date) are always downloaded.

If a statement download request does not contain <DTSTART> or <DTEND> elements but does req
transactions and no transactions are found on the server, the response may or may not include a
<BANKTRANLIST> without any <STMTTRN> aggregates. The server should leave out the useless
<BANKTRANLIST>.

You can use the <STMTRQ> … <STMTRS> request and response pair to download transactions an
balances for checking, savings, money market, and line of credit accounts. Section 11.4.2describes
download for credit card accounts.

Clients and servers should interpret <DTSTART> and <DTEND> as described in Chapter 3, "Comm
Aggregates, Elements, and Data Types."

11.4.1.1 Request <STMTRQ>

The <STMTRQ> request must appear within a <STMTTRNRQ> transaction wrapper.

Tag Description

<STMTRQ> Statement-request aggregate

<BANKACCTFROM> Bank-account-from aggregate, see section 11.3.1

</BANKACCTFROM>

<INCTRAN> Include-transactions aggregate

<DTSTART> Start date of statement requested,datetime

<DTEND> End date of statement requested,datetime

<INCLUDE> Include transactions flag,Boolean

</INCTRAN>

</STMTRQ>
172 11.4 Downloading Transactions and Balances

N>

s

11.4.1.2 Response <STMTRS>

A statement response comprises elements supplying various balances, plus zero or more <STMTTR
aggregates, each describing one statement transaction.

The <STMTRS> response must appear within a <STMTTRNRS> transaction wrapper.

See Chapter 3, "Common Aggregates, Elements, and Data Types,"for size and type information for
common elements (such as currency values).

Tag Description

<STMTRS> Statement-response aggregate

<CURDEF> Default currency for the statement,currsymbol

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

<BANKTRANLIST> Statement-transaction-data aggregate

<DTSTART> Start date for transaction data,date

<DTEND> Value that client should send in next <DTSTART> request to ensure that it doe
not miss any transactions,date

<STMTTRN> Opening tag for each statement transaction (0 or more), see section 11.4.3

</STMTTRN> End tag for each statement transaction

</BANKTRANLIST>

<LEDGERBAL> Ledger balance aggregate

<BALAMT> Ledger balance amount,amount

<DTASOF> Balance date,datetime

</LEDGERBAL>

<AVAILBAL> Available balance aggregate

<BALAMT> Available balance amount,amount

<DTASOF> Balance date,datetime

</AVAILBAL>

<MKTGINFO> Marketing information (at most 1),A-360

</STMTRS>
OFX 2.0 Specification 1736/30/00

gate.

uest
11.4.1.3 Status Codes

11.4.2 Credit Card Statement Download

The credit card download request is semantically identical to the bank statement download request.
However, the <CCSTMTRQ> aggregate contains the credit card request, not the <STMTRQ> aggre

If a statement download request does not contain <DTSTART> or <DTEND> elements but does req
transactions and no transactions are found on the server, the response may or may not include a
<BANKTRANLIST> without any <STMTTRN> aggregates. The server should leave out the useless
<BANKTRANLIST>.

Code Meaning

0 Success

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)
174 11.4 Downloading Transactions and Balances

11.4.2.1 Request <CCSTMTRQ>

The <CCSTMTRQ> request must appear within a <CCSTMTTRNRQ> transaction wrapper.

Tag Description

<CCSTMTRQ> Credit-card-download-request aggregate

<CCACCTFROM> Credit-card-account-from aggregate

<ACCTID> Account number,A-22

<ACCTKEY> Checksum for international banks,A-22

</CCACCTFROM>

<INCTRAN> Include transactions

<DTSTART> Start date of statement requested,datetime

<DTEND> Ending date of statement requested,datetime

<INCLUDE> Include transactions flag,Boolean

</INCTRAN>

</CCSTMTRQ>
OFX 2.0 Specification 1756/30/00

se.
regate.

ot
11.4.2.2 Response <CCSTMTRS>

The credit card download response is semantically identical to the bank statement download respon
However, the <CCSTMTRS> aggregate contains the credit card response, not the <STMTRS> agg

The <CCSTMTRS> response must appear within a <CCSTMTTRNRS> transaction wrapper.

Tag Description

<CCSTMTRS> Credit-card-download-response aggregate

<CURDEF> Default currency for the statement,currsymbol

<CCACCTFROM> Account from aggregate, see section 11.3.2

</CCACCTFROM>

<BANKTRANLIST> Opening tag for statement transaction data

<DTSTART> Start date for transaction data,date

<DTEND> Value client should send in next <DTSTART> request to ensure that it does n
miss any transactions,date

<STMTTRN> Opening tag for each statement transaction (0 or more), see section 11.4.3

</STMTTRN>

</BANKTRANLIST>

<LEDGERBAL> Ledger-balance aggregate

<BALAMT> Ledger balance amount,amount

<DTASOF> Balance date,datetime

</LEDGERBAL>

<AVAILBAL> Available balance aggregate

<BALAMT> Available balance amount,amount

<DTASOF> Balance date,datetime

</AVAILBAL>

<MKTGINFO> Marketing information (at most 1),A-360

</CCSTMTRS>
176 11.4 Downloading Transactions and Balances

the
gnize
strial

usly

yment
11.4.2.3 Status Codes

11.4.3 Statement Transaction <STMTTRN>

A <STMTTRN> aggregate describes a single transaction. It identifies the type of the transaction and
date it was posted. The aggregate can also provide additional information to help the customer reco
the transaction: check number, payee name, and memo. The transaction can have a Standard Indu
Code that a client can use to categorize the transaction.

Each <STMTTRN> contains an <FITID> that the client uses to detect whether the server has previo
downloaded the transaction.

Transaction amounts are signed from the perspective of the customer. For example, a credit card pa
is positive while a credit card purchase is negative.

Code Meaning

0 Success

2001 Invalid account (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)
OFX 2.0 Specification 1776/30/00

es

sed

as
Tag Description

<STMTTRN> Statement-transaction aggregate

<TRNTYPE> Transaction type, see section 11.4.3.1for possible values. This element does not
change the effect of the transaction upon the balance (increases and decreas
are indicated by the sign of the <TRNAMT>).

<DTPOSTED> Date transaction was posted to account,datetime

<DTUSER> Date user initiated transaction, if known,datetime

<DTAVAIL> Date funds are available (value date), datetime

<TRNAMT> Amount of transaction,amount

<FITID> Transaction ID issued by financial institution.

Used to detect duplicate downloads,FITID

<CORRECTFITID> If present, the FITID of a previously sent transaction that is corrected by this
record. This transaction replaces or deletes the transaction that it corrects, ba
on the value of <CORRECTACTION> below,FITID

<CORRECTACTION> Actions can be REPLACE or DELETE. REPLACE replaces the transaction
referenced by CORRECTFITID; DELETE deletes it.

<SRVRTID> Server assigned transaction ID; used for transactions initiated by client, such
payment or funds transfer.SRVRTID

<CHECKNUM> Check (or other reference) number,A-12

<REFNUM> Reference number that uniquely identifies the transaction. Can be used in
addition to or instead of a <CHECKNUM>,A-32

<SIC> Standard Industrial Code,N-6

<PAYEEID> Payee identifier if available,A-12

Payee options. Choose either
<NAME> or <PAYEE>.

<NAME> Name of payee or description of transaction,A-32

Note: Provide NAME or PAYEE, not both

-or-

<PAYEE> Payee aggregate, see section 12.5.2.1

</PAYEE>
178 11.4 Downloading Transactions and Balances

ee
Account-to options. Choose
either <BANKACCTTO> or
<CCACCTTO>.

<BANKACCTTO> If this was a transfer to an account and the account information is available, s
section 11.3.1

</BANKACCTTO>

-or-

<CCACCTTO>

</CCACCTTO>

<MEMO> Extra information (not in <NAME>),MEMO

Currency options. Choose
either <CURRENCY> or
<ORIGCURRENCY>.

<CURRENCY> Currency, if different from CURDEF

</CURRENCY>

-or-

<ORIGCURRENCY>

</ORIGCURRENCY>

<INV401KSOURCE> Source of cash for this transaction. See section 13.9.2.4.2.

</STMTTRN>

Tag Description
OFX 2.0 Specification 1796/30/00

nitiated
ent
11.4.3.1 Transaction types used in <TRNTYPE>

Transfers generated from a model are treated identically to individually requested transfers by OFX.
Therefore, they should have the transaction types listed below once they are processed. Transfers i
out of band with respect to OFX should also be handled in this fashion when they appear in a statem
download.

Type Description

CREDIT Generic credit

DEBIT Generic debit

INT Interest earned or paid

Note: Depends on signage of amount

DIV Dividend

FEE FI fee

SRVCHG Service charge

DEP Deposit

ATM ATM debit or credit

Note: Depends on signage of amount

POS Point of sale debit or credit

Note: Depends on signage of amount

XFER Transfer

CHECK Check

PAYMENT Electronic payment

CASH Cash withdrawal

DIRECTDEP Direct deposit

DIRECTDEBIT Merchant initiated debit

REPEATPMT Repeating payment/standing order

OTHER Other
180 11.4 Downloading Transactions and Balances

part
ent
paper
d to

ement

e
rver

ent
11.5 Statement Closing Information

OFX provides a way for customers to receive closing statement information that typically appears as
of a paper statement. This information includes opening and closing dates and balances for a statem
period, as well as a detailed breakdown of debits, credits, fees, and interest that are usually part of a
statement. In addition to this information, clients receive a date range for transactions that correspon
the closing statement. Clients might wish to use this date range to retrieve transactions through stat
download in order to present the user with an “electronic” statement.

To request statement information, the client isREQUIRED to designate an account for the download. Th
client can also specify a date range to limit the number of closing information aggregates that the se
returns. If the client does not specify a date range, the server returns as many closing information
aggregates as it can.

11.5.1 Statement Closing Download

You can use the <STMTENDRQ> …<STMTENDRS> request and response pair to download statem
closing information for checking, savings, money market, and line of credit accounts. Section 11.5.3
describes download for credit card accounts.

11.5.1.1 Request <STMTENDRQ>

The <STMTENDRQ> request must appear within a <STMTENDTRNRQ> transaction wrapper.

Client Sends Server Responds

Account Information

Date range

Cycle-ending information (0 or more)

Tag Description

<STMTENDRQ> Closing-statement-request aggregate

<BANKACCTFROM> Bank-account-from aggregate

</BANKACCTFROM>

<DTSTART> Start date for statement closing information,datetime

<DTEND> End date of statement closing information,datetime

</STMTENDRQ>
OFX 2.0 Specification 1816/30/00

ent
11.5.1.2 Response <STMTENDRS>

The <STMTENDRS> response must appear within a <STMTENDTRNRS> transaction wrapper.

11.5.1.3 Status Codes

11.5.2 Non-Credit Card Statement <CLOSING>

A checking, savings, or money market account uses the <CLOSING> aggregate to describe statem
closing information.

The <FITID> provides a way for the client to distinguish one closing statement from another.

Tag Description

<STMTENDRS> Closing-statement-response aggregate

<CURDEF> Default currency used for closing information,currsymbol

<BANKACCTFROM> Account from aggregate, see section 11.3.1

</BANKACCTFROM>

<CLOSING> Statement information (0 or more), see section 11.5.2

</CLOSING>

</STMTENDRS>

Code Meaning

0 Success

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)
182 11.5 Statement Closing Information

ns

ns
For each <CLOSING> aggregate returned, clients can retrieve corresponding transactions by using
<DTPOSTSTART> and <DTPOSTEND> as <DTSTART> and <DTEND> in a <STMTRQ> request.

Tag Description

<CLOSING> Non-credit-card-account-types aggregate

<FITID> Unique identifier for this statement,FITID

<DTOPEN> Opening statement date,date

<DTCLOSE> Closing statement date,date

<DTNEXT> Closing date of next statement,date

<BALOPEN> Opening statement balance,amount

<BALCLOSE> Closing statement balance,amount

<BALMIN> Minimum balance in statement period,amount

<DEPANDCREDIT> Total of deposits and credits, including interest,amount

<CHKANDDEB> Total of checks and debits, including fees,amount

<TOTALFEES> Total of all fees,amount

<TOTALINT> Total of all interest,amount

<DTPOSTSTART> Start date of transaction data for this statement,date

A client should be able to use this date in a <STMTRQ> to request transactio
that match this statement.

<DTPOSTEND> End date of transaction data for this statement,date

A client should be able to use this date in a <STMTRQ> to request transactio
that match this statement.

<MKTGINFO> Marketing information (at most 1),A-360

Currency options. Choose
either <CURRENCY> or
<ORIGCURRENCY>

<CURRENCY>
</CURRENCY>

-or-

Currency, if different from CURDEF

<ORIGCURRENCY>
</ORIGCURRENCY>

</CLOSING>
OFX 2.0 Specification 1836/30/00

uest.
Q>

r.

sponse.
RS>

er.
11.5.3 Credit Card Statement Closing Request <CCSTMTENDRQ>

The credit card statement closing request is semantically identical to the bank statement closing req
However, the <CCSTMTENDRQ> aggregate contains the credit card request, not the <STMTENDR
aggregate.

The <CCSTMTENDRQ> request must appear within a <CCSTMTENDTRNRQ> transaction wrappe

11.5.4 Credit Card Statement Closing Response <CCSTMTENDRS>

The credit card statement closing response is semantically identical to the bank statement closing re
However, the <CCSTMTENDRS> aggregate contains the credit card response, not the <STMTEND
aggregate.

The <CCSTMTENDRS> response must appear within a <CCSTMTENDTRNRS> transaction wrapp

Tag Description

<CCSTMTENDRQ> Credit-card-closing-statement-request aggregate

<CCACCTFROM> Credit-card-account-from aggregate

</CCACCTFROM>

<DTSTART> Start date for statement closing information,datetime

<DTEND> End date of statement closing information,datetime

</CCSTMTENDRQ>

Tag Description

<CCSTMTENDRS> Credit-card-closing-statement-response aggregate

<CURDEF> Default currency for closing information,currsymbol

<CCACCTFROM> Account from aggregate, see section 11.3.2

</CCACCTFROM>

<CCCLOSING> Statement information (0 or more). See section 11.5.4.2

</CCCLOSING>

</CCSTMTENDRS>
184 11.5 Statement Closing Information

.

11.5.4.1 Status Codes

11.5.4.2 Credit Card Statement <CCCLOSING>

A credit card account uses the <CCCLOSING> aggregate to describe statement closing information

The <FITID> provides a way for the client to distinguish one closing statement from another.

Code Meaning

0 Success

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)
OFX 2.0 Specification 1856/30/00

using
st.
For each <CCCLOSING> returned, clients should be able to retrieve corresponding transactions by
<DTPOSTSTART> and <DTPOSTEND> as <DTSTART> and <DTEND> in a <CCSTMTRQ> reque

Tag Description

<CCCLOSING> Credit-card-statement-information aggregate

<FITID> Unique identifier for this statement,FITID

<DTOPEN> Opening statement date,date

<DTCLOSE> Closing statement date,date

<DTNEXT> Closing date of next statement,date

<BALOPEN> Opening statement balance,amount

<BALCLOSE> Closing statement balance,amount

<DTPMTDUE> Payment due date,date

<MINPMTDUE> Minimum amount due,amount

<FINCHG> Finance charges,amount

<PAYANDCREDIT> Total of payments and credits,amount

<PURANDADV> Total of purchases and cash advances,amount

<DEBADJ> Debit adjustments,amount

<CREDITLIMIT> Current credit limit,amount

<DTPOSTSTART> Start date of transaction data for this statement,date

A client should be able to use this date in a <CCSTMTRQ> to request
transactions that match this statement.

<DTPOSTEND> End date of transaction data for this statement,date

A client should be able to use this date in a <CCSTMTRQ> to request
transactions that match this statement.

<MKTGINFO> Marketing information (at most 1),A-360

Currency options. Choose
either <CURRENCY> or
<ORIGCURRENCY>.

<CURRENCY>
</CURRENCY>

-or-

Currency, if different from CURDEF

<ORIGCURRENCY>
</ORIGCURRENCY>

</CCCLOSING>
186 11.5 Statement Closing Information

est can
checks

d of a
11.6 Stop Check

OFX supports a request to issue a stop payment for one or more outstanding checks. The stop requ
be for a single check or for a range of checks. There must be one request for each check or range of
the user wants to stop.

When stopping a single check, the client can provide a payee name and optionally an amount instea
check number to describe the check to stop. Not all servers can support this behavior.

Examples:
Stop check 22 – one request

Stop check to “Acme Lighting” – one request

Stop checks 200-224 – one request

Stop checks 275-280, 283 – two requests (first stops 275-280, the next stops 283)

Client Sends Server Responds

Account information

Check number(s) to stop

-or-

Check description

Status for each check
OFX 2.0 Specification 1876/30/00

11.6.1 Stop Check Add

Stop Check Add is subject to synchronization.

11.6.1.1 Request <STPCHKRQ>

The <STPCHKRQ> request must appear within a <STPCHKTRNRQ> transaction wrapper.

11.6.1.1.1 Check Range <CHKRANGE>

Tag Description

<STPCHKRQ> Stop-check-request aggregate

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

Check options. Choose
either<CHKRANGE> or
<CHKDESC>.

<CHKRANGE> Check range aggregate, see section 11.6.1.1.1

</CHKRANGE>

-or-

<CHKDESC> Check description aggregate, see section 11.6.1.1.2

</CHKDESC>

</STPCHKRQ>

Tag Description

<CHKRANGE> Check-range aggregate

<CHKNUMSTART> Start check number to cancel,A-12

<CHKNUMEND> Ending check number to cancel; omit if only one check is to be stopped,A-
12

</CHKRANGE>
188 11.6 Stop Check

e date

her the
ate for
he stop
a final
11.6.1.1.2 Check Description <CHKDESC>

A check description must include a payee name or description. It can also include a check number, th
the user wrote the check, and a transaction amount.

11.6.1.2 Response <STPCHKRS>

Consistent with all responses, the stop check response contains a global status that describes whet
response could be delivered. If the server provides a response, it returns a <STPCHKNUM> aggreg
each check for which the client requested a stop payment. Status code 10000 should be returned if t
check request is in process; a subsequent synchronization should obtain an updated response with
status.

The <STPCHKRS> response must appear within a <STPCHKTRNRS> transaction wrapper.

Tag Description

<CHKDESC> Check description aggregate

<NAME> Payee name or description,A-32

<CHECKNUM> Check number,A-12

<DTUSER> Date on check,datetime

<TRNAMT> Amount,amount

</CHKDESC>

Tag Description

<STPCHKRS> Stop-check-response aggregate

<CURDEF> Default currency for stop check response,currsymbol

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

<STPCHKNUM> Stopped check aggregate (1 or more), see section 11.6.1.2.1

</STPCHKNUM>

<FEE> Fee for stop check,amount

<FEEMSG> Description of fee,A-80

</STPCHKRS>
OFX 2.0 Specification 1896/30/00

11.6.1.2.1 Stopped Check <STPCHKNUM>

This aggregate contains a status code that indicates whether or not a specific check was canceled.

Tag Description

<STPCHKNUM> Stopped-check-item aggregate

<CHECKNUM> Check number,A-12

<NAME> Payee name or description,A-32

<DTUSER> Date on check,datetime

<TRNAMT> Amount,amount

<CHKSTATUS> Status code for individual stop check request
0 = OK
1 = rejected
100 = check not found
101 = check already posted

<CHKERROR> Further textual explanation,A-255

Currency options. Choose
either <CURRENCY> or
<ORIGCURRENCY>.

<CURRENCY>
</CURRENCY>

-or-

Currency, if different from CURDEF

<ORIGCURRENCY>
</ORIGCURRENCY>

</STPCHKNUM>
190 11.6 Stop Check

11.6.2 Status Codes

Code Meaning

0 Success

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

10000 Stop check in process (INFO)

10500 Too many checks to process (ERROR)
OFX 2.0 Specification 1916/30/00

fers in

sed to
rs
turn an
2016,
ediate

c or it
. If a

occurs
sfer in
ter
t
onse.

wait

, it
p to

clients

or the
11.7 Intrabank Funds Transfer

OFX supports transferring funds between two accounts at the same financial institution. Funds trans
OFX can be immediate or scheduled. Scheduled transfers can repeat at specified intervals.

Financial institutions can choose to support:

� Immediate transfers

� Immediate and scheduled transfers

� Immediate, scheduled, and recurring transfers

Recurring transfers require support for scheduled transfers.

In general, an OFX server may not choose which transactions to support unless the profile can be u
indicate to the client that a transaction is not supported. However, immediate intrabank funds transfe
usually cannot be modified or canceled, so a server that does not support scheduled transfers may re
error code on any request for cancel or modify. A preferred approach would be to return status code
which means the transfer may not be modified or canceled because it is already committed. (An imm
transfer may not actually commit until the end of the business day. For more information, see the
discussion on the support of INTRASYNCRQ in section 11.12.2.)

After a transfer has executed, the server can either issue a transfer modification response in the syn
can do nothing. In the latter case, it would be up to the client to get status from a statement download
transfer fails, it is recommended, but not required, that a transfer modification response with the
appropriate XFERPRCCODE be sent in the sync.

In general, all Intrabank Funds Transfer requests are subject to synchronization. The only exception
when the request is for an immediate transfer and the server is able to successfully perform the tran
real time. In that case, the server may choose whether or not the transfer affects the sync history. Af
receiving an immediate response indicating that a transfer took place in real time, the client must no
expect the relevant token to change or to receive information about that transfer in a later sync resp
Servers choosing to ignore real time immediate transfers in the sync history force additional clients to
until the transfer appears in a statement download for information about the transfer.

Note: If a server batches up immediate transfers, to be processed that night or possibly the next day
should return a <WILLPROCESSON> status in the immediate transfer response. At that point it is u
the server whether or not to send the <INTRARS> in the sync before the transfer actually occurs.It should
be noted that servers that don’t sync such "batched, but not yet transferred" responses prevent other
accessing the same account from getting accurate balance information during this time.After the transfer,
the up-to-date balance information can be obtained from either the sync (if the server supports this)
statement downloaded.
192 11.7 Intrabank Funds Transfer

provide

only
date

date of
ervers
11.7.1 Intrabank Funds Transfer Addition

The Intrabank Funds Transfer Add request provides a way for a client to set up a single transfer. The
request designates source and destination accounts and the amount of the transfer. The client must
a date if it has scheduled the transfer. Immediate funds transfers cannot be modified or canceled.

Intrabank Funds Transfer Add is subject to synchronization.

11.7.1.1 Request <INTRARQ>

The <INTRARQ> request must appear within an <INTRATRNRQ> transaction wrapper.

11.7.1.2 Response <INTRARS>

A server cannot, in all cases, provide complete confirmation for the transfer. The server can confirm
that it received the transfer instruction; and possibly whether it validated the accounts, amount, and
specified in the transfer. For any transfer where the client does not know the status at the time of the
response, a server should confirm that it accepted the instruction and indicate the expected posting
the transfer. A client can pick up the confirmation at a later date through a synchronization request. S
should inform clients of any errors found while processing this transaction using the <STATUS>
aggregate. A response containing <STATUS><CODE>0 and

Client Sends Server Responds

Source account

Destination account

Amount

Date of transfer (optional)

Server ID for the transfer

Source account

Destination account

Amount

Expected/actual posting date

Tag Description

<INTRARQ> Intrabank-transfer-request aggregate

<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

</INTRARQ>
OFX 2.0 Specification 1936/30/00

rver

a

see
<XFERPRCSTS><XFERPRCCODE>FAILEDON should be avoided for problems such as an invalid
account or amount.

If the request is for an immediate transfer and the server can perform the transfer in real time, the se
should indicate whether the transfer succeeded and should return the date of the transfer in
<DTPOSTED>. In this case, synchronization is not required.

The <INTRARS> response must appear within an <INTRATRNRS> transaction wrapper.

Note: The server can deliver this response to a client immediately after the request is made
(for an immediate or one-time scheduled transfer). The server should also return this response
for any transfers that were generated by a model.

Tag Description

<INTRARS> Intrabank-transfer-response aggregate

<CURDEF> Default currency for the intrabank transfer response,currsymbol

<SRVRTID> Server ID for this transfer,SRVRTID

<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

Transfer-date options.
Choose either
<DTXFERPRJ> or
<DTPOSTED>

<DTXFERPRJ> Projected date of the transfer; response can contain either a <DTXFERPRJ> or
<DTPOSTED> but not both;datetime

-or-

<DTPOSTED> Actual date of the transfer,datetime

<RECSRVRTID> If the response is generated by a recurring transfer model, this ID references it,
section 11.10, SRVRTID

<XFERPRCSTS> Transfer-processing status, see section 11.3.6

</XFERPRCSTS>

</INTRARS>
194 11.7 Intrabank Funds Transfer

11.7.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10504 Insufficient funds (ERROR)
OFX 2.0 Specification 1956/30/00

s
trieved

ion is
uest.)
sfer,
ere
to
e
lient
11.7.2 Intrabank Funds Transfer Modification

The client sends a Transfer Modification request to modify a scheduled transfer. Immediate transfer
cannot be modified, so this request should only be used for scheduled transfers. Once created and re
by the customer, spawned transfers are almost identical to customer-created transfers. (The except
when a spawned transfer is modified or cancelled due to a recurring modification or cancellation req
As with ordinary transfers, you can cancel or modify transactions individually. When modifying a tran
the client must specify all of the elements and aggregates within the <XFERINFO> aggregate that w
specified when the transfer was created, not just the elements and aggregates that the client wants
modify. <SRVRTID> specifies the transfer the user wants to modify. Some servers cannot support th
modification of certain values. Servers must indicate this by returning status code 10505 when the c
requests an unsupported modification. Clients must not change <BANKACCTFROM> or
<CCACCTFROM> in a funds transfer modification.

Intrabank Funds Transfer Modification is subject to synchronization.

11.7.2.1 Request <INTRAMODRQ>

The <INTRAMODRQ> request must appear within an <INTRATRNRQ> transaction wrapper.

Tag Description

<INTRAMODRQ> Modification-request aggregate

<SRVRTID> ID assigned by the server to the transfer being modified,SRVRTID

<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

</INTRAMODRQ>
196 11.7 Intrabank Funds Transfer

duled

sfer
11.7.2.2 Response <INTRAMODRS>

This response normally just echoes the values passed by the client. However, if the status of a sche
transfer changes in any way, clients should expect to receive modification responses when they
synchronize with the server. For example, when a server completes a transfer, the status of the tran
goes frompendingto posted. Clients should expect servers to notify them of this status change.

The <INTRAMODRS> response must appear within an <INTRATRNRS> transaction wrapper.

Tag Description

<INTRAMODRS> Modification-response aggregate

<SRVRTID> ID assigned by the server to the transfer being modified,SRVRTID

<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

<XFERPRCSTS> Transfer processing status, see section 11.3.6

</XFERPRCSTS>

</INTRAMODRS>
OFX 2.0 Specification 1976/30/00

11.7.2.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10500 Too many checks to process (ERROR)

10505 Cannot modify element (ERROR)

10514 Transaction already processed (ERROR)
198 11.7 Intrabank Funds Transfer

for
11.7.3 Intrabank Funds Transfer Cancellation

The client sends a Transfer Cancellation request to cancel a scheduled transfer, where <SRVRTID>
identifies the transfer. Immediate transfers cannot be canceled, so this request should be used only
scheduled transfers.

Intrabank Funds Transfer Cancellation is subject to synchronization.

11.7.3.1 Request <INTRACANRQ>

The <INTRACANRQ> request must appear within an <INTRATRNRQ> transaction wrapper.

11.7.3.2 Response <INTRACANRS>

The <INTRACANRS> response must appear within an <INTRATRNRS> transaction wrapper.

Tag Description

<INTRACANRQ> Transfer-cancellation-request aggregate

<SRVRTID> ID of the transfer the user wants to cancel. The server must have previously
assigned this ID to a transfer.SRVRTID

</INTRACANRQ>

Tag Description

<INTRACANRS> Transfer-cancellation-response aggregate

<SRVRTID> ID of the transfer the user wants to cancel. The server must have previously
assigned this ID to a transfer.SRVRTID

</INTRACANRS>
OFX 2.0 Specification 1996/30/00

nd
at may

diate

lient

ssed in

client

e. The

e
d

11.7.3.3 Status Codes

11.7.3.4 DTDUE, DTPOSTED, and DTXFERPRJ in Immediate Transfers

The following is a list of what might be returned in an immediate mode transfer response. The
interpretation of each response is provided. All responses referenced in this section are immediate a
describe success conditions. That is, we are not attempting to describe the INTRARS aggregates th
be returned within a INTRASYNCRS response. Further, successful INTRARS aggregates for imme
transfers are not expected to appear in lite synchronization INTRASYNCRS responses.

� DTDUE and INTRARQ
DTDUE should not be present if the client is requesting an immediate mode transfer. If it is, then this is a c
error, and will be treated by the server as if the client were attempting to create a scheduled transfer.

� DTDUE, DTPOSTED, and DTXFERPRJ NOT returned in INTRARS
The client should interpret this from the server as indicating that the immediate transfer request was proce
real-time.

� DTDUE only returned
DTDUE should not be present in the response to a request for an immediate transfer. If it were present, the
XFERINFO aggregate would not match that found in the request.

� DTPOSTED only returned
If this is not equal to today’s date and an earlier time than “now”, then this is a server error. Otherwise, the
should interpret this as confirmation from the server that the request was processed in real-time.

� DTXFERPRJ only returned
The client should interpret this as indication that the transfer request will be completed by the specified dat
client may receive an INTRAMODRS or INTRARS with updated information about this transfer when it is
actually processed. That future INTRARS or INTRAMODRS will contain the DTPOSTED to reflect when th
transfer occurred. This response is not required for successful transfers processed at the originally specifie
projected date and time.

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10514 Transaction already processed (ERROR)
200 11.7 Intrabank Funds Transfer

een
rce

I must
funds

eduled

est
11.8 Interbank Funds Transfer

The Interbank Funds Transfer Add request provides a way for a client to set up a single transfer betw
accounts at different financial institutions. Like intrabank funds transfers, the request designates sou
and destination accounts and the amount of the transfer. Also, as in intrabank funds transfers, the F
be able to authenticate the source account. However, interbank funds transfers differ from intrabank
transfers in the following respects:

� The routing and transit number of the destination account differs from the source account.

� At the discretion of an FI, the destination account can be subject to pre-notification.

� Source and destination accounts must be enabled for the Automated Clearing House (ACH).

Use the ACH system to implement the Interbank Funds Transfer, which is subject to the rules and
regulations governing the ACH network.

In all other respects, interbank funds transfers function like intrabank funds transfers. The user can
schedule them for a future date or request an immediate transfer. The user can modify or cancel sch
transfers, but not immediate transfers. Scheduled transfers can recur at regular intervals.

11.8.1 Interbank Funds Transfer – US

In the United States, interbank funds transfers usually use only the <XFERINFO> portion of the requ
and response.

Interbank Funds Transfer Add is subject to synchronization.

Client Sends Server Responds

Source account

Destination account

Amount

Date of transfer (optional)

Server ID for the transfer

Source account

Destination account

Amount

Expected/actual posting
date
OFX 2.0 Specification 2016/30/00

ages
11.8.2 Interbank Funds Transfer – International Usage

In countries where the funds transfer is the basis of the payments system, the OFX payments mess
allow specifying payees by destination account (see Chapter 12, "Payments").

Interbank Funds Transfer Add is subject to synchronization.

11.8.2.1 Interbank Funds Transfer Request <INTERRQ>

The <INTERRQ> request must appear within an <INTERTRNRQ> transaction wrapper.

Tag Description

<INTERRQ> Interbank-transfer-request aggregate

<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

</INTERRQ>
202 11.8 Interbank Funds Transfer

I
ied in
server
The

nform
onse

a

s it.
11.8.2.2 Interbank Funds Transfer Response <INTERRS>

The server cannot provide complete confirmation for interbank transfer. It can confirm only that the F
received the transfer instruction and possibly validated the source account, amount, and date specif
the transfer. Since the client does not know the status of the transfer at the time of the response, the
should confirm that it accepted the instruction and indicate the expected posting date of the transfer.
client can pick up the confirmation at a later date through a synchronization request. Servers should i
clients of any errors found while processing this transaction using the <STATUS> aggregate. A resp
containing <STATUS><CODE>0 and <XFERPRCSTS><XFERPRCCODE>FAILEDON should be
avoided for problems such as an invalid account or amount.

The <INTERRS> response must appear within an <INTERTRNRS> transaction wrapper.

Note: A server can deliver this response to a client immediately after the client makes the
request (for an immediate or one-time scheduled transfer). In response to a synchronization
request by a client, the server should provide a second response containing complete status
regarding the transfer. It should also return any transfers that it generates by a model.

Tag Description

<INTERRS> Interbank-transfer-response aggregate

<CURDEF> Currency used in transfer,currsymbol

<SRVRTID> Server ID for this transfer,SRVRTID

<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

Transfer-date options.
Choose either
<DTXFERPRJ> or
<DTPOSTED>

<DTXFERPRJ> Projected date of the transfer; response can contain either a <DTXFERPRJ> or
<DTPOSTED> but not both;datetime

-or-

<DTPOSTED> Actual date of the transfer,datetime

<REFNUM> Server can generate a reference or check for the transfer,A-32

<RECSRVRTID> If server generates the response by a recurring transfer model, this ID reference
SRVRTID

<XFERPRCSTS> Transfer-processing status, see section 11.3.6

</XFERPRCSTS>

</INTERRS>
OFX 2.0 Specification 2036/30/00

11.8.2.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10504 Insufficient funds (ERROR)
204 11.8 Interbank Funds Transfer

s
trieved

ion is
uest.)
sfer,
ere
to
n of
n

11.8.3 Interbank Funds Transfer Modification

The client sends a Transfer Modification request to modify a scheduled transfer. Immediate transfer
cannot be modified, so this request should only be used for scheduled transfers. Once created and re
by the customer, spawned transfers are almost identical to customer-created transfers. (The except
when a spawned transfer is modified or cancelled due to a recurring modification or cancellation req
As with ordinary transfers, you can cancel or modify transactions individually. When modifying a tran
the client must specify all of the elements and aggregates within the <XFERINFO> aggregate that w
specified when the transfer was created, not just the elements and aggregates that the client wants
modify. <SRVRTID> specifies which transfer to modify. Some servers cannot support the modificatio
certain values. Servers must indicate this by returning status code 10505 when the client requests a
unsupported modification. Clients must not change <BANKACCTFROM> or <CCACCTFROM> in a
funds transfer modification.

Interbank Funds Transfer Modification is subject to synchronization.

11.8.3.1 Request <INTERMODRQ>

The <INTERMODRQ> request must appear within an <INTERTRNRQ> transaction wrapper.

Tag Description

<INTERMODRQ> Modification-request aggregate

<SRVRTID> ID assigned by the server to the transfer being modified,SRVRTID

<XFERINFO> Transfer information aggregate, see section 11.3.5

</XFERINFO>

</INTERMODRQ>
OFX 2.0 Specification 2056/30/00

>

11.8.3.2 Response <INTERMODRS>

The <INTERMODRS> response must appear within an <INTERTRNRS> transaction wrapper.

Tag Description

<INTERMODRS> Modification-response aggregate

<SRVRTID> ID assigned by the server to the transfer being modified,SRVRTID

<XFERINFO> Transfer information aggregate; server returns if client provided an <XFERINFO
in the request, see section 11.3.5

</XFERINFO>

<XFERPRCSTS> Processing status for transfer, see section 11.3.6

</XFERPRCSTS>

</INTERMODRS>
206 11.8 Interbank Funds Transfer

11.8.3.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10504 Insufficient funds (ERROR)

10505 Cannot modify element (ERROR)

10514 Transaction already processed (ERROR)
OFX 2.0 Specification 2076/30/00

nly be
11.8.4 Interbank Funds Transfer Cancellation

The client sends a Transfer Cancellation request to cancel a scheduled interbank transfer, where
<SRVRTID> identifies the transfer. Immediate transfers cannot be canceled, so this request should o
used for scheduled transfers.

Interbank Funds Transfer Cancellation is subject to synchronization.

11.8.4.1 Request <INTERCANRQ>

The <INTERCANRQ> request must appear within an <INTERTRNRQ> transaction wrapper.

11.8.4.2 Response <INTERCANRS>

The <INTERCANRS> response must appear within an <INTERTRNRS> transaction wrapper.

Tag Description

<INTERCANRQ> Transfer-cancellation-request aggregate

<SRVRTID> ID of the transfer to cancel. The server must have previously assigned
this ID to a transfer.SRVRTID

</INTERCANRQ>

Tag Description

<INTERCANRS> Transfer-cancellation-response aggregate

<SRVRTID> ID of the transfer to cancel. The server must have previously assigned
this ID to a transfer.SRVRTID

</INTERCANRS>
208 11.8 Interbank Funds Transfer

11.8.4.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

10514 Transaction already processed (ERROR)
OFX 2.0 Specification 2096/30/00

funds
t at the

ed

tions.

and
have
11.9 Wire Funds Transfer

OFX enables clients to set up wire funds transfers. Wire funds transfers are similar to other types of
transfers. Clients designate a source account that the FI can authenticate and a destination accoun
same or a different institution. Clients also designate an amount and an optional date.

The FI must know the originator of the transfer. The beneficiary of the transfer might be an establish
customer at the same institution.

OFX implements wire funds transfers using the FedWire system, and is subject to its rules and regula

In almost all respects, wire funds transfers work like interbank funds transfers. A user can schedule
cancel them. Unlike interbank funds transfers, a user cannot modify Wire funds transfers once they
been set up. A user cannot set up wire funds transfers to recur at regular intervals.

Client Sends Server Responds

Source account

Originator

Receiver

Amount

Date of transfer (optional)

Server ID for the transfer

Originator

Receiver

Amount

Expected/actual posting
date
210 11.9 Wire Funds Transfer

11.9.1 Wire Funds Transfer Addition

Wire Funds Transfer Add is subject to synchronization.

11.9.1.1 Request <WIRERQ>

The client prepares a <BANKACCTFROM> aggregate to describe the source account. The
<WIREBENEFICIARY> aggregate specifies the destination account. The <WIREDESTBANK>
aggregate describes the beneficiary’s bank.

The <WIRERQ> request must appear within a <WIRETRNRQ> transaction wrapper.

Tag Description

<WIRERQ> Wire-transfer-request aggregate

<BANKACCTFROM> Source of funds, see section 11.3.1

</BANKACCTFROM>

<WIREBENEFICIARY> Wire transfer beneficiary, see section 11.9.1.1.1

</WIREBENEFICIARY>

<WIREDESTBANK> Beneficiary’s bank

<EXTBANKDESC> Extended bank description, see section 11.9.1.1.2

</EXTBANKDESC>

</WIREDESTBANK>

<TRNAMT> Transfer amount,amount

<DTDUE> Date to occur,datetime

<PAYINSTRUCT> Payment instructions,A-255

</WIRERQ>
OFX 2.0 Specification 2116/30/00

11.9.1.1.1 Wire Beneficiary Aggregate <WIREBENEFICIARY>

The wire beneficiary aggregate describes the receiver of a wire transfer.

11.9.1.1.2 Extended Bank Description aggregate <EXTBANKDESC>

Tag Description

<WIREBENEFICIARY> Wire-beneficiary aggregate

<NAME> Name of beneficiary,A-32

<BANKACCTTO> Bank details for beneficiary, see section 11.3.1

</BANKACCTTO>

<MEMO> Information for the beneficiary,memo

</WIREBENEFICIARY>

Tag Description

<EXTBANKDESC> Extended-bank-description aggregate

<NAME> Abbreviated name of bank,A-32

<BANKID> Routing: ABA number or S.W.I.F.T. number,A-9

<ADDR1> Bank’s address line 1,A-32

<ADDR2> Bank’s address line 2,A-32

<ADDR3> Bank’s address line 3. Use of <ADDR3> requires the presence of <ADDR2>,A-
32

<CITY> Bank’s city,A-32

<STATE> Bank’s state or province,A-5

<POSTALCODE> Bank’s postal code,A-11

<COUNTRY> Bank’s country; 3-letter country code from ISO/DIS-3166,A-3

<PHONE> Bank’s phone number,A-32

</EXTBANKDESC>
212 11.9 Wire Funds Transfer

g date
est.

se. The

just
4 and
the
r this
11.9.1.2 Response <WIRERS>

The server cannot provide complete confirmation for the transfer. It can confirm only that the server
received the transfer instruction and possibly that it validated the source account, amount, and date
specified in the transfer. For any transfer where the client does not know the status at the time of the
response, the server should confirm that it accepted the instruction and indicate the expected postin
of the transfer. The client can pick up the confirmation at a later date through a synchronization requ

The server can indicate the fee assessed for the transfer by using the <FEE> element in the respon
server can also include a confirmation message in the response.

The <DTDUE> in a response may have been adjusted by a server. For example, the server may ad
<DTDUE> to comply with non-processing days. If a client sends a request to make a transfer on July
July 4 happens to be a non-processing day, the <DTDUE> in the response may be July 4 (because
server hasn’t adjusted it yet), July 5 (because this server rolls dates forward), or some other date. Fo
reason, a client should pay attention to the <DTDUE> in the response.
OFX 2.0 Specification 2136/30/00

J>
The <WIRERS> response must appear within a <WIRETRNRS> transaction wrapper.

Tag Description

<WIRERS> Wire-transfer-response aggregate

<CURDEF> Currency used in transfer,currsymbol

<SRVRTID> Server ID for this transfer,SRVRTID

<BANKACCTFROM> Source of funds, see section 11.3.1

</BANKACCTFROM>

<WIREBENEFICIARY> Wire transfer beneficiary, see section 11.9.1.1.1

</WIREBENEFICIARY>

<WIREDESTBANK> Beneficiary’s bank

<EXTBANKDESC> Extended bank description, see section 11.9.1.1.2

</EXTBANKDESC>

</WIREDESTBANK>

<TRNAMT> Transfer amount,amount

<DTDUE> Date to occur, echoed if provided in request,datetime

<PAYINSTRUCT> Payment instructions, echoed if provided in request,A-255

Transfer-date options. Choose
either <DTXFERPRJ> or
<DTPOSTED>

<DTXFERPRJ> Projected date of the transfer; response can contain either a <DTXFERPR
or a <DTPOSTED> but not both;datetime

-or-

<DTPOSTED> Actual date of the transfer,datetime

<FEE> Fee assessed for the transfer,amount

<CONFMSG> Confirmation message,A-255

</WIRERS>
214 11.9 Wire Funds Transfer

11.9.1.3 Status Codes

11.9.2 Wire Funds Transfer Cancellation

The client sends a Wire Funds Transfer Cancellation Request to cancel a scheduled transfer, where
<SRVRTID> identifies the transfer.

Wire Funds Transfer Cancellation is subject to synchronization.

11.9.2.1 Request <WIRECANRQ>

The <WIRECANRQ> request must appear within a <WIRETRNRQ> transaction wrapper.

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10504 Insufficient funds (ERROR)

10516 Wire beneficiary invalid (ERROR)

Tag Description

<WIRECANRQ> Wire-transfer-cancellation-request aggregate

<SRVRTID> ID of the transfer to cancel; server must have previously assigned
this ID to a transfer,SRVRTID

</WIRECANRQ>
OFX 2.0 Specification 2156/30/00

11.9.2.2 Response <WIRECANRS>

The <WIRECANRS> response must appear within a <WIRETRNRS> transaction wrapper.

11.9.2.3 Status Codes

Tag Description

<WIRECANRS> Wire-transfer-cancellation-response aggregate

<SRVRTID> ID of the transfer to cancel; server must have previously assigned this ID to a
transfer,SRVRTID

</WIRECANRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-
date <TOKEN> (ERROR)

10514 Transaction already processed (ERROR)
216 11.9 Wire Funds Transfer

model
mer can

rbank

at a
11.10 Recurring Funds Transfer

OFX uses a Recurring Funds Transfer Add request to set up a recurring transfer model. The transfer
generates transfers according to its schedule. Transfers created by a model and retrieved by a custo
be modified or canceled without impacting the model.

A user can create recurring funds transfer models to generate two types of scheduled transfers: inte
and intrabank. You cannot set up recurring wire funds transfers.

For more information on recurring transactions, see Chapter 10, "Recurring Transactions."

11.10.1 Recurring Intrabank Funds Transfer Addition

A Recurring Intrabank Funds Transfer Add request sets up an intrabank funds transfer that repeats
specified interval for a specified period of time.

Model-created transfers are retrieved by means of a synchronization request.

Recurring Intrabank Funds Transfer Add is subject to synchronization.

Client Sends Server Responds

Source account

Destination account

Amount

Date of first transfer

Frequency

Duration

Server ID for the model

Source account

Destination account

Amount

Date of first transfer

Frequency

Duration
OFX 2.0 Specification 2176/30/00

same
11.10.1.1 Request <RECINTRARQ>

The <RECINTRARQ> request must appear within a <RECINTRATRNRQ> transaction wrapper.

11.10.1.2 Response <RECINTRARS>

The <RECINTRARS> response must appear within a <RECINTRATRNRS> transaction wrapper.

For version 1 of the message set, the <SRVRTID> included in the <INTRARS> should be set to the
value as the <RECSRVRTID>.

Note: This is the response to the recurring model only. Servers must still generate an
INTRARS for each instance of the recurring transfer.

Tag Description

<RECINTRARQ> Recurring-transfer-request aggregate

<RECURRINST> Recurring-instructions aggregate, see section

</RECURRINST>

<INTRARQ> Intrabank-transfer-request aggregate, see section 11.7.1.1

</INTRARQ>

</RECINTRARQ>

Tag Description

<RECINTRARS> Recurring-transfer-response aggregate

<RECSRVRTID> Server-assigned ID for this model,SRVRTID

<RECURRINST> Recurring-instructions aggregate

</RECURRINST>

<INTRARS> Intrabank-transfer-response aggregate, see section 11.7.1.2

</INTRARS>

</RECINTRARS>
218 11.10 Recurring Funds Transfer

11.10.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10508 Invalid frequency (ERROR)
OFX 2.0 Specification 2196/30/00

r.
11.10.2 Recurring Intrabank Funds Transfer Modification

The client sends a Recurring Intrabank Funds Transfer Modification request to modify a recurring
intrabank transfer model.

Recurring Intrabank Funds Transfer Modification is subject to synchronization.

Clients must not change <BANKACCTFROM> in a recurring funds transfer modification.

11.10.2.1 Request <RECINTRAMODRQ>

<RECSRVRTID> identifies the model. The client can indicate whether the changes should apply to
pending transfers.

The <RECINTRAMODRQ> request must appear within a <RECINTRATRNRQ> transaction wrappe

Tag Description

<RECINTRAMODRQ> Recurring-modification-request aggregate

<RECSRVRTID> ID assigned by the server to the model being modified,SRVRTID

<RECURRINST> Recurring-instructions aggregate

</RECURRINST>

<INTRARQ> Intrabank-transfer-request aggregate, see section 11.7.1.1

</INTRARQ>

<MODPENDING> Modify pending flag,Boolean

If the client sets this flag, the server must modify pending and future transfers.

</RECINTRAMODRQ>
220 11.10 Recurring Funds Transfer

er.
11.10.2.2 Response <RECINTRAMODRS>

The <RECINTRAMODRS> response must appear within a <RECINTRATRNRS> transaction wrapp

Tag Description

<RECINTRAMODRS> Recurring-transfer-modification-request aggregate

<RECSRVRTID> ID assigned by the server to the model being modified,SRVRTID

<RECURRINST> Recurring-instructions aggregate

</RECURRINST>

<INTRARS> Intrabank transfer response aggregate, see section 11.7.1.2

</INTRARS>

<MODPENDING> Y if client requested that the server modify pending and future transfers. N if the
client did not request that the server modify pending and future transfers.Boolean

</RECINTRAMODRS>
OFX 2.0 Specification 2216/30/00

11.10.2.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10500 Too many checks to process (ERROR)

10505 Cannot modify element (ERROR)

10508 Invalid frequency (ERROR)

10514 Transaction already processed (ERROR)

10518 Unknown model ID (ERROR)
222 11.10 Recurring Funds Transfer

rabank

ancel

r.

er.

. N
11.10.3 Recurring Intrabank Funds Transfer Cancellation

The client sends a Recurring Intrabank Funds Transfer Cancellation request to cancel a recurring int
transfer model.

Recurring Intrabank Funds Transfer Cancellation is subject to synchronization.

11.10.3.1 Request <RECINTRACANRQ>

<RECSRVRTID> identifies the model the user wants to cancel. The client can indicate whether the c
should apply to pending transfers.

The <RECINTRACANRQ> request must appear within a <RECINTRATRNRQ> transaction wrappe

11.10.3.2 Response <RECINTRACANRS>

The <RECINTRACANRS> response must appear within a <RECINTRATRNRS> transaction wrapp

Tag Description

<RECINTRACANRQ> Recurring-transfer-cancellation-request aggregate

<RECSRVRTID> ID assigned by the server to the model being canceled,SRVRTID

<CANPENDING> Cancel pending flag,Boolean

If Y, server should cancel all pending and unspawned transfers. If N, server should
cancel only the model (and unspawned transfers).

</RECINTRACANRQ>

Tag Description

<RECINTRACANRS> Recurring-transfer-cancellation-response aggregate

<RECSRVRTID> ID assigned by the server to the model being canceled,SRVRTID

<CANPENDING> Cancel pending flag,Boolean

Y if the client requested that the server cancel all pending and unspawned transfers
if the client requested that the server cancel only unspawned transfers.

</RECINTRACANRS>
OFX 2.0 Specification 2236/30/00

at a
11.10.3.3 Status Codes

11.10.4 Recurring Interbank Funds Transfer Addition

A Recurring Interbank Funds Transfer Add request sets up an interbank funds transfer that repeats
specified interval for a specified period of time.

The client retrieves model-created transfers by means of a synchronization request.

Recurring Interbank Funds Transfer Add is subject to synchronization

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

10509 Model already canceled (ERROR)

10514 Transaction already processed (ERROR)

10518 Unknown model ID (ERROR)

Client Sends Server Responds

Source account

Destination account

Amount

Date of first transfer

Frequency

Duration

Server ID for the model

Source account

Destination account

Amount

Date of first transfer

Frequency

Duration
224 11.10 Recurring Funds Transfer

same
11.10.4.1 Request <RECINTERRQ>

The <RECINTERRQ> request must appear within a <RECINTERTRNRQ> transaction wrapper.

11.10.4.2 Response <RECINTERRS>

The <RECINTERRS> response must appear within a <RECINTERTRNRS> transaction wrapper.

For version 1 of the message set, the <SRVRTID> included in the <INTERRS> should be set to the
value as the <RECSRVRTID>.

Note: This is the response to the recurring model only. Servers must still generate an
<INTERRS> for each instance of the recurring transfer.

Tag Description

<RECINTERRQ> Recurring-transfer-request aggregate

<RECURRINST> Recurring-instructions aggregate

</RECURRINST>

<INTERRQ> Interbank-transfer-request aggregate, see section 11.8.2.1

</INTERRQ>

</RECINTERRQ>

Tag Description

<RECINTERRS> Recurring-transfer-response aggregate

<RECSRVRTID> Server-assigned ID for this model,SRVRTID

<RECURRINST> Recurring-instructions aggregate, see section 10.2

</RECURRINST>

<INTERRS> Interbank funds transfer response, see section 11.8.2.2

</INTERRS>

</RECINTERRS>
OFX 2.0 Specification 2256/30/00

11.10.4.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN>
(ERROR)

10504 Insufficient funds (ERROR)

10508 Invalid frequency (ERROR)
226 11.10 Recurring Funds Transfer

r.
11.10.5 Recurring Interbank Funds Transfer Modification

The client sends a Recurring Interbank Funds Transfer Modification request to modify a recurring
interbank transfer model.

Recurring Interbank Funds Transfer Modification is subject to synchronization.

Clients must not change <BANKACCTFROM> in a recurring funds transfer modification.

11.10.5.1 Request <RECINTERMODRQ>

<RECSRVRTID> identifies the model. The client can indicate whether the changes should apply to
pending transfers.

The <RECINTERMODRQ> request must appear within a <RECINTERTRNRQ> transaction wrappe

Tag Description

<RECINTERMODRQ> Recurring-modification-request aggregate

<RECSRVRTID> ID assigned by the server to the model being modified,SRVRTID

<RECURRINST> Recurring-instructions aggregate

</RECURRINST>

<INTERRQ> Interbank-funds-transfer-request aggregate, see section 11.8.2.1.

</INTERRQ>

<MODPENDING> Modify pending flag

If the client sets this flag, the server must modify pending and future transfers.Boolean

</RECINTERMODRQ>
OFX 2.0 Specification 2276/30/00

er.
11.10.5.2 Request <RECINTERMODRS>

The <RECINTERMODRS> response must appear within a <RECINTERTRNRS> transaction wrapp

Tag Description

<RECINTERMODRS> Recurring-transfer-modification-response aggregate

<RECSRVRTID> ID assigned by the server to the model being modified,SRVRTID

<RECURRINST> Recurring-instructions aggregate

</RECURRINST>

<INTERRS> Interbank-funds-transfer-response, see section 11.8.2.2

</INTERRS>

<MODPENDING> Modify pending flag,Boolean

Y if the client requested that the server modify pending and future transfers. N if the
client did not request that the server modify pending and future transfers.

</RECINTERMODRS>
228 11.10 Recurring Funds Transfer

11.10.5.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN>
(ERROR)

10504 Insufficient funds (ERROR)

10505 Cannot modify element (ERROR)

10508 Invalid frequency (ERROR)

10510 Invalid payee ID (ERROR)

10514 Transaction already processed (ERROR)

10518 Unknown model ID (ERROR)
OFX 2.0 Specification 2296/30/00

r.

er.

. N
11.10.6 Recurring Interbank Funds Transfer Cancellation

The client sends a Recurring Transfer Cancellation request to cancel a recurring transfer model.

Recurring Transfer Cancellation is subject to synchronization.

11.10.6.1 Request <RECINTERCANRQ>

<RECSRVRTID> identifies the model the client wants to cancel. The client can indicate whether the
cancel should apply to pending transfers.

The <RECINTERCANRQ> request must appear within a <RECINTERTRNRQ> transaction wrappe

11.10.6.2 Response <RECINTERCANRS>

The <RECINTERCANRS> response must appear within a <RECINTERTRNRS> transaction wrapp

Tag Description

<RECINTERCANRQ> Recurring-transfer-cancellation-request aggregate

<RECSRVRTID> ID assigned by the server to the model being canceled,SRVRTID

<CANPENDING> Cancel pending flag,Boolean

If Y, server should cancel all pending and unspawned transfers. If N, server should
cancel only the model (and unspawned transfers).

</RECINTERCANRQ>

Tag Description

<RECINTERCANRS> Recurring-transfer-cancellation-response aggregate

<RECSRVRTID> ID assigned by the server to the model being canceled,SRVRTID

<CANPENDING> Cancel pending flag,Boolean

Y if the client requested that the server cancel all pending and unspawned transfers
if the client requested that the server cancel only unspawned transfers.

</RECINTERCANRS>
230 11.10 Recurring Funds Transfer

11.10.6.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

10509 Model already canceled (ERROR)

10514 Transaction already processed (ERROR)

10518 Unknown model ID (ERROR)
OFX 2.0 Specification 2316/30/00

can
mple,
erver

e, the
ipt of the
r.
11.11 E-Mail and Customer Notification

OFX enables customers to contact their FIs when they have questions regarding their accounts. FIs
also notify their customers of significant events that have occurred regarding their accounts. For exa
notification can occur if a customer writes a check that does not clear due to insufficient funds. The s
prepares the notification and the client picks it up the next time it synchronizes with the server.

11.11.1 Banking E-Mail

OFX currently defines one banking e-mail message that clients can send to an FI. With this messag
user can prepare a message to the FI regarding one of his accounts. The server acknowledges rece
message. The FI prepares the response that the client picks up when it synchronizes with the serve

Client Sends Server Responds

Addressed message

Bank account information

Acknowledgment

.

.

.

Synchronization request

Response to customer
232 11.11 E-Mail and Customer Notification

11.11.1.1 Request <BANKMAILRQ>

The client must identify to which bank account the customer query is related.

The <BANKMAILRQ> request must appear within a <BANKMAILTRNRQ> transaction wrapper.

Tag Description

<BANKMAILRQ> Bank-e-mail-request aggregate

Account-from options. Choose
either <BANKACCTFROM>
or <CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<MAIL> To, from, message information, see Chapter 9, "Customer to FI
Communication"

</MAIL>

</BANKMAILRQ >
OFX 2.0 Specification 2336/30/00

11.11.1.2 Response <BANKMAILRS>

The <BANKMAILRS> response must appear within a <BANKMAILTRNRS> transaction wrapper.

11.11.1.3 Status Codes

Tag Description

<BANKMAILRS> Bank-e-mail-response aggregate

Account-from options. Choose
either <BANKACCTFROM>
or <CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<MAIL> To, from, message information, see Chapter 9, "Customer to FI
Communication"

</MAIL>

</BANKMAILRS >

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

15508 Transaction not authorized (ERROR)

16500 HTML not allowed (ERROR)

16501 Unknown mail To: (ERROR)
234 11.11 E-Mail and Customer Notification

11.11.2 Notifications

OFX currently defines two banking notifications that an FI can support:

� Returned check

� Returned deposit

You can implement banking notifications through e-mail and synchronization. The client provides a
<TOKEN> representing its current state with regard to banking notification. (See section 3.2.4.) The
server can respond by returning a new token and one or more notification e-mail responses.

Client Sends Server Responds

Synchronization request
with current token

New token

Bank e-mail

Mail for returned check

Mail for returned deposit
OFX 2.0 Specification 2356/30/00

11.11.3 Returned Check and Deposit Notification

11.11.3.1 Response <CHKMAILRS>

The server returns this response (when a check has been returned), if it receives a banking e-mail
synchronization message.

The <CHKMAILRS> response must appear within a <BANKMAILTRNRS> transaction wrapper.

Tag Description

<CHKMAILRS> Notification-message-response aggregate

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

<MAIL> To, from, message information, see Chapter 9, "Customer to FI
Communication"

</MAIL>

<CHECKNUM> Check number,A-12

<TRNAMT> Amount of check,amount

<DTUSER> Customer date on check,date

<FEE> Fee assessed for NSF,amount

</CHKMAILRS>
236 11.11 E-Mail and Customer Notification

rver for
ustomer
ith

ate copy
11.11.3.2 Response <DEPMAILRS>

The server returns this response (when a deposit has been returned), if it receives a banking e-mail
synchronization message.

The <DEPMAILRS> response must appear within a <BANKMAILTRNRS> transaction wrapper.

11.12 Data Synchronization for Banking

Banking customers must be able to obtain the current status of transactions previously sent to the se
processing. For example, once a client schedules a transfer and the transfer date has passed, the c
might wish to verify that the server made the transfer as directed. Also, OFX allows for interactions w
the server through multiple clients. This means, for example, that the customer can perform some
transactions from a home PC and others from an office computer, with each session seamlessly
incorporating the activities performed on the other.

To accomplish these actions, the client uses a synchronization scheme to ensure that it has an accur
of the server data that is relevant to the client application.

Banking requires synchronization in the following areas: Stop Check, IntraBank Transfers, InterBank
Transfers, Wire Transfers, and Banking Notifications.

Tag Description

<DEPMAILRS> Notification-message-response aggregate

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

<MAIL> To, from, message information, see Chapter 9, "Customer to FI
Communication"

</MAIL>

<TRNAMT> Amount of deposit,amount

<DTUSER> Customer date of deposit,date

<FEE> Fee assessed for NSF,amount

</DEPMAILRS>
OFX 2.0 Specification 2376/30/00

t,
11.12.1 Data Synchronization for Stop Check

11.12.1.1 Request <STPCHKSYNCRQ>

Tag Description

<STPCHKSYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<BANKACCTFROM> Bank account of interest; token must be interpreted in terms of this accoun
see section 11.3.1

</BANKACCTFROM>

<STPCHKTRNRQ> Stop-check transactions (0 or more)

</STPCHKTRNRQ>

</STPCHKSYNCRQ>
238 11.12 Data Synchronization for Banking

t
sfer
end

an

ch may

an

he
11.12.1.2 Response <STPCHKSYNCRS>

11.12.2 Data Synchronization for Intrabank Funds Transfers

<INTRASYNCRQ> must be supported by all servers, even if it will always return <TOKEN>0 withou
sync history, because a client cannot know whether or not the server would ever return updated tran
information. Specifically, the client cannot know if a transfer will be processed immediately or at the
of the business day until it has performed at least one transfer operation (then DTPOSTED vs.
DTXFERPRJ indicates which “mode” the server operates in). As such, the client must always send
<INTRASYNCRQ> in case the server has updated information about a transfer, including immediate
transfers which were actually batch processed at the end of the business day or the next day and whi
have failed due to other account activity.

Transfers into an account do not show up in the sync for the recipient account. Only transfers out of
account show up in the sync for that account.

Tag Description

<STPCHKSYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the
server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in t
server’s history table.Boolean

<BANKACCTFROM> Bank account of interest; token must be interpreted in terms of this account, see
section 11.3.1

</BANKACCTFROM>

<STPCHKTRNRS> Stop-check transactions (0 or more)

</STPCHKTRNRS>

</STPCHKSYNCRS>
OFX 2.0 Specification 2396/30/00

11.12.2.1 Request <INTRASYNCRQ>

Tag Description

<INTRASYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<INTRATRNRQ> Intrabank-funds-transfer transactions (0 or more)

</INTRATRNRQ>

</INTRASYNCRQ>
240 11.12 Data Synchronization for Banking

in
11.12.2.2 Response <INTRASYNCRS>

The <INTRASYNCRS> responses contain only intrabank transfers where the BANKACCTFROM
matches that submitted in the sync request.

Tag Description

<INTRASYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry
the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history table.Boolean

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<INTRATRNRS> Intrabank-funds-transfer transactions (0 or more)

</INTRATRNRS>

</INTRASYNCRS>
OFX 2.0 Specification 2416/30/00

an
11.12.3 Data Synchronization for Interbank Funds Transfers

Transfers into an account do not show up in the sync for the recipient account. Only transfers out of
account show up in the sync for that account.

11.12.3.1 Request <INTERSYNCRQ>

Tag Description

<INTERSYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<INTERTRNRQ> Interbank-funds-transfer transactions (0 or more)

</INTERTRNRQ>

</INTERSYNCRQ>
242 11.12 Data Synchronization for Banking

in
11.12.3.2 Response <INTERSYNCRS>

The <INTERSYNCRS> responses contain only interbank transfers where the BANKACCTFROM
matches that submitted in the sync request.

Tag Description

<INTERSYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry
the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history table.Boolean

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<INTERTRNRS> Interbank-funds-transfer transactions (0 or more)

</INTERTRNRS>

</INTERSYNCRS>
OFX 2.0 Specification 2436/30/00

t.

y
.

nt
11.12.4 Data Synchronization for Wire Funds Transfers

11.12.4.1 Request <WIRESYNCRQ>

11.12.4.2 Response <WIRESYNCRS>

Tag Description

<WIRESYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<BANKACCTFROM > Bank account of interest; token must be interpreted in terms of this accoun

</BANKACCTFROM>

<WIRETRNRQ> Wire-transfer transactions (0 or more)

</WIRETRNRQ>

</WIRESYNCRQ>

Tag Description

<WIRESYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entr
in the server’s history table. In this case, some responses have been lost

N if the token in the synchronization request is newer than or matches a
token in the server’s history table.Boolean

<BANKACCTFROM> Bank account of interest; token must be interpreted in terms of this accou

</BANKACCTFROM>

<WIRETRNRS> Wire-transfer transactions (0 or more)

</WIRETRNRS>

</WIRESYNCRS>
244 11.12 Data Synchronization for Banking

els.
er
11.12.5 Data Synchronization for Recurring Intrabank Funds Transfers

11.12.5.1 Request <RECINTRASYNCRQ>

This request will synchronize the client with the server in relation to recurring intrabank transfer mod
To synchronize individual transfers that were created by the model (and perhaps canceled by anoth
client), the client must also issue an <INTRASYNCRQ>.

Tag Description

<RECINTRASYNCRQ> Synchronization request

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<RECINTRATRNRQ> Recurring-intrabank-funds-transfer transactions (0 or more)

</RECINTRATRNRQ>

</RECINTRASYNCRQ>
OFX 2.0 Specification 2456/30/00

in
11.12.5.2 Response <RECINTRASYNCRS>

The <RECINTRASYNCRS> responses contain only intrabank transfer models where the
BANKACCTFROM matches that submitted in the sync request.

Tag Description

<RECINTRASYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry
the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history table.Boolean

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<RECINTRATRNRS> Recurring-intrabank-funds-transfer transactions (0 or more)

</RECINTRATRNRS>

</RECINTRASYNCRS>
246 11.12 Data Synchronization for Banking

els.
nother
11.12.6 Data Synchronization for Recurring Interbank Funds Transfers

11.12.6.1 Request <RECINTERSYNCRQ>

This request will synchronize the client with the server in relation to recurring interbank transfer mod
To synchronize individual funds transfers that were created by the model (and perhaps canceled by a
client), the client must also issue an <INTERSYNCRQ>.

Tag Description

<RECINTERSYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<RECINTERTRNRQ> Recurring-transfer transactions (0 or more)

</RECINTERTRNRQ>

</RECINTERSYNCRQ>
OFX 2.0 Specification 2476/30/00

in
11.12.6.2 Response <RECINTERSYNCRS>

Tag Description

<RECINTERSYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry
the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history table.Boolean

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<RECINTERTRNRS> Recurring-interbank-funds-transfer transactions (0 or more)

</RECINTERTRNRS>

</RECINTERSYNCRS>
248 11.12 Data Synchronization for Banking

11.12.7 Data Synchronization for Bank Mail

11.12.7.1 Request <BANKMAILSYNCRQ>

Tag Description

<BANKMAILSYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<INCIMAGES> Y if the client accepts mail with images in the message body. N if the client
does not accept mail with images in the message body.Boolean

<USEHTML> Y if client wants an HTML response, N if client wants plain text,Boolean

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or- Credit-card-account-from aggregate, see section 11.3.2

<CCACCTFROM>

</CCACCTFROM>

<BANKMAILTRNRQ> Bank-mail transactions (0 or more)

</BANKMAILTRNRQ>

</BANKMAILSYNCRQ>
OFX 2.0 Specification 2496/30/00

in
11.12.7.2 Response <BANKMAILSYNCRS>

Tag Description

<BANKMAILSYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry
the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history table.Boolean

Account-from options. Choose
either <BANKACCTFROM> or
<CCACCTFROM>.

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

-or-

<CCACCTFROM> Credit-card-account-from aggregate, see section 11.3.2

</CCACCTFROM>

<BANKMAILTRNRS> Bank-mail transactions (0 or more)

</BANKMAILTRNRS>

</BANKMAILSYNCRS>
250 11.12 Data Synchronization for Banking

defines
llowing

nd

ions
11.13 Message Sets and Profile

OFX separates messages that the client and server send into groups called message sets. Each FI
the message sets that the institution supports. The messages described in this section fall into the fo
types:

� Banking – includes statement download, closing statement download, bank e-mail, notification, a
intrabank funds transfer

� Credit Card – credit card statement download and closing statement download

� Interbank Funds Transfers

� Wire Funds Transfers

Each message set contains options and attributes that allow an FI to customize its use of OFX. For
example, an institution can support the Interbank Funds Transfer Message Set
(INTERXFERMSGSETV1), but it can choose not to support the recurring form of these transfers.

The profile defines the options and attributes as part of each message-set definition. Each set of opt
and attributes appears within an aggregate that is specific to a message set. For example,
<WIREXFERMSGSETV1> contains all of the options and attributes that pertain to wire transfers.
OFX 2.0 Specification 2516/30/00

11.13.1 Message Sets and Messages

11.13.1.1 Bank Message Set and Messages

11.13.1.1.1 Bank Message Set Request Messages

Message Set Message

<BANKMSGSET>

<BANKMSGSETV1>

<BANKMSGSRQV1> STMTTRNRQ

STMTRQ

STMTENDTRNRQ

STMTENDRQ

STPCHKTRNRQ

STPCHKRQ

INTRATRNRQ

INTRARQ

INTRAMODRQ

INTRACANRQ

RECINTRATRNRQ

RECINTRARQ

RECINTRAMODRQ

RECINTRACANRQ

BANKMAILTRNRQ

BANKMAILRQ

STPCHKSYNCRQ

INTRASYNCRQ

RECINTRASYNCRQ

BANKMAILSYNCRQ

</BANKMSGSRQV1>

</BANKMSGSETV1>

</BANKMSGSET>
252 11.13 Message Sets and Profile

11.13.1.1.2 Bank Message Set Response Messages

Message Set Message

<BANKMSGSET>

<BANKMSGSETV1>

<BANKMSGSRSV1> STMTTRNRS

STMTRS

STMTENDTRNRS

STMTENDRS

STPCHKTRNRS

STPCHKRS

INTRATRNRS

INTRARS

INTRAMODRS

INTRACANRS

RECINTRATRNRS

RECINTRARS

RECINTRAMODRS

RECINTRACANRS

BANKMAILTRNRS

BANKMAILRS

CHKMAILRS

DEPMAILRS

STPCHKSYNCRS

INTRASYNCRS

RECINTRASYNCRS

BANKMAILSYNCRS

</BANKMSGSRSV1>

</BANKMSGSETV1>

</BANKMSGSET>
OFX 2.0 Specification 2536/30/00

11.13.1.2 Credit Card Message Set and Messages

11.13.1.2.1 Credit Card Message Set Request Messages

11.13.1.2.2 Credit Card Message Set Response Messages

Message Set Message

<CREDITCARDMSGSET>

<CREDITCARDMSGSETV1>

<CREDITCARDMSGSRQV1> CCSTMTTRNRQ

CCSTMTRQ

CCSTMTENDTRNRQ

CCSTMTENDRQ

</CREDITCARDMSGSRQV1>

</CREDITCARDMSGSETV1>

</CREDITCARDMSGSET>

Message Set Message

<CREDITCARDMSGSET>

<CREDITCARDMSGSETV1>

<CREDITCARDMSGSRSV1> CCSTMTTRNRS

CCSTMTRS

CCSTMTENDTRNRS

CCSTMTENDRS

</CREDITCARDMSGSRSV1>

</CREDITCARDMSGSETV1>

</CREDITCARDMSGSET>
254 11.13 Message Sets and Profile

11.13.1.3 Interbank Transfer Message Set and Messages

11.13.1.3.1 Interbank Transfer Message Set Request Messages

Message Set Message

<INTERXFERMSGSET>

<INTERXFERMSGSETV1>

<INTERXFERMSGSRQV1> INTERTRNRQ

INTERRQ

INTERMODRQ

INTERCANRQ

RECINTERTRNRQ

RECINTERRQ

RECINTERMODRQ

RECINTERCANRQ

INTERSYNCRQ

RECINTERSYNCRQ

</INTERXFERMSGSRQV1>

</INTERXFERMSGSETV1>

</INTERXFERMSGSET>
OFX 2.0 Specification 2556/30/00

11.13.1.3.2 Interbank Transfer Message Set Response Messages

Message Set Message

<INTERXFERMSGSET>

<INTERXFERMSGSETV1>

<INTERXFERMSGSRSV1> INTERTRNRS

INTERRS

INTERMODRS

INTERCANRS

RECINTERTRNRS

RECINTERRS

RECINTERMODRS

RECINTERCANRS

INTERSYNCRS

RECINTERSYNCRS

</INTERXFERMSGSRSV1>

</INTERXFERMSGSETV1>

</INTERXFERMSGSET>
256 11.13 Message Sets and Profile

11.13.1.4 Wire Transfer Message Set and Messages

11.13.1.4.1 Wire Transfer Message Set Request Messages

11.13.1.4.2 Wire Transfer Message Set Response Messages

Message Set Message

<WIREXFERMSGSET>

<WIREXFERMSGSETV1>

<WIREXFERMSGSRQV1> WIRETRNRQ

WIRERQ

WIRECANRQ

WIRESYNCRQ

</WIREXFERMSGSRQV1>

</WIREXFERMSGSETV1>

</WIREXFERMSGSET>

Message Set Message

<WIREXFERMSGSET>

<WIREXFERMSGSETV1>

<WIREXFERMSGSRSV1> WIRETRNRS

WIRERS

WIRECANRS

WIRESYNCRS

</WIREXFERMSGSRSV1>

</WIREXFERMSGSETV1>

</WIREXFERMSGSET>
OFX 2.0 Specification 2576/30/00

11.13.2 Bank Message Set Profile

11.13.2.1 <BANKMSGSET>, <BANKMSGSETV1>

Tag Description

<BANKMSGSET> Message set for banking

<BANKMSGSETV1> Version 1 of message set

<MSGSETCORE> Common message-set core

</MSGSETCORE>

<INVALIDACCTTYPE> Account type not supported in <BANKACCTFROM>; 0 or more of
account types, see section 11.3.1.1for values

<CLOSINGAVAIL> Closing statement information available,Boolean

<XFERPROF> Intrabank transfer profile (if supported), see section 11.13.2.2

</XFERPROF>

<STPCHKPROF> Stop check profile (if supported), see section 11.13.2.3

</STPCHKPROF>

<EMAILPROF> E-mail profile, see section 11.13.2.4

</EMAILPROF>

</BANKMSGSETV1> End of bank message set version 1

</BANKMSGSET>
258 11.13 Message Sets and Profile

d

11.13.2.2 Banking Profile, Funds Transfer <XFERPROF>

11.13.2.3 Banking Profile, Stop Checks <STPCHKPROF>

Tag Description

<XFERPROF> Intrabank transfer profile (if supported)

<PROCDAYSOFF> Days of week that no processing occurs: MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY. 0 or more
<PROCDAYSOFF> can be sent.

<PROCENDTM> Time of day that day’s processing ends,time

<CANSCHED> Supports scheduled transfers,Boolean

<CANRECUR> Supports recurring transfers,Boolean. Requires <CANSCHED>

<CANMODXFERS> Permit modifications to transfers, i.e. <INTRAMODRQ>,Boolean

<CANMODMDLS> Permit modifications to models, i.e. <RECINTRAMODRQ>,Boolean

<MODELWND> Model window; the number of days before a recurring transaction is schedule
to be processed that it is instantiated on the system,N-3

<DAYSWITH> Number of days before processing date that funds are withdrawn,N-3

<DFLTDAYSTOPAY> Default number of days to pay,N-3

</XFERPROF>

Tag Description

<STPCHKPROF> Stop check profile (if supported)

<PROCDAYSOFF> Days of week that no processing occurs: MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY. 0
or more <PROCDAYSOFF> can be sent.

<PROCENDTM> Time of day that day’s processing ends,time

<CANUSERANGE> Can stop a range of checks,Boolean.

<CANUSEDESC> Can stop by description,Boolean.

<STPCHKFEE> Default stop check freeAmount

</STPCHKPROF>
OFX 2.0 Specification 2596/30/00

11.13.2.4 Banking Profile, Email <EMAILPROF>

11.13.3 Credit Card Message Set Profile

Tag Description

<EMAILPROF> E-mail profile

<CANEMAIL> Supports generalized banking e-mail,Boolean

<CANNOTIFY> Supports notification (of any kind),Boolean

</EMAILPROF>

Tag Description

<CREDITCARDMSGSET> Beginning tag for credit card message set

<CREDITCARDMSGSETV1> Version 1 of message set

<MSGSETCORE> Common message-set core

</MSGSETCORE>

<CLOSINGAVAIL> Closing statement information available,Boolean

</CREDITCARDMSGSETV1> Ending tag of credit card message set version 1

</CREDITCARDMSGSET> Ending tag of credit card message set
260 11.13 Message Sets and Profile

11.13.4 Interbank Funds Transfer Message Set Profile

Tag Description

<INTERXFERMSGSET> Beginning tag for interbank transfers message set

<INTERXFERMSGSETV1> Version 1 of message set

<MSGSETCORE> Common message-set core

</MSGSETCORE>

<XFERPROF> Interbank transfer profile, same as XFERPROF in banking, see
section 11.13.2.2

</XFERPROF>

<CANBILLPAY> Server is capable of handling bill payment as a form of transfers,
Boolean

<CANCELWND> Number of days after an interbank transfer occurs that it can be
canceled,N-3

<DOMXFERFEE> Standard fee for a domestic interbank transfer,amount

<INTLXFERFEE> Standard fee for an international interbank transfer,amount

</INTERXFERMSGSETV1> End of interbank transfer message set version 1

</INTERXFERMSGSET> End of interbank transfer message set
OFX 2.0 Specification 2616/30/00

11.13.5 Wire Transfer Message Set Profile

Tag Description

<WIREXFERMSGSET> Core message set for wire transfers

<WIREXFERMSGSETV1> Version 1 of message set

<MSGSETCORE> Common message-set core

</MSGSETCORE>

<PROCDAYSOFF> Days of week that no processing occurs: MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY. 0
or more <PROCDAYSOFF> can be sent.

<PROCENDTM> Time of day that day’s processing ends,time

<CANSCHED> Supports scheduled transfers,Boolean

<DOMXFERFEE> Standard fee for a domestic wire transfer,amount

<INTLXFERFEE> Standard fee for an international wire transfer,amount

</WIREXFERMSGSETV1> End of wire transfer message set version 1

</WIREXFERMSGSET> Ending tag of wire transfer message set
262 11.13 Message Sets and Profile

he
ta.
11.14 Examples

11.14.1 Statement Download

This example represents a customer who requests a statement download for a checking account. T
request omits <DTSTART> and <DTEND> because the client is interested in getting all available da
The response contains an updated balance for the account and two transactions.

The request file:

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- Begin signon -->

<DTCLIENT>19991029101000</DTCLIENT><!-- Oct. 29, 1999, 10:10:00
am -->

<USERID>123-45-6789</USERID> <!-- User ID (User SSN) -->

<USERPASS>MyPassword</USERPASS> <!--Password(SSLencrypts
whole) -->

<LANGUAGE>ENG</LANGUAGE> <!-- Language used for text -->

<FI> <!-- ID of receiving institution -->

<ORG>NCH</ORG> <!-- Name of ID owner -->

<FID>1001</FID> <!-- Actual ID -->

</FI>

<APPID>MyApp</APPID>

<APPVER>0500</APPVER>

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>

<BANKMSGSRQV1>

<STMTTRNRQ> <!-- Begin request -->

<TRNUID>1001</TRNUID>

<STMTRQ> <!-- Begin statement request -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<INCTRAN> <!-- Begin include transaction -->

<INCLUDE>Y</INCLUDE> <!-- Include transactions -->

</INCTRAN> <!-- End of include transaction -->

</STMTRQ> <!-- End of statement request -->

</STMTTRNRQ> <!-- End request -->
OFX 2.0 Specification 2636/30/00

</BANKMSGSRQV1>

</OFX> <!-- End of request data -->

The response file:

<OFX> <!-- Begin response data -->

<SIGNONMSGSRSV1>

<SONRS> <!-- Begin signon -->

<STATUS> <!-- Begin status aggregate -->

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<DTSERVER>19991029101003</DTSERVER><!-- Oct. 29, 1999, 10:10:03
am -->

<LANGUAGE>ENG</LANGUAGE> <!-- Language used in response
-->

<DTPROFUP>19991029101003</DTPROFUP><!-- Last update to profile--
>

<DTACCTUP>19991029101003</DTACCTUP><!-- Last account update -->

</SONRS> <!-- End of signon -->

</SIGNONMSGSRSV1>

<BANKMSGSRSV1>

<STMTTRNRS> <!-- Begin response -->

<TRNUID>1001</TRNUID> <!-- Client ID sent in request -->

<STATUS> <!-- Start status aggregate -->

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<STMTRS> <!-- Begin statement response -->

<CURDEF>USD</CURDEF>

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<BANKTRANLIST> <!-- Begin list of statement
trans. -->

<DTSTART>19991001</DTSTART><!-- Start date: Oct. 1, 1999 -->

<DTEND>19991028</DTEND><!-- End date: Oct. 28, 1999 -->

<STMTTRN> <!-- First statement transaction -->

<TRNTYPE>CHECK</TRNTYPE><!--Check -->
264 11.14 Examples

g

<DTPOSTED>19991004</DTPOSTED><!-- Posted on Oct. 4, 1999
-->

<TRNAMT>-200.00</TRNAMT><!-- $200.00 -->

<FITID>00002</FITID><!-- Unique ID -->

<CHECKNUM>1000</CHECKNUM><!-- Check number -->

</STMTTRN> <!-- End statement transaction -->

<STMTTRN> <!-- Second transaction -->

<TRNTYPE>ATM</TRNTYPE><!-- ATM transaction -->

<DTPOSTED>19991020</DTPOSTED><!-- Posted on Oct. 20, 1999
-->

<DTUSER>19991020</DTUSER><!-- User date of Oct. 20, 1999 -
->

<TRNAMT>-300.00</TRNAMT><!-- $300.00 -->

<FITID>00003</FITID><!-- Unique ID -->

</STMTTRN> <!-- End statement transaction -->

</BANKTRANLIST> <!-- End list of statement trans. -->

<LEDGERBAL> <!-- Ledger balance aggregate -->

<BALAMT>200.29</BALAMT><!-- Bal amount: $200.29 -->

<DTASOF>199910291120</DTASOF><!-- Bal date: 10/29/99, 11:20
am -->

</LEDGERBAL> <!-- End ledger balance -->

<AVAILBAL> <!-- Available balance aggregate -->

<BALAMT>200.29</BALAMT><!-- Bal amount: $200.29 -->

<DTASOF>199910291120</DTASOF><!-- Bal date: 10/29/99, 11:20
am -->

</AVAILBAL> <!-- End available balance -->

</STMTRS> <!-- End statement response -->

</STMTTRNRS> <!-- End of transaction -->

</BANKMSGSRSV1>

</OFX> <!-- End of response data -->

11.14.2 Intrabank Funds Transfer

This example is for a customer who requests an immediate funds transfer of $200.00 from a checkin
account to a savings account.

The request file:

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request.
For a complete example,
see section 11.14.1-->

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>
OFX 2.0 Specification 2656/30/00

<BANKMSGSRQV1>

<INTRATRNRQ> <!-- Begin request -->

<TRNUID>1001</TRNUID> <!-- Client's ID for this request -->

<INTRARQ> <!-- Begin transfer request -->

<XFERINFO> <!-- Begin transfer aggregate -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999977</ACCTID><!-- Account number -->

<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <!-- End of account ID -->

<TRNAMT>200.00</TRNAMT><!-- Amount of transfer -->

</XFERINFO> <!-- End of transfer aggregate -->

</INTRARQ> <!-- End of transfer request -->

</INTRATRNRQ> <!-- End request -->

</BANKMSGSRQV1>

</OFX> <!-- End of request data -->

The response file:

<OFX> <!-- Begin response data -->

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response.
For a complete example,
see section 11.14.1-->

</SONRS> <!-- End of signon -->

</SIGNONMSGSRSV1>

<BANKMSGSRSV1>

<INTRATRNRS> <!-- Begin response -->

<TRNUID>1001</TRNUID> <!-- Client ID sent in request -->

<STATUS> <!-- Start status aggregate -->

<CODE>0<CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<INTRARS> <!-- Begin transfer response -->
266 11.14 Examples

e
in the
<CURDEF>USD</CURDEF>

<SRVRTID>1001</SRVRTID> <!-- Server assigned ID -->

<XFERINFO> <!-- Begin transfer aggregate -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999977</ACCTID><!-- Account number -->

<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <!-- End of account ID -->

<TRNAMT>200.00</TRNAMT><!-- Amount of transfer -->

</XFERINFO> <!-- End of transfer aggregate -->

<DTXFERPRJ>19990829100000</DTXFERPRJ><!-- Projected posting
date -->

</INTRARS> <!-- End of transfer response -->

</INTRATRNRS> <!-- End response -->

</BANKMSGSRSV1>

</OFX> <!-- End of response data -->

11.14.3 Stop Check

This example represents a customer who requests a stop for checks 200 through 202. The respons
indicates that the first check (200) has already posted; the server has stopped the rest of the checks
range.

The request file:

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request.
For a complete example,
see section 11.14.1-->

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>

<BANKMSGSRQV1>

<STPCHKTRNRQ> <!-- Begin request -->

<TRNUID>1001</TRNUID> <!-- Client's ID for this request -->

<STPCHKRQ> <!-- Begin stop check request -->
OFX 2.0 Specification 2676/30/00

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<CHKRANGE> <!-- Cancel a range of checks -->

<CHKNUMSTART>200</CHKNUMSTART><!-- Starting check number -->

<CHKNUMEND>202</CHKNUMEND><!-- Ending check number -->

</CHKRANGE> <!-- End range -->

</STPCHKRQ> <!-- End of stop check request -->

</STPCHKTRNRQ> <!-- End request -->

</BANKMSGSRQV1>

</OFX> <!-- End of request data -->

The response file:

<OFX> <!-- Begin response data -->

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response.
For a complete example,
see section 11.14.1-->

</SONRS> <!-- End of signon -->

</SIGNONMSGSRSV1>

<BANKMSGSRSV1>

<STPCHKTRNRS> <!-- Begin response -->

<TRNUID>1001</TRNUID> <!-- Client ID sent in request -->

<STATUS> <!-- Begin status aggregate -->

<CODE>0<CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS> <!-- End of status aggregate -->

<STPCHKRS> <!-- Begin stop check response -->

<CURDEF>USD</CURDEF>

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<STPCHKNUM> <!-- First stopped check -->

<CHECKNUM>200</CHECKNUM><!-- Check 200 -->

<CHKSTATUS>101</CHKSTATUS><!-- Too late - already posted -->

</STPCHKNUM> <!-- End of first stopped check -->
268 11.14 Examples

<STPCHKNUM> <!-- Second stopped check -->

<CHECKNUM>201</CHECKNUM><!-- Check 201 -->

<CHKSTATUS>0</CHKSTATUS><!-- OK -->

</STPCHKNUM> <!-- End of second stopped check -->

<STPCHKNUM> <!-- Third stopped check -->

<CHECKNUM>202</CHECKNUM><!-- Check 202 -->

<CHKSTATUS>0</CHKSTATUS><!-- OK -->

</STPCHKNUM> <!-- End of third stopped check -->

<FEE>10.00</FEE>

<FEEMSG>Fee for stop payment</FEEMST>

</STPCHKRS> <!-- End stop check response -->

</STPCHKTRNRS> <!-- End of transaction -->

</BANKMSGSRSV1>

</OFX> <!-- End of response data -->
OFX 2.0 Specification 2696/30/00

life of
period.

sfers of

y sends
el. The
11.14.4 Recurring Transfers

This example represents a customer who creates a transfer model and then cancels it. To follow the
the model (and the transfers it creates), the example includes sessions that occur over a two month

The model is added on November 1 and scheduled to start on November 15. The model creates tran
$1000 from a checking to a savings account. The schedule is open-ended.

Because requests within a message set are not guaranteed to be executed in order, the client initiall
two request files: one to create the model and another to collect any transfers generated by the mod
second request file contains a simple transfer synchronization request.

The client sends the file to create the model on November 1:

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request.
For a complete example,
see section 11.14.1-->

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>

<BANKMSGSRQV1>

<RECINTRATRNRQ> <!-- Begin request -->

<TRNUID>1001</TRNUID> <!-- Client's ID for this request -->

<RECINTRARQ> <!-- Begin request -->

<RECURRINST> <!-- Begin recurring aggregate -->

<FREQ>MONTHLY</FREQ> <!-- Monthly schedule -->

</RECURRINST> <!-- End recur aggregate -->

<INTRARQ>

<XFERINFO> <!-- Begin transfer aggregate -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End account ID -->

<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999977</ACCTID><!-- Account number -->

<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <!-- End of account ID -->

<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer-->
270 11.14 Examples

<DTDUE>19991115</DTDUE><!-- First transfer - Nov.15 -->

</XFERINFO> <!-- End transfer aggregate -->

</INTRARQ>

</RECINTRARQ> <!-- End transfer request -->

</RECINTRATRNRQ> <!-- End request -->

</BANKMSGSRQV1>

</OFX>

The response file shows that the model has been successfully created:

<OFX> <!-- Begin response data -->

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response.
For a complete example,
see section 11.14.1-->

</SONRS> <!-- End of signon -->

</SIGNONMSGSRSV1>

<BANKMSGSRSV1>

<RECINTRATRNRS> <!-- Begin response -->

<TRNUID>1001</TRNUID> <!-- Client ID sent in request -->

<STATUS> <!-- Start of status aggregate -->

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<RECINTRARS> <!-- Begin response -->

<RECSRVRTID>20000</RECSRVRTID><!-- Server assigned ID -->

<RECURRINST> <!-- Begin recurring aggregate -->

<FREQ>MONTHLY</FREQ> <!-- Monthly schedule -->

</RECURRINST> <!-- End of recurring aggregate -->

<INTRARS>

<CURDEF>USD</CURDEF?

<SRVRTID>120000</SRVRTID>

<XFERINFO> <!-- Begin transfer aggregate -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999977</ACCTID><!-- Account number -->
OFX 2.0 Specification 2716/30/00

ber 15
our

ot have
<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <!-- End of account ID -->

<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer -->

<DTDUE>19991115</DTDUE><!-- First transfer - Nov. 15 -->

</XFERINFO> <!-- End of transfer aggregate -->

</INTRARS>

</RECINTRARS> <!-- End of response -->

</RECINTRATRNRS> <!-- End of response -->

</BANKMSGSRSV1>

</OFX> <!-- End of response data -->

The client sends the payment synchronization request later on November 1:

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request.
For a complete example,
see section 11.14.1-->

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>

<BANKMSGSRQV1>

<INTRASYNCRQ> <!-- Sync intrabank transfers -->

<TOKEN>0</TOKEN> <!-- Token held by client -->

<REJECTIFMISSING>N</REJECTIFMISSING>

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID>

<ACCTID>999988</ACCTID>

<ACCTTYPE>CHECKING<ACCTTYPE>

</BANKACCTFROM>

</INTRASYNCRQ> <!-- End of sync request -->

</BANKMSGSRQV1>

</OFX> <!-- End of request data -->

Assuming that the server creates transfers 30 days prior to posting, the server returns status for one
pending transfer. This response comes back since the first transfer is scheduled to occur on Novem
and this date falls within 30 days of our session. Had the starting date been more than 30 days from
signon date, the response would not have contained any pending transfers since the model would n
generated any yet.
272 11.14 Examples

The response file from the server shows one pending transfer:

<OFX> <!-- Begin response data -->

<SIGNONMSGSRSV1>

<SONRQ> <!-- ...Sign on request.
For a complete example,
see section 11.14.1-->

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRSV1>

<BANKMSGSRSV1>

<INTRASYNCRS> <!-- Sync intrabank transfers -->

<TOKEN>22243</TOKEN> <!-- Token updated -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID>

<ACCTID>999988</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<INTRATRNRS> <!-- begin response -->

<TRNUID>0</TRNUID> <!-- Server generated, so 0-->

<STATUS> <!-- Success -->

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<INTRARS> <!-- Begin transfer response -->

<CURDEF>USD</CURDEF>

<SRVRTID>100100000</SRVRTID> <!-- Server assigned ID -->

<XFERINFO> <!-- Begin transfer aggregate -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID> <!-- Routing transit or
other FI ID -->

<ACCTID>999988</ACCTID> <!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</BANKID> <!-- Routing transit or
other FI ID -->

<ACCTID>999977</ACCTID> <!-- Account number -->

<ACCTTYPE>SAVINGS</ACCTTYPE> <!-- Account type -->

</BANKACCTTO> <!-- End of account ID -->

<TRNAMT>1000.00</TRNAMT> <!-- Amount of transfer -->

</XFERINFO> <!-- End transfer aggregate -->

<DTXFERPRJ>19991115</DTXFERPRJ> <!-- Projected date of the
transfer -->
OFX 2.0 Specification 2736/30/00

e
e
o get
t sends
he
w was
ely up
<RECSRVRTID>20000</RECSRVRTID> <!-- Model that created this
xfer -->

</INTRARS> <!-- End of transfer response -->

</INTRATRNRS> <!-- End of response -->

</INTRASYNCRS> <!-- End of sync response -->

</BANKMSGSRSV1>

</OFX> <!-- End of response data -->

Suppose the customer does not attempt to connect between November 16 and January 1. When th
customer does attempt to connect, it is to cancel the recurring transfer model. The client also sets th
<CANPENDING> flag, causing any pending transfers to be immediately cancelled as well. In order t
all synchronization information (since requests are not guaranteed to be executed in order), the clien
two request files, the first to cancel the model and the next to retrieve all transfer activity. This time, t
recurring request is wrapped in synchronization wrappers. It should be assumed that the token belo
received in a previous RECPMTSYNCRS. (The use of synchronization wrappers in requests is entir
to the client. Both ways are shown here for explanatory purposes.)
274 11.14 Examples

The request file:

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request.
For a complete example,
see section 11.14.1-->

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>

<BANKMSGSRQV1>

<RECINTRASYNCRQ> <!-- Sync recurring transfers -->

<TOKEN>324789987</TOKEN> <!-- Token held by the client -->

<REJECTIFMISSING>Y</REJECTIFMISSING><!-- Cancel only if up to
date -->

<BANKACCTFROM>

<BANKID>121099999</BANKID>

<ACCTID>99998</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<RECINTRATRNRQ> <!-- Begin request -->

<TRNUID>1005</TRNUID> <!-- Client's ID for this request -->

<RECINTRACANRQ> <!-- Begin recur transfer cancel -->

<RECSRVRTID>20000</RECSRVRTID><!-- ID of the model -->

<CANPENDING>Y</CANPENDING><!-- Cancel pending transfers -->

</RECINTRACANRQ> <!-- End request -->

</RECINTRATRNRQ> <!-- End request -->

</RECINTRASYNCRQ> <!-- End of sync request -->

</BANKMSGSRQV1>

</OFX> <!-- End of request data -->

The response file:

<OFX> <!-- Begin response data -->

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response.
For a complete example,
see section 11.14.1-->

</SONRS> <!-- End of signon -->

</SIGNONMSGSRSV1>

<BANKMSGSRSV1>

<RECINTRASYNCRS> <!-- Sync response -->

<TOKEN>324789988</TOKEN <!-- New token -->
OFX 2.0 Specification 2756/30/00

<BANKACCTFROM>

<BANKID>121099999</BANKID>

<ACCTID>99998</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<RECINTRATRNRS> <!-- Begin response -->

<TRNUID>1005</TRNUID> <!-- Client ID sent in request -->

<STATUS> <!-- Start of status aggregate -->

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<RECINTRACANRS> <!-- Begin cancel model -->

<RECSRVRTID>20000</RECSRVRTID><!-- Model that was canceled -
->

<CANPENDING>Y</CANPENDING>

</RECINTRACANRS> <!-- End of cancel model -->

</RECINTRATRNRS> <!-- End response -->

</RECINTRASYNCRS> <!-- End sync response -->

</BANKMSGSRSV1>

</OFX> <!-- End response -->

Next request file:

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request.
For a complete example,
see section 11.14.1-->

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>

<BANKMSGSRQV1>

<INTRASYNCRQ> <!-- Sync intrabank transfers -->

<TOKEN>22243</TOKEN> <!-- Token held by the client -->

<REJECTIFMISSING>N</REJECTIFMISSING>

<BANKACCTFROM>

<BANKID>121099999</BANKID>

<ACCTID>99998</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

</INTRASYNCRQ> <!-- End of sync request -->

</BANKMSGSRQV1>

</OFX> <!-- End of request data -->
276 11.14 Examples

r has
y 15. The
transfer.
in the
Since the customer last connected, the November 15 transfer has posted, the December 15 transfe
been scheduled, the December 15 transfer has posted and a transfer has been scheduled for Januar
response file shows these four transfer responses and the cancellation response for the January 15
Note that servers are not required to show the post of transfers via a transfer modification response
sync. Alternatively, a client may need to note that the transfer happened in a subsequent statement
download.

The response file:

<OFX> <!-- Begin response data -->

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response.
For a complete example,
see section 11.14.1-->

</SONRS> <!-- End of signon -->

</SIGNONMSGSRSV1>

<BANKMSGSRSV1>

<INTRASYNCRS>

<TOKEN>22244</TOKEN> <!-- New token -->

<BANKACCTFROM>

<BANKID>121099999</BANKID>

<ACCTID>99998</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<INTRATRNRS> <!—- 11/15 post -->

<TRNUID>0</TRNUID> <!—- Server generated, so 0 -->

<STATUS>

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO

</STATUS>

<INTRAMODRS> <!-- This is the Nov. 15 post -->

<SRVRTID>100100000</SRVRTID><!-- Server assigned ID -->

<XFERINFO> <!-- Begin transfer aggregate -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999977</ACCTID><!-- Account number -->

<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->
OFX 2.0 Specification 2776/30/00

</BANKACCTTO> <!-- End of account ID -->

<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer -->

</XFERINFO> <!-- End of transfer aggregate -->

<XFERPRCSTS> <!-- Status of transfer -->

<XFERPRCCODE>POSTEDON</XFERPRCCODE><!-- Status code -->

<DTXFERPRC>19991115</DTXFERPRC<!-- Date transfer was
posted -->

</XFERPRCSTS> <!-- End of transfer status -->

</INTRAMODRS> <!-- End of Nov. 15 post -->

</INTRATRNRS> <!-- End of response -->

<INTRATRNRS> <!--12/15 pending transfer -->

<TRNUID>0</TRNUID>

<STATUS> <!-- Success -->

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<INTRARS> <!-- This is the Dec. 15 pending -->

<CURDEF>USD</CURDEF>

<SRVRTID>112233</SRVRTID> <!-- Server assigned ID -->

<XFERINFO> <!-- Begin transfer aggregate -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID> <!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999977</ACCTID> <!-- Account number -->

<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <!-- End of account ID -->

<TRNAMT>1000.00</TRNAMT> <!-- Amount of transfer -->

</XFERINFO> <!-- End of transfer aggregate -->

<DTXFERPRJ>19991215</DTXFERPRJ> <!-- Projected date of the
transfer -->

<RECSRVRTID>20000</RECSRVRTID> <!-- Model -->

</INTRARS> <!-- End of Dec. 15 pending -->

</INTRATRNRS> <!-- End response -->

<INTRATRNRS> <!-- 12/15 post -->

<TRNUID>0</TRNUID> <!-- Client ID sent in request -->
278 11.14 Examples

<STATUS>

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO

</STATUS>

<INTRAMODRS> <!-- This is the Dec. 15 post -->

<SRVRTID>112233</SRVRTID><!-- Server assigned ID -->

<XFERINFO> <!-- Begin transfer aggregate -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</ACCTTYPE><!-- Routing transit or other
FI ID -->

<ACCTID>999977</ACCTID><!-- Account number -->

<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <!-- End of account ID -->

<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer -->

</XFERINFO> <!-- End of transfer aggregate -->

<XFERPRCSTS> <!-- Status of transfer -->

<XFERPRCCODE>POSTEDON</XFERPRCCODE><!-- Status code -->

<DTXFERPRC>19991215</DTXFERPRC><!-- Date transfer was posted
-->

</XFERPRCSTS> <!-- End of transfer status -->

</INTRAMODRS> <!-- End of Dec. 15 post -->

</INTRATRNRS> <!-- End of response -->

<INTRATRNRS> <!—This is the 1/15 pending -->

<TRNUID>0</TRNUID> <!-- Client ID sent in request -->

<STATUS>

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<INTRARS> <!-- This is the Jan. 15 pending -->

<CURDEF>USD</CURDEF>

<SRVRTID>112255</SRVRTID><!-- Server assigned ID -->

<XFERINFO> <!-- Begin transfer aggregate -->

<BANKACCTFROM> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999988</ACCTID><!-- Account number -->
OFX 2.0 Specification 2796/30/00

<ACCTTYPE>CHECKING</ACCTTYPE><!-- Account type -->

</BANKACCTFROM> <!-- End of account ID -->

<BANKACCTTO> <!-- Identify the account -->

<BANKID>121099999</BANKID><!-- Routing transit or other
FI ID -->

<ACCTID>999977</ACCTID><!-- Account number -->

<ACCTTYPE>SAVINGS</ACCTTYPE><!-- Account type -->

</BANKACCTTO> <!-- End of account ID -->

<TRNAMT>1000.00</TRNAMT><!-- Amount of transfer -->

</XFERINFO> <!-- End of transfer aggregate -->

<DTXFERPRJ>19990115</DTXFERPRJ><!-- Projected date of transfer
-->

<RECSRVRTID>20000</RECSRVRTID><!-- Model -->

</INTRARS> <!-- End of Jan. 15 pending -->

</INTRATRNRS> <!-- Cancellation of 1/15 pending-->

<INTRATRNRS> <!-- response -->

<TRNUID>0</TRNUID> <!-- Client ID sent in this
request -->

<STATUS>

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<INTRACANRS> <!-- This is the Jan. 15 cancel -->

<SRVRTID>11225</SRVRTID> <!-- Server ID for Jan. 15 xfer -->

</INTRACANRS> <!-- End of Jan. 15 cancel -->

</INTRATRNRS> <!-- End of response -->

</INTRASYNCRS> <!-- End of sync response -->

</BANKMSGSRSV1>

</OFX> <!-- End of response -->
280 11.14 Examples

r

OFX

urring
these

nown

s can

ditional
how a
ent

ation

t
pear on

These
ies or
s

ll,
yee that
CHAPTER 12 PAYMENTS

This section describes the Payments portion of OFX. OFX Payments consists of a set of functions fo
scheduling and maintaining payment transactions, and for synchronizing with the server to obtain an
accurate status of all recent and scheduled transactions.

Clients use payment requests to schedule payments and to modify or delete payments if necessary.
also supports business payments, as described in section12.1.

The recurring payments function allows the client to schedule automatic generation of a series of rec
payments by means of a single request. As with individual payments, the client can modify or delete
requests.

The payments function incorporates the synchronization features of OFX, allowing multiple client
applications to synchronize with the server to obtain the current status of all payment transactions k
to the server.

In many international environments, payments are performed using interbank funds transfers. OFX
Payments supports this by allowing a payee to be designated as a destination bank account. Server
implement these messages as transfers where appropriate.

12.1 Consumer and Business Payments

OFX Payments is designed to support both consumer and business payments. Businesses have ad
requirements for payments. In particular, there is a need to include itemized instructions that specify
payment should be disbursed across multiple invoices and/or line items. OFX supports this requirem
through the inclusion of the <EXTDPMT> aggregate within payment requests. The Payment Modific
Request <PMTMODRQ> also supports changes to <EXTDPMT> data.

12.2 The Payee Model

The payee model in OFX is designed to provide support for both “pay-some” and “pay-any” paymen
systems. “Pay-some” systems are those that restrict users to only make payments to payees that ap
an approved list. Such payees are often referred to as “standard payees,” or “standard merchants.”
are generally larger corporations that receive high volumes of payments, such as telephone compan
power utilities. In contrast,“ pay-any” systems allow payments to any payee for which the user provide
accurate billing information. These systems often also include a list of standard payees.

12.2.1 Payee Identifiers

OFX is designed to be flexible in the requirements for payee identifiers. It supports systems where a
some, or no payees are assigned a payee ID. In addition, it enables the server to assign an ID to a pa
was previously being paid by billing address.
OFX 2.0 Specification 2816/30/00

ments-
oney
yment
e other

plify
tions
ntries

s
t

ned to

s the
re
he full

the
se,
when

r to a
list.

will
You must implement the scope of payee such that the ID is at least global across the user’s set of pay
enabled accounts with the payments provider. For example, if the user has both a checking and a m
market account enabled for payments with the payments provider, then a payee ID obtained for a pa
made from one of these accounts should identify the same payee if used for a payment drawn on th
account. This simplifies client support for allowing a user to choose from which account to make a
payment.

OFX requires payee identifiers to have a one-to-one relationship with the corresponding <PAYEE>
information. In other words, different payee IDs must also differ in their corresponding payee billing
description or payee name <NAME>. Similarly, a payee ID must be independent of a user’s account
number with the payee. However, the payment system is free to use the user’s account number in
combination with the payee ID to determine the routing of a payment. These rules are intended to sim
the payee model for the user, insuring that different payee IDs will have discernibly different descrip
associated with them. They also insure that the user will not be required to maintain multiple payee e
for a payee with which the user holds multiple accounts.

OFX includes an element for indicating the scope of a payee ID returned from the server. This allow
clients to adapt by expanding or restricting their functionality depending on the scope of payee IDs i
encounters.

A payee list for each user, maintained on the server, allows the server to manage the identifiers assig
a user’s payees. This functionality is described in section12.2.2.

12.2.2 Payee Lists

OFX specifies that a server-hosted payee list is maintained for each payments user. This list contain
payees that a user has paid through the payment system, or has set up to pay. Updates to this list a
available through the synchronization mechanism. This insures that multiple clients have access to t
list of payees the user has configured. It is only necessary to enter each payee once.

Some payment systems require a first time setup before using a payee. This can occur externally to
client and server software, for example by filling out a paper form or telephoning the bank. In this ca
payee list synchronization provides a way for the payee to become accessible to the client software
the FI completes the setup.

The list can contain payees with or without payee IDs. An important function of the payee list is to
communicate payee changes from the server to the client. This includes changes in processing date
parameters and conversion of a payee to a standard payee.

Once added to the list, the payment system makes payments by the payee list ID. This makes it clea
client when the user is adding to a payee list, and when he or she modifies an existing payee on the

Although the messages make it clear whether a client is trying to add a new payee, a careful server
check for exact matches on payee adds and not create new payee list entries unnecessarily.
282 12.2 The Payee Model

d
n they

r

e
YZ

s.
d in

standard
When a

yment

e user,

eep

the

are
or
e the
user’s
yees
“Pay-any” systems can perform background processing that matches billing addresses with standar
payees. When this occurs, the server can update the relevant payee lists and update the clients whe
synchronize with the modified list data.

Each payee entry in the list can also include a list of the user’s accounts with that payee. This furthe
reduces the data entry required by a user to make a payment, and facilitates the implementation of
lightweight clients.

For a single account, it is important that references to a payee by <PAYEELSTID> do not resolve to
different physical payees even if the account is being used by more than one user. The same
<PAYEELSTID> must map to the same corresponding payee billing descriptionandpayee name
<NAME>. For example, <PAYEELSTID>12345 may be used for ABC Rentals for one user of a singl
account. If the same account is used for a second user, <PAYEELSTID>12345 cannot be used for X
Supplies.

12.2.3 Standard Payee Lists

Many payment systems maintain a list of payees that receive payments from a large number of user
Payments to these payees are usually consolidated into a few electronic funds transfers or are maile
large batches to the payee. Payees that receive this special processing are generally referred to as
payees. In a “pay-some” system, all the approved payees can be considered to be standard payees.
user pays a standard payee, there might be different processing lead-times used to calculate the pa
and/or processing date of a payment.

When a payment system includes a standard payee list, it might be desirable to present the list to th
who can then select payees he or she wants to pay. Unfortunately, it is cumbersome to provide this
functionality in the client software due to the potential size of this list, which makes it problematic to k
updated and to present to the user. While the list can contain thousands of payee entries, a user will
typically need less than ten or twenty entries from the list. It can also be difficult for a user to choose
correct payee entry when the list contains a number of similarly named payees.

Therefore, OFX does not provide a mechanism for delivering these lists to the client. However, there
several ways that an external presentation of such a list can be integrated into the client or server. F
example, a payment provider’s Web site could present a search engine that assists the user to locat
correct payee. Once identified, the payees can either be imported into the client, or inserted into the
payee list on the server. In the latter case, synchronizing the payee list will make the newly added pa
visible to the client.

12.2.4 Identifying Payees

Payees can be identified in several ways:
OFX 2.0 Specification 2836/30/00

fter,
oth

e

tion

r,
es.
count

could
client

in the
� Name and address, by means of <PAYEE>, must be identified only once for each payee. Therea
clients must use the assigned <PAYEELSTID> and, if assigned, <PAYEEID>. If the clients send b
<PAYEE> and <PAYEELSTID> in a <PMTRQ>, <PMTMODRQ>, <RECPMTRQ>, or
<RECPMTMODRQ>, the client is making an implicit payee modification request.
In <BILLPAYMSGSRSV1>, the server must return a <PAYEEMODRS> in a subsequent
<PAYEESYNCRS> for all actual changes. This is not necessary (though still allowed) if no chang
were made.

If a client sends just <PAYEE> in a <PMTRQ> or <RECPMTRQ>, the client is making an implicit
payee add request. (Clients must include the known <PAYEELSTID> in a <PMTMODRQ> or
<RECPMTMODRQ>.) For more information about implicit payee adds and modifications, see sec
12.2.5.

� Destination bank account <BANKACCTTO> should be done only once for each payee. Thereafte
clients should use the assigned <PAYEELSTID> or <PAYEEID>, as with name and address paye
The <PAYEE> aggregate is required to provide name and address information as a backup to ac
transfers.

� Payee list ID <PAYEELSTID> after a payee has been added to the list.

Note: Duplicate payee list entries can occur if clients are not careful to send the payee list ID
in subsequent requests.

� Standard payee ID <PAYEEID> for any payee that has been assigned a standard payee ID. This
happen before a closed system makes any payments, or anytime after the server has notified the
that a payee has a standard payee ID. If a <PAYEELSTID> also exists for the payee, it is required
request and response, in addition to the <PAYEEID>.

Note: Servers must always assign <PAYEELSTID>s to payees. Once <PAYEELSTID>s have
been assigned, clients must always send the <PAYEELSTID>, even if a payee has both a
<PAYEEID> and a <PAYEELSTID>.
284 12.2 The Payee Model

licit
sent
ee list
to be
nerated

>,
In
ce the
ly if
and

es.
e zero.

re

ero.

nd life

is to

ct,”

any
quest

e
odel

nown

s

12.2.5 Side Effects of Payee Adds and Modifications

Payees are added either implicitly or explicitly. Explicit adds occur by executing a <PAYEERQ>. Imp
payee adds occur with the execution of a <PMTRQ> or <RECPMTRQ> where a payee list ID is not
with the request. (Thus, duplicate payee list entries can occur if clients are not careful to send the pay
ID if it is known.) In the case of an implicit payee add, a server must create and store a <PAYEERS>
returned to the client in subsequent payee synchronization responses. Since the change was not ge
by an explicit request, the <TRNUID> in this response would be zero.

Payees are modified either implicitly or explicitly. Explicit changes occur by executing a
<PAYEEMODRQ>. Implicit payee changes occur with the execution of a <PMTRQ>, <PMTMODRQ
<RECPMTRQ>, or <RECPMTMODRQ>, if the payee list ID is sent along with the payee aggregate.
<BILLPAYMSGSETV1>, a <PAYEE> aggregate must accompany these requests. In such cases, sin
<PAYEELSTID> is present, a server may check to see if the payee information has changed, and on
so, process an implicit payee modification. An implicit payee change must cause the server to create
store a <PAYEEMODRS>, to be returned to the client in subsequent payee synchronization respons
Since the change was not generated by an explicit request, the <TRNUID> in these responses will b

In addition to the above, a payee change (implicit or otherwise) may also affect models and their futu
(though not pending) payments. Thus, for any model that is affected by an explicit or implicit payee
modification, the server must create and store a <RECPMTMODRS>, to be returned to the client in
subsequent recurring payment synchronization responses. The <TRNUID> in this response will be z

12.3 Identifiers Used in Payment Transactions

Payment transactions use four types of identifiers. It is important to understand the purpose, scope, a
span of these identifiers.

The client-to-request messages assign the Transaction Universal Identifier <TRNUID>. Its purpose
allow the client to easily match responses from the server to their corresponding requests. A given
transaction ID is used only for a client request and the corresponding server response.

The Server Identifier, <SRVRTID> or <RECSRVRTID>, is assigned by the server to a payment “obje
which can either be a payment or a recurring payment model (in which case it is named
<RECSRVRTID>). Both the client and server use the ID thereafter to refer to the payment or model in
transactions that operate on them. For example, the <SRVRTID> is used to identify a payment in a re
to modify or cancel it. The <SRVRTID> is valid for the life span of the payment within the payment
system. Similarly the <RECSRVRTID> is valid as long as the associated model exists, that is until th
model generates all payments, or the model is canceled. Once a server processes a payment or a m
generates all its required payments, the associated <SRVRTID> (or <RECSRVRTID>) is no longer k
to the server. Note that the payment system might continue to maintain knowledge of a payment
<SRVRTID> or model <RECSRVRTID> for some specified period after it completes processing. Thi
allows clients to access the “completed” status of these operations.
OFX 2.0 Specification 2856/30/00

hat all
For
bally,
payee
such

pe,

osted

> to
o
in real
EEID>
sure

be
. The
if the
re
and

ume
321
A payment system can assign the Payee Identifier <PAYEEID> to a payee. There is no requirement t
or any payees are assigned a <PAYEEID>. The usage of this identifier will vary by payment system.
example, in “pay-some” systems usually every payee has a payee ID with a scope that is known glo
while in “pay-any” systems there might only be <PAYEEID>s assigned to standard payees. When a
has an assigned <PAYEEID>, the life span of the ID will depend on its scope. If the scope is global,
as for payees in some “pay-some” systems or those with standard payees, then the <PAYEEID> is
expected to be valid as long as that payee is identifiable by ID. If the payee ID is user-specific in sco
then the <PAYEEID> is valid as long as the payee appears in the user’s server-hosted payee list.

The Payee List Identifier <PAYEELSTID> is assigned by the server to each entry in a user’s server-h
payee list. The need for this identifier is to support the variety of payee models employed in various
payment systems. As discussed above, some payment systems assign a payee identifier <PAYEEID
every payee (this is particularly the case with pay-some systems); others assign <PAYEEID>s only t
standard payees. There are also systems that cannot map a payee billing address to a <PAYEEID>
time. Also, there are systems that can convert a payee from a standard payee with an assigned <PAY
to one that is identified only by billing address. Therefore, systems employ the <PAYEELSTID> to in
that, in systems where payees will not always have a <PAYEEID>, there is another identifier that can
used to reference every payee. This insures that a client can correctly link payments to their payees
<PAYEELSTID> must be valid as long as the user’s payee list includes the payee it identifies, even
server subsequently assigns a <PAYEEID> to the payee. In order to ensure that <PAYEELSTID>s a
unambiguous to the client, <PAYEELSTID> must be unique for all classes of a particular <SPNAME>
<USERID>. Therefore, a given payment provider may use <PAYEELSTID>12345 to refer to ABC
Rentals for one <USERID>, and XYZ Cable for a different <USERID>. Likewise, a client cannot ass
that <PAYEELSTID>54321 at payment provider 1 will refer to the same payee as <PAYEELSTID>54
at payment provider 2.

Note: If a service provider allows the sharing of accounts between users, the scope of
<PAYEELSTID> must be stricter than that described above. For a single account it is
important that references to a payee by <PAYEELSTID> do not resolve to more than one
physical payee. The same <PAYEELSTID> must map to the same corresponding payee billing
description and payee name <NAME>. For example, <PAYEELSTID>12345 may be used for
ABC Rentals for one user of an account. It the same account is used for a second user,
<PAYEELSTID>12345 cannot be used for XYZ Supplies.
286 12.3 Identifiers Used in Payment Transactions

ystem,

l add
it

l if the

e able
the

ment.
th of

e client
ment
se,
ecify

tion
r
d due
must
12.4 The Payment Life Cycle

12.4.1 Payment Creation

The client formulates a <PMTRQ> that includes the payee, the date, the amount of the payment, the
funding account, and the user’s account number with the payee. If supported by the user’s payment s
the billing address can specify the payee.

The server will look up the payee in the user’s payee list. If it is not already in the table, the server wil
it and issue a payee list identifier <PAYEELSTID>. This form of payment request performs an implic
Payee Request <PAYEERQ>, which is equivalent to explicitly adding the payee (by means of a
<PAYEERQ>), prior to issuing the <PMTRQ>. It has the advantage of being atomic. If the payment
request fails, the payee is not added to the user’s payee list. Conversely the payment request will fai
payee information is invalid.

The server responds to the <PMTRQ> with a Payment Response <PMTRS>. Some servers will not b
to immediately return a payee ID at this point, or might not issue payee IDs for all payees. Therefore
<PAYEELSTID> contained in the response functions as the linkage between the payee and the pay
Payment systems use the <SRVRTID> returned in the <PMTRS> to identify the payment for the leng
its instantiation on the payment system.

Note: Servers should generate explicit responses to implicit requests. In other words, implicit
payee additions or modifications resulting from a new or changed payment should generate
explicit payee add or payee change responses from the server. Such explicit responses are only
returned to the client in a SYNC response. If the payment transactions containing implicit
payee additions or modifications fail, then the payee actions are not executed, since such a
compound payment transaction represents a single unit of work (comprised of both payee and
payment actions).

12.4.2 Payment Modification

Between the time the client schedules a payment and the time the server processes the payment, th
can request changes to the parameters of that payment. For example, the amount or date of the pay
can be modified. The system uses the Payment Modification Request <PMTMODRQ> for this purpo
where the <SRVRTID> from the <PMTRS> identifies the targeted payment. The user request must sp
the full contents of the payment request, including both modified and unmodified data.

Full-featured servers will use <PMTMODRS> messages, conveyed to the client during synchroniza
<PMTSYNCRS>, to inform the client about changes in the state of the client that occur due to serve
processing. This would include reporting the date the server actually processed a payment, or it faile
to insufficient funds. Servers that are unable to generate <PMTMODRS> responses for this purpose
support the <PMTINQRQ> message described below.
OFX 2.0 Specification 2876/30/00

nges
ng
to a
above.
f
ge
f

ent,
e

ccur if
e-mail

o
, and
nt

ill not
ed
can
ID>
12.4.3 Payment Status Inquiry

As a scheduled payment progresses through its “life-cycle” on the server, the processing status cha
accordingly from “scheduled to be processed” to “was processed” or “failed processing.” A processi
date is associated with these states. The preferred method for providing updated processing status
client is by use of server-generated Payment Modification messages <PMTMODRS>, as discussed
However it is possible that less full-featured servers might have difficulty in implementing this form o
notification. In this case, OFX requires such servers to implement the Payment Status Inquiry messa
<PMTINQRQ>, which provides an interface for the client to explicitly request the processing status o
individual payments.

12.4.4 Payment Cancellation

In the interval between successful processing of a <PMTRQ> and the actual processing of the paym
the client can cancel the payment by issuing a Payment Cancellation Request <PMTCANCRQ>. Th
<SRVRTID> value returned in <PMTRS> identifies the payment.

When a payment system cancels a payment, servers can generate a <PMTCANCRS>. This might o
the user requests payment cancellation by way of a telephone call to customer support or through an
message. The client will receive this response when performing a payment synchronization
<PMTSYNCRQ>/<PMTSYNCRS>.

12.4.5 Delayed Payee Matching

Payment systems that allow payment by payee billing address often perform a matching operation t
determine if the payee is a standard payee. If this matching occurs in the processing of a <PMTRQ>
the server recognizes the payee as a standard one, then the server returns the payee ID and payme
parameters in the <EXTDPAYEE> aggregate of the <PMTRS>. However some payment systems w
be able to perform “payee matching” at this point in processing. In this case, the server sends updat
payee information to the client by using <PAYEESYNCRS> to synchronize the payee list. The client
link payee information in the <PAYEESYNCRS> messages to payments with matching <PAYEELST
identifiers.
288 12.4 The Payment Life Cycle

. It
In
nt.
12.5 Common Payments Aggregates

This section documents several aggregates used throughout the Payments portion of the OFX
specification.

12.5.1 Payments Account Information <BPACCTINFO>

OFX uses the payments account information aggregate to download account information from an FI
includes account number specification in <BANKACCTFROM> as well as the status of the service.
OFX, Banking and Payments share the <BANKACCTFROM> aggregate to identify a specific accou
For more information, see section11.3.1.

Tag Description

<BPACCTINFO> Payments-account-information aggregate

<BANKACCTFROM> Bank-account-from aggregate, see section 11.3.1

</BANKACCTFROM>

<SVCSTATUS> Status of the account

AVAIL = Available, but not yet requested

PEND = Requested, but not yet available

ACTIVE = In use

</BPACCTINFO>
OFX 2.0 Specification 2896/30/00

oth

just
4 and
the

n

the
12.5.2 Payment Information <PMTINFO>

The Payment Information aggregate is used to specify detailed payment information. It is used for b
single payments and recurring payments. Clients must send the <PAYEELSTID> and <PAYEEID> if
known. Clients send a <PAYEE> aggregate if this is an implicit payee add or modify. See section12.2.4on
identifying payees, above. The <EXTDPMT> aggregate (see section12.5.2.2) allows the inclusion of
disbursement instructions to be printed with the payment. This aggregate is optional.

In the case of an implicit add, the returned <PMTINFO> aggregate found in <PMTRS> and
<RECPMTRS> must include the generated <PAYEELSTID>. This aggregate may also include
<EXTDPMT> information.

The <DTDUE> in a response may have been adjusted by a server. For example, the server may ad
<DTDUE> to comply with non-processing days. If a client sends a request to make a transfer on July
July 4 happens to be a non-processing day, the <DTDUE> in the response may be July 4 (because
server hasn’t adjusted it yet), July 5 (because this server rolls dates forward), or some other date.

Tag Description

<PMTINFO>

<BANKACCTFROM> Account-from aggregate, see section 11.3.1

</BANKACCTFROM>

<TRNAMT> Payment amount,amount

This amount should be specified as a positive number

Specify payee; either
<PAYEEID> or <PAYEE>.

<PAYEEID> Server payee identifier (required if assigned). Either <PAYEEID> or <PAYEE> ca
be sent, but not both.A-12

<PAYEE> Complete payee billing information, see section 12.5.2.1.

Either <PAYEEID> or <PAYEE> can be sent, but not both.

</PAYEE>

<PAYEELSTID> Payee list ID (required if assigned),A-12

<BANKACCTTO> Destination account (see section 11.3.1) information for systems that pay by
transfers (<PAYEE> also required)

</BANKACCTTO>

<EXTDPMT> Zero or more extended Payment aggregates, see section 12.5.2.2

Note: Although PMTINFO allows multiple occurrences of EXTDPMT, it is
recommended that multiple invoices be expressed using multiple occurrences of
INVOICE aggregate. This usage will correspond with the requirements of
PMTINFO2.
290 12.5 Common Payments Aggregates

</EXTDPMT>

<PAYACCT> User account number with the payee,A-32

<DTDUE> Payment due date or the date by which payment must be received by payee,
datetime

<MEMO> Memo from user to payee,memo

<BILLREFINFO> Biller-supplied reference information when paying a bill, if available,A-80

Note: If the client user interface has a single field that can contain either free-
form memo text or a structured reference number, then the contents of that field
should be passed in the <MEMO> element rather than the <BILLREFINFO>
element.

</PMTINFO>

Tag Description
OFX 2.0 Specification 2916/30/00

12.5.2.1 Payee <PAYEE>,

<PAYEE> specifies a complete billing address for a payee.

Tag Description

<PAYEE>

<NAME> Name of payee.A-32

<ADDR1> Payee’s address line 1,A-32

<ADDR2> Payee’s address line 2,A-32

<ADDR3> Payee’s address line 3. Use of <ADDR3> requires the presence of <ADDR2>,A-32

<CITY> Payee’s city,A-32

<STATE> Payee’s state,A-5

<POSTALCODE> Payee’s postal code,A-11

<COUNTRY> Payee’s country; 3-letter country code from ISO/DIS-3166,A-3

<PHONE> Payee’s telephone number,A-32

</PAYEE>
292 12.5 Common Payments Aggregates

ss
tiple

g the

the
12.5.2.2 Extended Payment <EXTDPMT>

The Extended Payment aggregate provides the payee with information for applying a payment acro
multiple invoices. It is structured to allow for electronic processing of the invoice data, and allows mul
invoices, as well as multiple line items per invoice, to be specified.

In this case, <EXTDPMT> can specify a block of free text to be transmitted with the payment, by usin
<EXTDPMTDSC> instead of the <EXTDPMTINV> element.

Tag Description

<EXTDPMT> Extended Payment aggregate

<EXTDPMTFOR> INDIVIDUAL or BUSINESS. Indicates whether the payment is for an individual
or business account. This allows the payment processor to remit payments to
appropriate address for consumers or businesses.

<EXTDPMTCHK> Check number to use for this payment. Overrides “next check in range.”N-10

Payment description. At least
one of the following:
<EXTDPMTDSC>, or
<EXTDPMTINV>.

<EXTDPMTDSC> Free text to communicate with the payment,A-255

<EXTDPMTINV>

<INVOICE> One or more invoice aggregates. See section 12.5.2.3

</INVOICE>

</EXTDPMTINV>

</EXTDPMT>
OFX 2.0 Specification 2936/30/00

.4
12.5.2.3 Invoice Description <INVOICE>

Tag Description

<INVOICE> Start tag for the invoice aggregate. There can be one or more invoices per
payment request.

<INVNO> Invoice number associated with the payment.A-32

<INVTOTALAMT> This value represents the total invoice amount,amount

This amount should be specified as a positive number

<INVPAIDAMT> This value represents the amount of the invoice being paid,amount

This amount should be specified as a positive number

<INVDATE> Date to apply the invoice,datetime

<INVDESC> Invoice description,A-80

<DISCOUNT> Discount aggregate; only one discount aggregate per invoice

<DSCRATE> Discount rate,rate

<DSCAMT> Discount amount,amount

This amount should be specified as a positive number

<DSCDATE> Date to apply the discount,datetime

<DSCDESC> Discount description,A-80

</DISCOUNT>

<ADJUSTMENT> Adjustment aggregate; only one adjustment aggregate per invoice, see 12.5.2

</ADJUSTMENT>

<LINEITEM> Line item aggregate; there can be multiple line items per invoice, see 12.5.2.5

</LINEITEM>

</INVOICE>
294 12.5 Common Payments Aggregates

ns

nt
12.5.2.4 <ADJUSTMENT>

12.5.2.5 <LINEITEM>

Tag Description

<ADJUSTMENT>

<ADJNO> Adjustment number associated with the payment,A-32

<ADJDESC> Adjustment description,A-80

<ADJAMT> Amount of the adjustment,amount

This amount should be signed + or -, as appropriate. A positive adjustment mea
that the payment amount has been reduced.

<ADJDATE> Date of adjustment,datetime

</ADJUSTMENT>

Tag Description

<LINEITEM> Line item aggregate; there can be multiple line items per invoice

<LITMAMT> Amount of the line item,amount

This amount should be signed + or -, as appropriate. A positive line item amou
is an addition to the payment amount, and a negative line item is a discount or
reduction in the payment amount.

<LITMDESC> Line item description,A-80

</LINEITEM>
OFX 2.0 Specification 2956/30/00

day

is
pretation
12.5.2.6 Extended Payee <EXTDPAYEE>

The Extended Payee aggregate communicates a payee identifier to the client. It also contains the
processing day parameters for a payee. It can be sent to the client for any payee whose processing
parameters are different from the processor’s default values, even for payees with no <PAYEEID>.

12.5.2.7 Payment Processing Status <PMTPRCSTS>

The Payment Processing Status aggregate contains the current processing status for a payment. Th
aggregate is intended to describe status changes to the associated payment after creation. The inter
of the date value depends on the value of <PMTPRCCODE>.

Tag Description

<EXTDPAYEE> Extended-payee aggregate

<PAYEEID> Server-assigned payee ID,A-12

If <PAYEEID> is present, <IDSCOPE> and <NAME> are required. Should not be
included unless the payee is a standard payee.

<IDSCOPE> Scope of the payee ID; one of (GLOBAL, USER), where

GLOBAL = payee ID valid across the entire payment system

USER = payee ID valid with all FI accounts set up for the user’s payments account

Required if <PAYEEID> is present.

<NAME> Standard payee name,A-32

Required if <PAYEEID> is present.

<DAYSTOPAY> Minimum number of business days needed to process,N-3

</EXTDPAYEE>

Tag Description

<PMTPRCSTS>

<PMTPRCCODE> See table 12.6.2.1

<DTPMTPRC> Payment processing date; interpretation depends on <PMTPRCCODE>,datetime

</PMTPRCSTS> Ending tag for payment processing status
296 12.5 Common Payments Aggregates

iguous,

on

see
12.6 Payments Functions

Payments functions allow a client to create a Payment Request to pay a bill on a specified date. The
Payment Request identifies the payee and the amount to pay. Because the flow of money is unamb
bill payment amounts are usually specified as positive numbers. See tables for details.

From the time the client issues a Payment Request until it is paid, the client can modify the transacti
through the Payment Modification Request, <PMTMODRQ>; see section 12.4.2. This request allows
payment parameters such as the payment date and payment amount to be changed.

The client can cancel a Payment Request with a Payment Cancellation Request, <PMTCANCRQ>;
section 12.4.4.

Client Sends Server Responds

Account information

Payment date

Amount

Payee address, list ID,
transfer acct, or standard
ID

Payment status

Check number

Server-assigned ID

Client Sends Server Responds

Account information

Server-assigned ID

Information to change:

Payment date,

Amount,...

Acknowledgment or Error

Client Sends Server Responds

Account information

Server-assigned ID

Acknowledgment or Error
OFX 2.0 Specification 2976/30/00

t

ode for a
tatus
12.6.1 Payment Creation

A Payment Request is used to schedule an electronic payment. The server responds with a Paymen
Response. Separate transactions are provided for modifying and canceling a Payment Request.

12.6.1.1 Payment Request <PMTRQ>

The <PMTRQ> request must appear within a <PMTTRNRQ> transaction wrapper.

Note: If the <PMTRQ> created a new payee or modified an existing one, the server must
create and store a payee response that would be available for subsequent payee synchronization
requests. In addition, the server should be aware of the fact that implicit payee modifications
may affect models. Such changes to models must also appear in subsequent recurring
synchronization responses. In all cases, the server need only send the <PMTRS> as a response
to the <PMTRQ>, but any implicit payee and recurring changes must be made by the server,
and be returned in later synchronization responses. See section 12.2.5for further discussion of
implicit payee adds and modifications.

12.6.1.2 Payment Response <PMTRS>

The server sends a Payment Response in response to a Payment Request. The processing status c
new payment is normally WILLPROCESSON, but in the case of synchronization it can return other s
codes. Servers should inform clients of any errors found while processing this transaction using the
<STATUS> aggregate. A response containing <STATUS><CODE>0 and
<PMTPRCSTS><PMTPRCCODE>FAILEDON should be avoided for problems such as an invalid
account or amount.

The <PMTRS> response must appear within a <PMTTRNRS> transaction wrapper.

Note: When processing a <PMTRQ> request that does not contain a <PAYEEID> or
<PAYEELSTID>, a server may check the payee against the user's current payee list and return
the found <PAYEELSTID> and <PAYEEID> (if any). If the server does this, it should only
find a match when all <PAYEE> data, including all <PAYACCT> elements, match exactly. If
the <PAYACCT> or any other element is different, the server must perform an implicit payee
addition. If a server doesn’t check for duplicate payees, a client could show duplicate entries in
the payee list.

Tag Description

<PMTRQ> Payment-request aggregate

<PMTINFO> Payment Information aggregate, see section 12.5.2

</PMTINFO>

</PMTRQ>
298 12.6 Payments Functions

Note: Servers matching well-known payees against entries in a user's payee list must ignore
the <PAYACCT> information in the user's list. No corresponding information appears in the
list of well-known payees.

Tag Description

<PMTRS> Payment-response aggregate

<SRVRTID> ID assigned by the server to the payment being created,SRVRTID

<PAYEELSTID> Server-assigned payee list record ID for this payee,A-12

Note: This identifier must match that found (and required) in the
returned <PMTINFO>.

<CURDEF> Default currency for the Recurring Payment Response,currsymbol

<PMTINFO> Payment Information aggregate, see section 12.5.2

</PMTINFO>

<EXTDPAYEE> Standard payee information if payee is a standard payee, or payee has
non-default processing day parameters; see section 12.5.2.6

</EXTDPAYEE>

<CHECKNUM> Check number,A-12

<PMTPRCSTS> Payment processing status

</PMTPRCSTS>

<RECSRVRTID> References the payment if it was generated by a recurring payment,
SRVRTID

</PMTRS>
OFX 2.0 Specification 2996/30/00

12.6.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)

10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)

10510 Invalid payee ID (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)

10517 Invalid payee name (ERROR)

10519 Invalid payee list ID (ERROR)
300 12.6 Payments Functions

EE>

o the

yee is
he

er will

In

ere

payee

e
tes a

ons
ithin
, not

ions of
n

12.6.1.4 Discussion

Once the server has assigned a payee identifier <PAYEEID> to the payee, it includes the <EXTDPAY
in any <PMTRS> for that transaction. If the <EXTDPAYEE> aggregate is present in the Payment
Response <PMTRS>, the client records the standard payee information for use in future payments t
same payee.

When a payment is made using the <PAYEE> aggregate, and no <PAYEELSTID> is present, the pa
implicitly added to the payee list. This is therefore equivalent to first transmitting a <PAYEERQ> for t
payee. For payment systems that can immediately return payee IDs, it is preferable to use the single
<PMTRQ> message to both add the payee and create the payment. If either operation fails, the serv
not complete the other.

If <PAYEELSTID> and <PAYEE> are both included, it is equivalent to sending a <PAYEEMODRQ>.
<BILLPAYMSGSRSV1>, the server must return a <PAYEEMODRS> in a subsequent
<PAYEESYNCRS> for all actual changes. This is not necessary (though still allowed) if no change w
made.

The <PMTRS> response will include the <EXTDPAYEE> aggregate if the processor has assigned a
ID to the payee specified in the payment. It will also appear in the response when the payee has no
assigned ID, but has processing day parameters that different from the processor’s defaults for thes
values. This might occur, for instance, if the processor notes that the postal code of the payee indica
certain proximity to the payer, and therefore wishes to offer a shorter <DAYSTOPAY> value.

12.6.2 Payment Modification

The Payment Modification Request allows a client to modify a previously scheduled payment. Once
created and retrieved by the customer, spawned payments are almost identical to customer-created
payments. (The exception is when a spawned payment is modified or cancelled due to a recurring
modification or cancellation request.) As with ordinary payments, you can cancel or modify transacti
individually. When modifying a payment, the client must specify all of the elements and aggregates w
the <PMTINFO> aggregate that were specified during the payment creation or previous modification
just the elements and aggregates that it wants to modify. Some servers cannot support the modificat
certain values. Servers must indicate this by returning status code 10505 when the client requests a
unsupported modification.
OFX 2.0 Specification 3016/30/00

ust

,
d

e

store

f the
ation

affect
ses. In
any
ization
12.6.2.1 Payment Processing Status Values <PMTPRCCODE>

12.6.2.2 Payment Modification Request <PMTMODRQ>

The client sends a Payment Modification Request to request modification of a payment. The client m
provide the full <PMTINFO> including both changed and unchanged values.

The client may modify any data in <PMTINFO> except the recipient or funding account. In particular
payee list ID <PAYEELSTID>, payee ID <PAYEEID>, funding bank account <BANKACCTFROM>, an
the <NAME> element of <PAYEE> must match that returned in the original <PMTRS>. Implicit paye
modifications (changes in address information for example) are allowed.

If the <PMTMODRQ> caused a payee modification to an existing payee, the server must create and
a <PAYEEMODRS> to be returned in subsequent payee synchronization responses. If the
<PMTMODRQ> created a new payee (possible only if the payment were originally created outside o
OFX protocol), the server must, similarly, create and store a <PAYEERS> for later payee synchroniz
responses. In addition, the server should be aware of the fact that implicit payee modifications may
models. Such changes to models must also appear in subsequent recurring synchronization respon
all cases, the server need only send the <PMTMODRS> as a response to the <PMTMODRQ>, but
implicit payee and recurring changes must be made by the server, and be returned in later synchron
responses. See section 12.2.5for further discussion of implicit payee adds and modifications.

Value Description

WILLPROCESSON Will be processed on <DTPMTPRC>

PROCESSEDON Was processed for payment on <DTPMTPRC>

NOFUNDSON Funds not available to make payment on <DTPMTPRC>

FAILEDON Unable to make payment for unspecified reasons on <DTPMTPRC>

CANCELEDON User canceled payment on <DTPMTPRC>
302 12.6 Payments Functions

t.
The <PMTMODRQ> request must appear within a <PMTTRNRQ> transaction wrapper.

12.6.2.3 Payment Modification Response <PMTMODRS>

The server sends a Payment Modification Response in response to a Payment Modification Reques

The <PMTMODRS> response must appear within a <PMTTRNRS> transaction wrapper.

Tag Description

<PMTMODRQ> Modification-request this references

<SRVRTID> ID assigned by the server to the payment being modified,SRVRTID

<PMTINFO> Payment Information aggregate, see section 12.5.2

</PMTINFO>

</PMTMODRQ>

Tag Description

<PMTMODRS> Payment-modification-response this references

<SRVRTID> ID assigned by the server to the payment being modified,SRVRTID

<PMTINFO> Payment Information aggregate, see section 12.5.2

</PMTINFO>

<PMTPRCSTS> Payment processing status, see section 12.5.2.7

</PMTPRCSTS>

</PMTMODRS>
OFX 2.0 Specification 3036/30/00

12.6.2.4 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date <TOKEN> (ERROR)

10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)

10505 Cannot modify element (ERROR)

10510 Invalid payee ID (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)

10514 Transaction already processed (ERROR)

10517 Invalid payee name (ERROR)

10519 Invalid payee list ID (ERROR)
304 12.6 Payments Functions

a
dated

ting
t payee

g
e time

with a

d be
e).
12.6.2.5 Discussion

Servers can initiate <PMTMODRS> messages to communicate changes in the processing status of
payment as it moves through the payment system. This mechanism allows a client to capture the up
status of payments every time it synchronizes.

Implicit payee changes contained in a payment modification transaction do not affect any other exis
pending payments. The changes are propagated to the server’s payee list and affect payments to tha
as subsequently initiated by the client after the change, or as subsequently spawned from a recurrin
model. Explicit payee changes are not propagated to payments pending for the changed payee at th
of the change.

12.6.3 Payment Cancellation

The Payment Cancellation Request allows a client to cancel a previously scheduled payment created
Payment Request (<PMTRQ> in section 12.6.1.1).

Servers cannot initiate <PMTCANCRS> when communicating status changes. This response shoul
used only when a payment was actually cancelled (by an OFX client or at users request via the phon
When conveying information about a failure in payment processing (such as insufficient funds), a
<PMTMODRS> (with the updated <PMTPRCSTS>) should be added to the next <PMTSYNCRS>
download.

12.6.3.1 Request <PMTCANCRQ>

The client sends a Payment Cancellation to cancel a scheduled payment request.

The <PMTCANCRQ> request must appear within a <PMTTRNRQ> transaction wrapper.

Tag Description

<PMTCANCRQ> Cancellation-request this references

<SRVRTID> ID assigned by the server to the payment being cancelled,SRVRTID

</PMTCANCRQ>
OFX 2.0 Specification 3056/30/00

st.
12.6.3.2 Response <PMTCANCRS>

The server sends a Payment Cancellation Response in response to a Payment Cancellation Reque

The <PMTCANCRS> response must appear within a <PMTTRNRS> transaction wrapper.

12.6.3.3 Status Codes

Tag Description

<PMTCANCRS> Cancellation-response this references

<SRVRTID> ID assigned by the server to the payment being canceled,SRVRTID

</PMTCANCRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2017 Already canceled (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)

10514 Transaction already processed (ERROR)
306 12.6 Payments Functions

ment

ent.

uest.
12.6.4 Payment Status Inquiry

The Payment Status Inquiry Request allows a client to obtain the current processing status of a pay
from the server.

12.6.4.1 Request <PMTINQRQ>

The client sends a Payment Status Inquiry Request to obtain the current processing status of a paym

The <PMTINQRQ> request must appear within a <PMTINQTRNRQ> transaction wrapper.

12.6.4.2 Response <PMTINQRS>

The server sends a Payment Status Inquiry Response in response to a Payment Status Inquiry Req

The <PMTINQRS> response must appear within a <PMTINQTRNRS> transaction wrapper.

Tag Description

<PMTINQRQ> Payment-status-inquiry-request aggregate

<SRVRTID> ID assigned by the server to the payment being queried,SRVRTID

</PMTINQRQ>

Tag Description

<PMTINQRS> Payment-status-inquiry-response aggregate

<SRVRTID> ID assigned by the server to the payment being queried,SRVRTID

<PMTPRCSTS> Payment processing status

</PMTPRCSTS>

<CHECKNUM> Check number assigned by the server to this payment,A-12

</PMTINQRS>
OFX 2.0 Specification 3076/30/00

tting up
t the

ions
12.6.4.3 Status Codes

12.7 Recurring Payments

Recurring payments are used when a payment is to be made repeatedly at some known interval. Se
a recurring payment is similar to creating an individual payment, but with additional information abou
frequency and number of payments. After a recurring payment is created, the server will generate
payments transactions when there are a specified number of days remaining until the next projected
payment is due (usually 30 days). The client will be made aware of any generated payment transact
through the synchronization process. Chapter 10, "Recurring Transactions"and Chapter 11, "Banking,"
provide additional details on models and recurring transactions, and define the recurring transaction
aggregates.

Note: As with individual payments, if the recurring payment request adds a payee or changes
payee information, the server must create and store a payee response, to be returned in
subsequent payee synchronization responses. Furthermore, implicit payee modifications may
affect other models (but not their pending payments). The server must also create and store
recurring modification responses for these models, to be returned in subsequent recurring
synchronization responses. See section 12.2.5for further discussion of implicit payee adds and
changes.

Note: The <MODELWND> profile value indicates when the server spawns a payment. If
<MODELWND>0 is specified, the server only spawns one payment at a time for each model.
In other words, there is always one pending payment per model, unless the model has expired.
If <MODELWND> is greater than 0, its value is the number of days before a payment is due to
be paid that it is spawned from the model. In this case, it is possible to have zero or more
pending payments instantiated at a time.

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)
308 12.7 Recurring Payments

The table below lists the functional elements for creating a recurring payment:

The table below lists the functional elements for modifying a recurring payment:

The table below lists the functional elements for canceling a recurring payment:

Client Sends Server Responds

Account information

Payment frequency

Number of payments

Payment date

Amount

Payee address, list ID or
payee ID

Standard payee information

Server-assigned ID

Client Sends Server Responds

Account information

Server-assigned ID

Information to change:

Payment frequency,

Number of payments,

Payment date,

Amount,...

Acknowledgment or Error

Client Sends Server Responds

Account information

Server-assigned ID

Acknowledgment or Error
OFX 2.0 Specification 3096/30/00

e
>. The
12.7.1 Creating a Recurring Payment

Use a Recurring Payment Request to set up a recurring electronic payment. The user can specify th
frequency and duration of the payments using the Recurring Instructions aggregate <RECURRINST
<PMTINFO> aggregate (see section 12.5.2) specifies the payment information for the model, as well as
the initial and final amounts (if present and where applicable).

12.7.1.1 Request <RECPMTRQ>

The <RECPMTRQ> request must appear within a <RECPMTTRNRQ> transaction wrapper.

Tag Description

<RECPMTRQ> Recurring-payment-request aggregate

<RECURRINST> Recurring Instructions aggregate, see section 10.2.

</RECURRINST>

<PMTINFO> Payment-information aggregate, see section 12.5.2

</PMTINFO>

<INITIALAMT> Amount of the initial payment, if different than the following payments,amount

This amount should be specified as a positive number

<FINALAMT> Amount of the final payment, if different than the preceding payments,amount

This amount should be specified as a positive number

</RECPMTRQ>
310 12.7 Recurring Payments

12.7.1.2 Response <RECPMTRS>

The server sends a Recurring Payment Response upon receipt of a Recurring Payment Request.

The <RECPMTRS> response must appear within a <RECPMTTRNRS> transaction wrapper.

Tag Description

<RECPMTRS> Recurring-payment-response aggregate

<RECSRVRTID> Server-assigned ID for this transaction,SRVRTID

<PAYEELSTID> Server-assigned record ID for this payee record,A-12

Note: This identifier must match that found (and required) in the returned
<PMTINFO>.

<CURDEF> Default currency for the Recurring Payment Response,currsymbol

<RECURRINST> Recurring-instructions aggregate, see section 10.2.

</RECURRINST>

<PMTINFO> Payment-information aggregate, see section 12.5.2

</PMTINFO>

<INITIALAMT> Amount of the initial payment, if different than the following payments,amount

This amount should be specified as a positive number

<FINALAMT> Amount of the final payment, if different than the preceding payments,amount

This amount should be specified as a positive number

<EXTDPAYEE> Extended payee information, see section 12.5.2.3.

</EXTDPAYEE>

</RECPMTRS>
OFX 2.0 Specification 3116/30/00

12.7.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)

2015 Date too far in future (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)

10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)

10508 Invalid frequency (ERROR)

10510 Invalid payee ID (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)

10517 Invalid payee name (ERROR)

10519 Invalid payee list ID (ERROR)
312 12.7 Recurring Payments

just
4 and
the
r this

ent

,
d

oth

d
t in
t would
a

12.7.1.4 Discussion

The <DTDUE> element of <PMTINFO> specifies payment due date or the date by which the first
payment must be received by payee (see section12.5.2).

The <DTDUE> in a response may have been adjusted by a server. For example, the server may ad
<DTDUE> to comply with non-processing days. If a client sends a request to make a transfer on July
July 4 happens to be a non-processing day, the <DTDUE> in the response may be July 4 (because
server hasn’t adjusted it yet), July 5 (because this server rolls dates forward), or some other date. Fo
reason, a client should pay attention to the <DTDUE> in the response.

12.7.2 Recurring Payment Modification

The client sends a Recurring Payment Modification Request to request modifications to a recurring
payment previously created with a Recurring Payment Request. The payment frequency
<RECURRINST>, the payment parameters <PMTINFO>, or both, can be changed.

12.7.2.1 Request <RECPMTMODRQ>

The client sends a Recurring Payment Modification Request to request changes to a recurring paym
model.

The client may modify any data in <PMTINFO> except the recipient or funding account. In particular
payee list ID <PAYEELSTID>, payee ID <PAYEEID>, funding bank account <BANKACCTFROM>, an
the <NAME> element of <PAYEE> must match that returned in the original <RECPMTRS>. Implicit
payee modifications (changes in address information for example) are allowed. Clients can modify b
elements in the <RECURRINST> aggregate (i.e. <NINSTS> and <FREQ>). Client should send the
original number of payments scheduled if there is no change. If there is a change in the number of
payments scheduled, clients should send the new number of payments.

A <RECPMTMODRQ> that modifies pending payments via the <MODPENDING> flag is a compoun
transaction and the server should create and store <PMTMODRS>s, which are returned to the clien
subsequent payment synchronization responses. For example, a change to the <TRNAMT> elemen
cause the server to create and store a <PMTMODRS> for each pending payment, to be returned in
subsequent payment synchronization response. Changes to payment information apply to all future
payments.

Note: The <RECPMTMODRQ> element may implicitly modify a payee. A payee
modification can, in turn, modify other existing models (though not their pending payments).
In such cases, the server must create and store the appropriate responses (<PAYEEMODRS>
and, possibly, additional, <RECPMTMODRS>), to be returned to the client in subsequent
synchronization responses. See section 12.2.5for further discussion of implicit payee adds and
changes. If the <RECPMTMODRQ> created a new payee (this is only possible if the payment
were originally created outside of the OFX protocol), the server must create and store a
<PAYEERS> that would be available for a payee synchronization request. In all cases, the
server need only send the <RECPMTMODRS> as a response to the <RECPMTMODRQ>, but
OFX 2.0 Specification 3136/30/00

any implicit payee and recurring changes must be made by the server, and be returned in later
synchronization responses.

The <RECPMTMODRQ> request must appear within a <RECPMTTRNRQ> transaction wrapper.

Tag Description

<RECPMTMODRQ> Modification-request aggregate

<RECSRVRTID> ID assigned by the server to the payment being modified,SRVRTID

<RECURRINST> Recurring Instructions aggregate, see section 10.2

</RECURRINST>

<PMTINFO> Payment-Information aggregate, see section 12.5.2

</PMTINFO>

<INITIALAMT> Amount of the initial payment, if different than the following payments,amount

This amount should be specified as a positive number

<FINALAMT> Amount of the final payment, if different than the preceding payments,amount

This amount should be specified as a positive number

<MODPENDING> Modify pending flag

If the client sets this flag, the server must modify pending and future payments,Boolean

</RECPMTMODRQ>
314 12.7 Recurring Payments

12.7.2.2 Response <RECPMTMODRS>

The server sends a Recurring Payment Modification Response in response to a Recurring Payment
Modification Request.

The <RECPMTMODRS> response must appear within a <RECPMTTRNRS> transaction wrapper.

12.7.2.3 Status Codes

Tag Description

<RECPMTMODRS> Modification-response aggregate

<RECSRVRTID> ID assigned by the server to the payment being modified,SRVRTID

<RECURRINST> Recurring-Instructions aggregate, see section 10.2

</RECURRINST>

<PMTINFO> Payment-Information aggregate, see section 12.5.2

</PMTINFO>

<INITIALAMT> Amount of the initial payment, if different than the following payments,amount

This amount should be specified as a positive number

<FINALAMT> Amount of the final payment, if different than the preceding payments,amount

This amount should be specified as a positive number

<MODPENDING> Y if the client requested that the server modify pending and future payments. N if the
client did not request that the server modify pending and future payments.,Boolean

</RECPMTMODRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Source account not found (ERROR)

2007 Source account closed (ERROR)

2008 Source account not authorized (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2012 Invalid amount (ERROR)

2014 Date too soon (ERROR)
OFX 2.0 Specification 3156/30/00

2015 Date too far in future (ERROR)

2016 Transaction already committed (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)

10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)

10505 Cannot modify element (ERROR)

10508 Invalid frequency (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)

10514 Transaction already processed (ERROR)

10517 Invalid payee name (ERROR)

10518 Unknown model ID (ERROR)

10519 Invalid payee list ID (ERROR)

Code Meaning
316 12.7 Recurring Payments

ly
12.7.3 Recurring Payment Cancellation

The client sends a Recurring Payment Cancellation Request to cancel a recurring payment previous
created with a Recurring Payment Request.

12.7.3.1 Request <RECPMTCANCRQ>

The <RECPMTCANCRQ> request must appear within a <RECPMTTRNRQ> transaction wrapper.

Note: A <RECPMTCANCRQ> that cancels pending payments via the <CANPENDING>
flag is a compound transaction, and generates the appropriate explicit payment responses that
reflect such cancellations, which are returned to the client via synchronization.

Tag Description

<RECPMTCANCRQ> Cancellation-request aggregate

<RECSRVRTID> ID assigned by the server to the payment being canceled,SRVRTID

<CANPENDING> Cancel pending flag,Boolean

If Y, server should cancel all pending and unspawned payments. If N, server should
cancel only the model (and unspawned payments).

</RECPMTCANCRQ>
OFX 2.0 Specification 3176/30/00

t

s. N
12.7.3.2 Response <RECPMTCANCRS>

The server sends a Recurring Payment Cancellation Response in response to a Recurring Paymen
Cancellation Request.

The <RECPMTCANCRS> response must appear within a <RECPMTTRNRS> transaction wrapper.

12.7.3.3 Status Codes

Tag Description

<RECPMTCANCRS> Modification-request aggregate

<RECSRVRTID> ID assigned by the server to the payment being modified,SRVRTID

<CANPENDING> Cancel pending flag,Boolean

Y if the client requested that the server cancel all pending and unspawned payment
if the client requested that the server cancel only unspawned payments.

</RECPMTCANCRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2016 Transaction already committed (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to
out-of-date <TOKEN> (ERROR)

10514 Transaction already processed (ERROR)

10518 Unknown model ID (ERROR)
318 12.7 Recurring Payments

9,

ers to
the
12.8 Payment Mail

Users can correspond by way of e-mail to resolve problems or ask questions about their payments
accounts. This function makes use of the general OFX e-mail facility, which is described in Chapter
"Customer to FI Communication."

Note: There is no way to indicate non-support of payment e-mail in the profile. A server that
doesn’t support <PMTMAILSYNCRQ> should return an “empty” payment mail sync response
rather than just ignore the request. This empty sync response includes <TOKEN>0 and no
history.

12.8.1 Payment Mail Request and Response

12.8.1.1 Request <PMTMAILRQ>

The <PMTMAILRQ> allows a client to issue an e-mail to the payments processor. If the message ref
a specific payment, then both <SRVRTID> and <PMTINFO> are required to identify the payment to
processor.

The <PMTMAILRQ> request must appear within a <PMTMAILTRNRQ> transaction wrapper.

Tag Description

<PMTMAILRQ> Payment e-mail-request aggregate

<MAIL> General e-mail aggregate

</MAIL>

<SRVRTID> Transaction ID of the payment that is the subject of the correspondence,SRVRTID

<PMTINFO> Payment Information aggregate, see section 12.5.2

</PMTINFO>

</PMTMAILRQ>
OFX 2.0 Specification 3196/30/00

12.8.1.2 Response <PMTMAILRS>

The server sends <PMTMAILRS> in response to a Payment E-mail request.

The <PMTMAILRS> response must appear within a <PMTMAILTRNRS> transaction wrapper.

Tag Description

<PMTMAILRS> Payment e-mail-response aggregate

<MAIL> General e-mail aggregate, see Chapter 9, "Customer to FI Communication."

</MAIL>

<SRVRTID> Transaction ID of the payment that is the subject of the correspondence,SRVRTID

<PMTINFO> Payment Information aggregate, see section 12.5.2

</PMTINFO>

</PMTMAILRS>
320 12.8 Payment Mail

12.8.1.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2018 Unknown server ID (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

15508 Transaction not authorized (ERROR)

16500 HTML not allowed (ERROR)

16501 Unknown mail To: (ERROR)
OFX 2.0 Specification 3216/30/00

ounts

t

12.8.2 Payment Mail Synchronization

Payment mail is subject to synchronization. The scope of the synchronization request is all of the acc
for which the user might have sent mail, not a specific account.

12.8.2.1 Request <PMTMAILSYNCRQ>

Tag Description

<PMTMAILSYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<INCIMAGES> Y if the client accepts mail with images in the message body. N if the clien
does not accept mail with images in the message body.Boolean

<USEHTML> Y if client wants an HTML response, N if client wants plain text,Boolean

<PMTMAILTRNRQ> Payment-mail transactions (0 or more)

</PMTMAILTRNRQ>

</PMTMAILSYNCRQ>
322 12.8 Payment Mail

uire this
sharing

es
list.

he
12.8.2.2 Response <PMTMAILSYNCRS>

12.9 Payee Lists

Payments-system servers store lists of payees set up for payment by each user. Some systems req
before the user can issue a payment to a payee. In other payment systems, this feature enables the
of payee entry among multiple clients, and simplifies server payee maintenance.

A server-assigned payee list-entry ID identifies entries in the payee list. The following set of messag
allows clients to obtain this list of payees. Users can add, modify, and delete individual entries in the
The user-defined Payee list is subject to synchronization, so that multiple clients can use the list.

Creating a payee:

Tag Description

<PMTMAILSYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the
server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in t
server’s history table.Boolean

<PMTMAILTRNRS> Payment-mail transactions (0 or more)

</PMTMAILTRNRS>

</PMTMAILSYNCRS>

Client Sends Server Responds

Server-assigned payee
identifier, or payee billing
address

User’s account number
with the payee

Payee address

Standard payee information
OFX 2.0 Specification 3236/30/00

Modifying a payee:

Deleting a payee:

Client Sends Server Responds

Server-assigned payee
identifier

User’s account number
with the payee

Information to change:

payee name

address

city

state

postal code

phone number

new payee account #

Extended payee information
if payee is a standard payee
or has non-default processing
lead times

Acknowledgment or Error

Client Sends Server Responds

Server-assigned payee
identifier

User’s account number
with the payee

Acknowledgment or Error
324 12.9 Payee Lists

ith a
ndard

r can
ERQ>
12.9.1 Adding a Payee to the Payee List

The user can use the Payee Request to add a payee to the server payee list. The server responds w
Payee Response, which can contain a complete billing address for the payee, or if the payee is a sta
payee, the lead-time and payee name values.

12.9.1.1 Payee Request <PAYEERQ>

The <PAYEERQ> requests the addition of a payee entry to the server’s payee list. Note that the use
use a <PMTRQ> to simultaneously set up a payee. OFX does not require the client to send a <PAYE
before making an initial <PMTRQ> to a payee.

The <PAYEERQ> request must appear within a <PAYEETRNRQ> transaction wrapper.

Tag Description

<PAYEERQ> Payee-request aggregate

Specify payee; either
<PAYEEID> or
<PAYEE>.

<PAYEEID> Server-assigned payee identifier,A-12

<PAYEE> Complete payee billing information, see section 12.5.2.1.

</PAYEE>

<BANKACCTTO> The destination bank account (see section 11.3.1), specified in countries that pay using
transfers. The <PAYEE> (above) must also be specified.

</BANKACCTTO>

<PAYACCT> User’s account number(s) with the payee (0 or more),A-32

</PAYEERQ>
OFX 2.0 Specification 3256/30/00

igned

ecify
ee
12.9.1.2 Payee Response <PAYEERS>

The server sends the Payee Response in response to a Payee Request. It contains the full billing
information for the payee if it is not a standard payee. Otherwise, it contains the standard payee
information, including lead time and payee name. If the server identifies the payee as having an ass
payee ID, then the server will include the <EXTDPAYEE> aggregate in the response.

If the response indicates that the payee does not have an assigned <PAYEEID>, the client should sp
the full billing address <PAYEE> information in subsequent payment requests <PMTRQ> to the pay
when the payee is being modified.Otherwise the <PAYEELSTID> is used in lieu of the <PAYEE>
aggregate.

If the response indicates that the payee does have a <PAYEEID>, then the client should use the
<PAYEEID> for making payments to that payee.

The <PAYEERS> response must appear within a <PAYEETRNRS> transaction wrapper.

Tag Description

<PAYEERS> Payee-response aggregate

<PAYEELSTID> Server-assigned record ID for this payee record,A-12

<PAYEE> Complete payee billing information, see section 12.5.2.1.

</PAYEE>

<BANKACCTTO> The destination bank account (see section 11.3.1), specified in countries that pay using
transfers. The <PAYEE> (above) must also be specified.

</BANKACCTTO>

<EXTDPAYEE> Extended payee information, see section 12.5.2.3

</EXTDPAYEE>

<PAYACCT> User’s account number(s) with the payee (0 or more),A-32

</PAYEERS>
326 12.9 Payee Lists

ayee
from

The

E>
e

12.9.1.3 Status Codes

12.9.2 Payee Modification

The Payee Modification Request allows the client to make changes to payee entries in the server’s p
list. Payments spawned from a model after the payee modification will use the updated information
the server’s payee list as modified by the Payee Modification request.

12.9.2.1 Request <PAYEEMODRQ>

The client sends the Payee Modification Request to request changes to an existing payee list entry.
<PAYEE> aggregate must specify the changed and unchanged payee information. Absence of a
<PAYACCT> in a <PAYEEMODRQ> could be interpreted as an implicit disassociation of the
<PAYACCT> with the payee. Presence or absence of a <PAYACCT> does not imply selective <PAYE
aggregate changes for the same <PAYEELSTID> as referenced by more than one <PAYACCT>. Th
<PAYEEMODRQ> request must appear within a <PAYEETRNRQ> transaction wrapper.

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2001 Invalid account (ERROR)

2002 General account error (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)

10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)
OFX 2.0 Specification 3276/30/00

rver
curring
A payee modification may also affect models (though not their pending payments). In this case, a se
must create and store <RECPMTMODRS> responses, to be returned to the client in subsequent re
synchronization responses. See section 12.2.5 for further discussion of implicit payee changes.

Tag Description

<PAYEEMODRQ> Modification-request aggregate

<PAYEELSTID> Server-assigned record ID for this payee record,A-12

<PAYEE> Payee information to modify

</PAYEE>

<BANKACCTTO> Destination account (see section 11.3.1)for countries that pay using transfers
(<PAYEE> required)

</BANKACCTTO>

<PAYACCT> Payer account number(s) with the payee (0 or more),A-32

</PAYEEMODRQ>
328 12.9 Payee Lists

e

, then
12.9.2.2 Response <PAYEEMODRS>

The server returns a Payee Modification Response in reply to a Payee Modification Request.

When a server-initiated change occurs to the extended payee information for a payee (for example a
change in the payee’s lead-time), the server can include this information in the <EXTDPAYEE> of th
response.

If a server-initiated response indicates either that a payee now has a payee ID, or no longer has one
the client should use the appropriate form of designating the payee in any future payment requests
<PMTRQ> to that payee.

The <PAYEEMODRS> response must appear within a <PAYEETRNRS> transaction wrapper.

Tag Description

<PAYEEMODRS> Modification-response aggregate

<PAYEELSTID> Server-assigned record ID for this payee record,A-12

<PAYEE> Payee information that was modified, see section 12.5.2.1

</PAYEE>

<BANKACCTTO> Destination account (see section 11.3.1)for countries that pay bills using transfers
(<PAYEE> required as well)

</BANKACCTTO>

<PAYACCT> Payer’s account number(s) with the payee (0 or more),A-32

<EXTDPAYEE> Extended payee information, see section 12.5.2.3

</EXTDPAYEE>

</PAYEEMODRS>
OFX 2.0 Specification 3296/30/00

12.9.2.3 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2001 Invalid account (ERROR)

2002 General account error (ERROR)

2009 Destination account not found (ERROR)

2010 Destination account closed (ERROR)

2011 Destination account not authorized (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due to out-of-date
<TOKEN> (ERROR)

10501 Invalid payee (ERROR)

10502 Invalid payee address (ERROR)

10503 Invalid payee account number (ERROR)

10510 Invalid payee ID (ERROR)

10511 Invalid payee city (ERROR)

10512 Invalid payee state (ERROR)

10513 Invalid payee postal code (ERROR)

10515 Payee not modifiable by client (ERROR)
330 12.9 Payee Lists

’s
TID>

tion.
STID>
ee
12.9.3 Payee Deletion

The Payee Deletion Request allows a client to delete a payee entry from the server’s list of the user
payees. To delete specific <PAYACCT> associations with a payee, clients should use the <PAYEELS
combined with absent <PAYACCT>s via a <PAYEEMODRQ>.

The Payee delete request does not cancel payments that are pending at the time of the payee’s dele
References to pending payments subsequent to a payee’s deletion pose issues regarding <PAYEEL
assignment at both the client and server levels. Therefore, it is suggested that the client disallow pay
deletes if there are pending payments/models.

12.9.3.1 Request <PAYEEDELRQ>

The <PAYEEDELRQ> requests the deletion of a payee entry.

The <PAYEEDELRQ> request must appear within a <PAYEETRNRQ> transaction wrapper.

Tag Description

<PAYEEDELRQ> Deletion-request aggregate

<PAYEELSTID> Server-assigned record ID for this payee record,A-12

</PAYEEDELRQ>
OFX 2.0 Specification 3316/30/00

equest
12.9.3.2 Response <PAYEEDELRS>

The server sends the Payee Deletion Response <PAYEEDELRS> in response to a Payee Deletion R
<PAYEEDELRQ>.

The <PAYEEDELRS> response must appear within a <PAYEETRNRS> transaction wrapper.

12.9.3.3 Status Codes

Tag Description

<PAYEEDELRS> Deletion-response aggregate

<PAYEELSTID> Server-assigned record ID for this payee record,A-12

</PAYEEDELRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded
transaction due to out-of-date
<TOKEN> (ERROR)

10519 Invalid payee list ID (ERROR)
332 12.9 Payee Lists

se in
to
nts
ist of
t the
le from
12.9.4 Payee List Synchronization

This message allows clients to obtain a list of payees stored on the server that it has configured for u
payments. In a “pay some” system, users are sometimes required to explicitly configure the payees
whom the system will make payments. This can be done by means of a telephone call to the payme
provider or through some other interface. The client can then use this message to obtain the user’s l
configured payees. In other systems, the payments provider can elect to store a list of all payees tha
user has paid. This is a convenience to the client. It allows payees set up on one client to be accessib
a user’s other clients and ensures each client has the latest version of this list.

12.9.4.1 Request <PAYEESYNCRQ>

Tag Description

<PAYEESYNCRQ> Payee-list-request aggregate

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<PAYEETRNRQ> Payee transactions (0 or more)

</PAYEETRNRQ>

</PAYEESYNCRQ>
OFX 2.0 Specification 3336/30/00

12.9.4.2 Response <PAYEESYNCRS>

Tag Description

<PAYEESYNCRS> Payee-list-request aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the
server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in the
server’s history table.Boolean

<PAYEETRNRS> Payee transactions (0 or more)

</PAYEETRNRS>

</PAYEESYNCRS>
334 12.9 Payee Lists

to the
passed,

for
orm
ing the

ccurate
s three

heduled

econd
tion.

lly. As
re
12.10 Data Synchronization for Payments

Users of OFX Payments need to be able to obtain the current status of transactions previously sent
server for processing. For example, once the user schedules a payment and the payment date has
the user might want to verify that the server made the payment as directed. Additionally, OFX allows
interactions with the server through multiple clients. This means, for example, that the user can perf
some transactions from a home PC and others from an office computer with each session incorporat
activities performed on the other.

In order to accomplish these tasks, the client uses a synchronization scheme to insure that it has an a
copy of the server data that is relevant to the client application. The intent of this scheme is to addres
scenarios in which the client might lose synchronization with the server:

� A transaction has changed its state based on processing actions on the server. For example, a sc
payment has passed its due date and has been paid or rejected.

� Transactions relevant to the client’s application state have been added, deleted, or modified by a s
client. For example, a user might enter or change transactions from more than one PC or applica

� A communications session between the client and server was interrupted or completed abnorma
a result the client does not have responses from the server indicating that all the transactions we
received and processed.

Note: Except for the <REFRESH>Y sync response, no payee information in any particular
response in a sync should have changed from that in the response when it was originally sent.
In other words, if a <PMTMODRS> caused a change to that payment’s payee address, the
original <PMTRS> in the sync should have the old address in it. The <PMTMODRS>,
appearing later in the sync, would cause the client to update the payment appropriately.
OFX 2.0 Specification 3356/30/00

12.10.1 Payment Synchronization

12.10.1.1 Request <PMTSYNCRQ>

Tag Description

<PMTSYNCRQ> Synchronization-request aggregate

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<BANKACCTFROM> Opening tag for account from aggregate, see section 11.3.1

</BANKACCTFROM>

<PMTTRNRQ> Payment transactions (0 or more)

</PMTTRNRQ>

</PMTSYNCRQ>
336 12.10 Data Synchronization for Payments

e

n

12.10.1.2 Response <PMTSYNCRS>

Tag Description

<PMTSYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in th
server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token i
the server’s history table.Boolean

<BANKACCTFROM> Opening tag for account from aggregate, see section 11.3.1

</BANKACCTFROM>

<PMTTRNRS> Payment transactions (0 or more)

</PMTTRNRS>

</PMTSYNCRS>
OFX 2.0 Specification 3376/30/00

12.10.2 Recurring Payment Synchronization

12.10.2.1 Request <RECPMTSYNCRQ>

Tag Description

<RECPMTSYNCRQ> Synchronization-request aggregate

Client synchronization
option; <TOKEN>,
<TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization request
from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<BANKACCTFROM> Opening tag for account from aggregate, see section 11.3.1

</BANKACCTFROM>

<RECPMTTRNRQ> Recurring-payment transactions (0 or more)

</RECPMTTRNRQ>

</RECPMTSYNCRQ>
338 12.10 Data Synchronization for Payments

he
12.10.2.2 Response <RECPMTSYNCRS>

Tag Description

<RECPMTSYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in the
server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a token in t
server’s history table.Boolean

<BANKACCTFROM> Opening tag for account from aggregate, see section 11.3.1

</BANKACCTFROM>

<RECPMTTRNRS> Recurring-payment transactions (0 or more)

</RECPMTTRNRS>

</RECPMTSYNCRS>
OFX 2.0 Specification 3396/30/00

r 6,
m.

red

r.

>
ted
each
ciated

ts of
ult of

hich
12.10.3 Discussion

This section describes specific synchronization processing for the OFX Payments functions. Chapte
"Data Synchronization,"provides a more extensive discussion of the OFX synchronization mechanis

The client follows the steps below to synchronize:

1. The client sends a <PMTSYNCRQ> and/or <RECPMTSYNCRQ> containing the token it has sto
from its last successful synchronization (or the special initial token value).

2. The client processes the <PMTSYNCRS> and/or <RECPMTSYNCRS> response from the serve

When the client has requested the server to add a transaction, a response that contains a <TRNUID
matching a transaction originally sent by the client—for which the client has not recorded an associa
<SRVRTID>—is the normal scenario. This scenario could also occur if the server response did not r
the client in the previous session. In either case, the client should add these server IDs to their asso
transactions at this point.

If the client previously recorded the <SRVRTID>, this response is a change in status or in the conten
the transaction. The request might have originated from this client, another client, or might be the res
server processing.

If the <TRNUID> does not match any transaction known to the client, a second client initiated this
transaction. In rarer cases the response might be a transaction initially requested by this client, for w
the client has lost its record; for example, the client has reverted to a backup.
340 12.10 Data Synchronization for Payments

ifiers

actions
e
d

ancial
nt

of
set of
of the
The diagram below describes the processing and interpretation of <SRVRTID> and <TRNUID> ident
by the client:

After receiving the synchronization responses from the server, the client scans its database of trans
to verify that they have all been assigned a <SRVRTID>. Any transactions missing this identifier wer
never received by the server and should be resent (using the originally assigned <TRNUID> to avoi
duplicate requests). Additionally, the client should record the <TOKEN> received in the response.

12.11 Message Sets and Profile

OFX separates messages that the client and server send into groups called message sets. Each fin
institution defines the message sets that a particular institution will support. Currently, all the payme
messages described in this chapter fall into a single message set.

The message set contains options and attributes that allow a financial institution to customize its use
OFX. The options and attributes are defined in the profile as part of the message set definition. Each
options and attributes appears within an aggregate that is specific to a message set. Specifically, all
options and attributes that pertain to payments are contained within <BILLPAYMSGSETV1>.

The response is a modification or change in status.

Does the <SRVRTID> in
this response match one
already recorded by the
client?

Client applies all updated
information to its copy of
the matching transaction.

The client should record the
associated <SRVRTID>, if
response status=SUCCESS

This is a response to a
request initiated by this
client.

The response is a new transaction created by another client.

Was the <TRNUID>
returned in the response
created by this client?

Yes

Yes

No

No
Client adds the transaction
to its local list of
transactions.

The response is to an add request from this client.
OFX 2.0 Specification 3416/30/00

s and
12.11.1 Bill Pay Message Sets and Messages

12.11.1.1 Bill Pay Message Set Request Messages

Clients should not send an empty <BILLPAYMSGSRQV1> (although allowed by the DTD, such a
message is meaningless). Although the DTD imposes a certain transaction order (payee transaction
sync requests go first), the transactions in <BILLPAYMSGSRQV1> may be executed in any order.

Message Set Messages

<BILLPAYMSGSET>

<BILLPAYMSGSETV1>

<BILLPAYMSGSRQV1> PMTTRNRQ

PMTRQ

PMTMODRQ

PMTCANCRQ

RECPMTTRNRQ

RECPMTRQ

RECPMTMODRQ

RECPMTCANCRQ

PAYEETRNRQ

PAYEERQ

PAYEEMODRQ

PAYEEDELRQ

PMTINQTRNRQ

PMTINQRQ

PMTMAILTRNRQ

PMTMAILRQ

PMTSYNCRQ

RECPMTSYNCRQ

PAYEESYNCRQ

PMTMAILSYNCRQ

</BILLPAYMSGSRQV1>

</BILLPAYMSGSETV1>

</BILLPAYMSGSET>
342 12.11 Message Sets and Profile

12.11.1.2 Bill Pay Message Set Response Messages

Message Set Messages

<BILLPAYMSGSET>

<BILLPAYMSGSETV1>

<BILLPAYMSGSRSV1> PMTTRNRS

PMTRS

PMTMODRS

PMTCANCRS

RECPMTTRNRS

RECPMTRS

RECPMTMODRS

RECPMTCANCRS

PAYEETRNRS

PAYEERS

PAYEEMODRS

PAYEEDELRS

PMTINQTRNRS

PMTINQRS

PMTMAILTRNRS

PMTMAILRS

PMTSYNCRS

RECPMTSYNCRS

PAYEESYNCRS

PMTMAILSYNCRS

</BILLPAYMSGSRSV1>

</BILLPAYMSGSETV1>

</BILLPAYMSGSET>
OFX 2.0 Specification 3436/30/00

12.11.2 Bill Pay Message Set Profile <BILLPAYMSGSET>

Tag Description

<BILLPAYMSGSET>

<BILLPAYMSGSETV1> Version 1 of bill pay message set

<MSGSETCORE>

</MSGSETCORE>

<DAYSWITH> Offset to withdrawal date, such that (DTDUE – DAYSTOPAY) +
(DAYSWITH) determines the date on which the funds are withdrawn
from the user’s account.N-3

Note: If <DAYSWITH>-1 is specified, then the withdrawal date is the
same as the payment date (<DTDUE>).

<DFLTDAYSTOPAY> Default number of days to pay by check (except by transfer),N-3

Can be overridden for each payee, by <DAYSTOPAY> in the
<EXTDPAYEE> aggregate, see section 12.5.2.3

<XFERDAYSWITH> Number of days before processing date that funds are withdrawn for
payment by transfer,N-3

<XFERDFLTDAYSTOPAY> Default number of days to pay by transfer,N-3

Can be overridden for each payee, by <DAYSTOPAY> in the
<EXTDPAYEE> aggregate, see section 12.5.2.3

<PROCDAYSOFF> Days of week that no processing occurs; 0 or more of (MONDAY,
TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY,
SUNDAY). <PROCDAYSOFF> indicate days to exclude when
calculating dates that utilize other bill payment bits, such as
<DAYSWITH> and <DFLTDAYSTOPAY> values.

<PROCENDTM> Time of day that day’s processing ends,time

<MODELWND> Model window; the number of days before a recurring transaction is
scheduled to be processed that it is instantiated on the system;
<MODELWND>0 indicates that the server will always maintain a single
spawned payment for each model,N-3

<POSTPROCWND> Number of days after a transaction is processed that it is accessible for
status inquiries,N-3

<STSVIAMODS> If Y, server supports communication of server-initiated payment status
changes by means of the PMTMODRS message

<PMTBYADDR> The payment provider supports payments to payees identified by billing
address, that is, the PAYEE aggregate,Boolean

<PMTBYXFER> The payment provider supports payments to payees identified by
destination account,Boolean
344 12.11 Message Sets and Profile

-
<PMTBYPAYEEID> The payment provider supports payments to payees identified by a user
supplied payee ID,Boolean

<CANADDPAYEE> User can add payees. if no, the user is restricted to payees added to the
user’s payee list by the payment system,Boolean

<HASEXTDPMT> Supports the EXTDPMT business payment aggregate,Boolean

<CANMODPMTS> Permits modifications to payments, that is PMTMODRQ,Boolean

<CANMODMDLS> Permits modifications to models, that is REQPMTMODRQ,Boolean

<DIFFFIRSTPMT> Support for specifying a different amount for the first payment generated
by a model,Boolean

</BILLPAYMSGSETV1>

</BILLPAYMSGSET>

Tag Description
OFX 2.0 Specification 3456/30/00

ing
12.12 Examples

12.12.1 Scheduling a Payment

Create a payment to “J.C. Counts” for $123.45 to be paid on October 1,1999 using funds in a check
account:

<!-- payment example 1 -->

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<PMTTRNRQ>

<TRNUID>1001</TRNUID>

<PMTRQ>

<PMTINFO>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>123.45</TRNAMT>

<PAYEE>

<NAME>J. C. Counts</NAME>

<ADDR1>100 Main St.</ADDR1>

<CITY>Turlock</CITY>

<STATE>CA</STATE>

<POSTALCODE>90101</POSTALCODE>

<PHONE>415.987.6543</PHONE>

</PAYEE>

<PAYACCT>10101</PAYACCT>

<DTDUE>19991001</DTDUE>

<MEMO>payment #3</MEMO>

</PMTINFO>

</PMTRQ>

</PMTTRNRQ>

</BILLPAYMSGSRQV1>

</OFX>
346 12.12 Examples

ee is a
The server responds, indicating that it will make the payment on the date requested and that the pay
standard payee:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<PMTTRNRS>

<TRNUID>1001</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PMTRS>

<SRVRTID>1030155</SRVRTID>

<PAYEELSTID>123214<PAYEELSTID>

<CURDEF>USD</CURDEF>

<PMTINFO>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>123.45</TRNAMT>

<PAYEE>

<NAME>J. C. Counts</NAME>

<ADDR1>100 Main St.</ADDR1>

<CITY>Turlock</CITY>

<STATE>CA</STATE>

<POSTALCODE>90101</POSTALCODE>

<PHONE>415.987.6543</PHONE>

</PAYEE>

<PAYEELSTID>123214</PAYEELSTID>

<PAYACCT>10101</PAYACCT>

<DTDUE>19991001</DTDUE>

<MEMO>payment #3</MEMO>

</PMTINFO>

<EXTDPAYEE>

<PAYEEID>9076</PAYEEID>
OFX 2.0 Specification 3476/30/00

<IDSCOPE>USER</IDSCOPE>

<NAME>J. C. Counts</NAME>

<DAYSTOPAY>3</DAYSTOPAY>

</EXTDPAYEE>

<PMTPRCSTS>

<PMTPRCCODE>WILLPROCESSON</PMTPRCCODE>

<DTPMTPRC>19991001</DTPMTPRC>

</PMTPRCSTS>

</PMTRS>

</PMTTRNRS>

</BILLPAYMSGSRSV1>

</OFX>

Create a second payment to the payee, using the payee ID returned in the previous example:

<!-- payment example 2 -->

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<PMTTRNRQ>

<TRNUID>1002</TRNUID>

<PMTRQ>

<PMTINFO>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>123.45</TRNAMT>

<PAYEEID>9076</PAYEEID>

<PAYEELSTID>123214</PAYEELSTID>

<PAYACCT>10101</PAYACCT>

<DTDUE>19991101</DTDUE>

<MEMO>Payment #4</MEMO>

</PMTINFO>

</PMTRQ>

</PMTTRNRQ>
348 12.12 Examples

</BILLPAYMSGSRQV1>

</OFX>

The server responds, indicating that it will make the payment on the date requested:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<PMTTRNRS>

<TRNUID>1002</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PMTRS>

<SRVRTID>1068405<SRVRTID>

<PAYEELSTID>123214</PAYEELSTID>

<CURDEF>USD</CURDEF>

<PMTINFO>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>123.45</TRNAMT>

<PAYEEID>9076</PAYEEID>

<PAYEELSTID>123214</PAYEELSTID>

<PAYACCT>10101</PAYACCT>

<DTDUE>19991101</DTDUE>

<MEMO>payment #4</MEMO>

</PMTINFO>

<EXTDPAYEE>

<PAYEEID>9076</PAYEEID>

<IDSCOPE>USER</IDSCOPE>

<NAME>J. C. Counts</NAME>

<DAYSTOPAY>3</DAYSTOPAY>

</EXTDPAYEE>

<PMTPRCSTS>
OFX 2.0 Specification 3496/30/00

<PMTPRCCODE>WILLPROCESSON</PMTPRCCODE>

<DTPMTPRC>19991101</DTPMTPRC>

</PMTPRCSTS>

</PMTRS>

</PMTTRNRS>

</BILLPAYMSGSRSV1>

</OFX>

12.12.2 Modifying a Payment

Change the amount of the first payment to $125.99

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<PMTTRNRQ>

<TRNUID>1021</TRNUID>

<PMTMODRQ>

<SRVRTID>1030155</SRVRTID>

<PMTINFO>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>125.99</TRNAMT><!-- changed amount -->

<PAYEE>

<NAME>J. C. Counts</NAME>

<ADDR1>100 Main St.</ADDR1>

<CITY>Turlock</CITY>

<STATE>CA</STATE>

<POSTALCODE>90101</POSTALCODE>

<PHONE>415.987.6543</PHONE>

</PAYEE>

<PAYEELSTID>123214</PAYEELSTID>

<PAYACCT>10101</PAYACCT>

<DTDUE>19991001</DTDUE>
350 12.12 Examples

<MEMO>payment #3</MEMO>

</PMTINFO>

</PMTMODRQ>

</PMTTRNRQ>

</BILLPAYMSGSRQV1>

</OFX>

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<PMTTRNRS>

<TRNUID>1021</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PMTMODRS>

<SRVRTID>1030155</SRVRTID>

<PMTINFO>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>125.99</TRNAMT><!-- changed amount -->

<PAYEE>

<NAME>J. C. Counts</NAME>

<ADDR1>100 Main St.</ADDR1>

<CITY>Turlock</CITY>

<STATE>CA</STATE>

<POSTALCODE>90101</POSTALCODE>

<PHONE>415.987.6543</PHONE>

</PAYEE>

<PAYEELSTID>123214</PAYEELSTID>

<PAYACCT>10101</PAYACCT>

<DTDUE>19991001</DTDUE>
OFX 2.0 Specification 3516/30/00

<MEMO>payment #3</MEMO>

</PMTINFO>

</PMTMODRS>

</PMTTRNRS>

</BILLPAYMSGSRSV1>

</OFX>

Change the date of the same payment to December 12, 1999.

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<PMTTRNRQ>

<TRNUID>32456</TRNUID>

<PMTMODRQ>

<SRVRTID>1030155</SRVRTID>

<PMTINFO>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>125.99</TRNAMT>

<PAYEE>

<NAME>J. C. Counts</NAME>

<ADDR1>100 Main St.</ADDR1>

<CITY>Turlock</CITY>

<STATE>CA</STATE>

<POSTALCODE>90101</POSTALCODE>

<PHONE>415.987.6543</PHONE>

</PAYEE>

<PAYEELSTID>123214</PAYEELSTID>

<PAYACCT>10101</PAYACCT>

<DTDUE>19991212</DTDUE><!-- changed date -->

<MEMO>payment #3</MEMO>

</PMTINFO>

</PMTMODRQ>

</PMTTRNRQ>
352 12.12 Examples

</BILLPAYMSGSRQV1>

</OFX>

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<PMTTRNRS>

<TRNUID>32456</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</INFO>

</STATUS>

<PMTMODRS>

<SRVRTID>1030155</SRVRTID>

<PMTINFO>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>125.99</TRNAMT>

<PAYEE>

<NAME>J. C. Counts</NAME>

<ADDR1>100 Main St.</ADDR1>

<CITY>Turlock</CITY>

<STATE>CA</STATE>

<POSTALCODE>90101</POSTALCODE>

<PHONE>415.987.6543</PHONE>

</PAYEE>

<PAYEELSTID>123214</PAYEELSTID>

<PAYACCT>10101</PAYACCT>

<DTDUE>19991212</DTDUE><!-- changed date -->

<MEMO>payment #3</MEMO>

</PMTINFO>

</PMTMODRS>

</PMTTRNRS>
OFX 2.0 Specification 3536/30/00

</BILLPAYMSGSRSV1>

</OFX>

12.12.3 Canceling a Payment

Cancel a payment:

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<PMTTRNRQ>

<TRNUID>54601</TRNUID>

<PMTCANCRQ>

<SRVRTID>1030155</SRVRTID>

</PMTCANCRQ>

</PMTTRNRQ>

</BILLPAYMSGSRQV1>

</OFX>

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<PMTTRNRS>

<TRNUID>54601</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PMTCANCRS>

<SRVRTID>1030155</SRVRTID>

</PMTCANCRS>

</PMTTRNRS>
354 12.12 Examples

</BILLPAYMSGSRSV1>

</OFX>

12.12.4 Updating Payment Status

Update payment status:

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<PMTINQTRNRQ>

<TRNUID>7865</TRNUID>

<PMTINQRQ>

<SRVRTID>565321</SRVRTID>

</PMTINQRQ>

</PMTINQTRNRQ>

</BILLPAYMSGSRQV1>

</OFX>

The server responds with updated status and check number:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<PMTINQTRNRS>

<TRNUID>7865</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PMTINQRS>

<SRVRTID>565321</SRVRTID>

<PMTPRCSTS>

<PMTPRCCODE>PROCESSEDON</PMTPRCCODE>
OFX 2.0 Specification 3556/30/00

e. The
<DTPMTPRC>19990201</DTPMTPRC>

</PMTPRCSTS>

<CHECKNUM>6017</CHECKNUM>

</PMTINQRS>

</PMTINQTRNRS>

</BILLPAYMSGSRSV1>

</OFX>

12.12.5 Scheduling a Recurring Payment

Create a recurring payment of 36 monthly payments of $395 to a (previously known) standard paye
first payment will be on November 15, 1999:

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<RECPMTTRNRQ>

<TRNUID>12354</TRNUID>

<RECPMTRQ>

<RECURRINST>

<NINSTS>36</NINSTS/

<FREQ>MONTHLY</FREQ>

</RECURRINST>

<PMTINFO>

<BANKACCTFROM>

<BANKID>555432180</BANKID>

<ACCTID>763984</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>395.00</TRNAMT>

<PAYEEID>77810</PAYEEID>

<PAYEELSTID>27983</PAYEELSTID>

<PAYACCT>444-78-97572</PAYACCT>

<DTDUE>19991115</DTDUE>

<MEMO>Auto loan payment</MEMO>

</PMTINFO>

</RECPMTRQ>

</RECPMTTRNRQ>
356 12.12 Examples

</BILLPAYMSGSRQV1>

</OFX>

The server responds with the assigned server transaction ID:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<RECPMTTRNRS>

<TRNUID>12345</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</INFO>

</STATUS>

<RECPMTRS>

<RECSRVRTID>387687138</RECSRVRTID>

<PAYEELSTID>27983</PAYEELSTID>

<CURDEF>USD</CURDEF>

<RECURRINST>

<NINSTS>36</NINSTS>

<FREQ>MONTHLY</FREQ>

</RECURRINST>

<PMTINFO>

<BANKACCTFROM>

<BANKID>555432180</BANKID>

<ACCTID>763984</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>395.00</TRNAMT>

<PAYEEID>77810</PAYEEID>

<PAYEELSTID>27983</PAYEELSTID>

<PAYACCT>444-78-97572</PAYACCT>

<DTDUE>19991115</DTDUE>

<MEMO>Auto loan payment

</PMTINFO>

<EXTDPAYEE>

<PAYEEID>77810</PAYEEID>

<IDSCOPE>USER</IDSCOPE>
OFX 2.0 Specification 3576/30/00

<NAME>Mel’s Used Cars</NAME>

<DAYSTOPAY>3</DAYSTOPAY>

</EXTDPAYEE>

</RECPMTRS>

</RECPMTTRNRS>

</BILLPAYMSGSRSV1>

</OFX>

12.12.6 Modifying a Recurring Payment

Change the amount of a recurring payment:

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<RECPMTTRNRQ>

<TRNUID>98765</TRNUID>

<RECPMTMODRQ>

<RECSRVRTID>387687138</RECSRVRTID>

<RECURRINST>

<NINSTS>36</NINSTS>

<FREQ>MONTHLY</FREQ>

</RECURRINST>

<PMTINFO>

<BANKACCTFROM>

<BANKID>555432180</BANKID>

<ACCTID>763984</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>399.95</TRNAMT><!-- changing amount -->

<PAYEEID>77810</PAYEEID>

<PAYEELSTID>27983</PAYEELSTID>

<PAYACCT>444-78-97572</PAYACCT>

<DTDUE>19991115</DTDUE>

<MEMO>Auto loan payment</MEMO>

</PMTINFO>

<MODPENDING>N</MODPENDING>

</RECPMTMODRQ>
358 12.12 Examples

</RECPMTTRNRQ>

</BILLPAYMSGSRQV1>

</OFX>

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<RECPMTTRNRS>

<TRNUID>98765</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<RECPMTMODRS>

<RECSRVRTID>387687138</RECSRVRTID>

<RECURRINST>

<NINSTS>36</NINSTS>

<FREQ>MONTHLY</FREQ>

</RECURRINST>

<PMTINFO>

<BANKACCTFROM>

<BANKID>555432180</BANKID>

<ACCTID>763984</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>399.95</TRNAMT><!-- changing amount -->

<PAYEEID>77810</PAYEEID>

<PAYEELSTID>27983</PAYEELSTID>

<PAYACCT>444-78-97572</PAYACCT>

<DTDUE>19991115</DTDUE>

<MEMO>Auto loan payment</MEMO>

</PMTINFO>

<MODPENDING>N</MODPENDING>

</RECPMTMODRS>
OFX 2.0 Specification 3596/30/00

</RECPMTTRNRS>

</BILLPAYMSGSRSV1>

</OFX>

12.12.7 Canceling a Recurring Payment

Cancel a recurring payment:

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<RECPMTTRNRQ>

<TRNUID>11122</TRNUID>

<RECPMTCANCRQ>

<RECSRVRTID>387687138</RECSRVRTID>

<CANPENDING>Y</CANPENDING>

</RECPMTCANCRQ>

</RECPMTTRNRQ>

</BILLPAYMSGSRQV1>

</OFX>

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<RECPMTTRNRS>

<TRNUID>11122</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<RECPMTCANCRS>

<RECSRVRTID>387687138</RECSRVRTID>
360 12.12 Examples

<CANPENDING>Y</CANPENDING>

</RECPMTCANCRS>

</RECPMTTRNRS>

</BILLPAYMSGSRSV1>

</OFX>

12.12.8 Adding a Payee to the Payee List

The user sends a request to add a payee to the user’s payee list:

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<PAYEETRNRQ>

<TRNUID>127677</TRNUID>

<PAYEERQ>

<PAYEE>

<NAME>ACME Rocket Works</NAME>

<ADDR1>101 Spring St.</ADDR1>

<ADDR2>Suite 503</ADDR2>

<CITY>Watkins Glen</CITY>

<STATE>NY</STATE>

<POSTALCODE>12345-6789</POSTALCODE>

<PHONE>888.555.1212</PHONE>

</PAYEE>

<PAYACCT>1001-99-8876</PAYACCT>

</PAYEERQ>

</PAYEETRNRQ>

</BILLPAYMSGSRQV1>

</OFX>
OFX 2.0 Specification 3616/30/00

The server responds:

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<PAYEETRNRS>

<TRNUID>127677</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PAYEERS>

<PAYEELSTID>78096786</PAYEELSTID>

<PAYEE>

<NAME>ACME Rocket Works</NAME>

<ADDR1>101 Spring St.</ADDR1>

<ADDR2>Suite 503</ADDR2>

<CITY>Watkins Glen</CITY>

<STATE>NY</STATE>

<POSTALCODE>12345-6789</POSTALCODE>

<PHONE>888.555.1212</PHONE>

</PAYEE>

<EXTDPAYEE>

<PAYEEID>88878</PAYEEID>

<IDSCOPE>GLOBAL</IDSCOPE>

<NAME>ACME Rocket Works, Inc.</NAME>

<DAYSTOPAY>2</DAYSTOPAY>

</EXTDPAYEE>

<PAYACCT>1001-99-8876</PAYACCT>

</PAYEERS>

</PAYEETRNRS>

</BILLPAYMSGSRSV1>

</OFX>
362 12.12 Examples

ponds
KEN>
12.12.9 Synchronizing Scheduled Payments

A client wishes to obtain all Payments active on the server for a particular account:

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<BILLPAYMSGSRQV1>

<PMTSYNCRQ>

<REFRESH>Y</REFRESH>

<REJECTIFMISSING>N</REJECTIFMISSING>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

</PMTSYNCRQ>

</BILLPAYMSGSRQV1>

</OFX>

Assuming the only activity on this account has been the two payments created above, the server res
with one payment since the other payment was cancelled. The server also includes the current <TO
value.

Note: If the one outstanding payment had a modification to it, the modification should have
been integrated into the one <PMTRS> since this is a refresh, not a sync of all history. In that
case, <TRNUID>0 must be returned in the response transaction (no client initiated an exact
matching transaction).

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<BILLPAYMSGSRSV1>

<PMTSYNCRS>

<TOKEN>3247989384</TOKEN>

<BANKACCTFROM>

<BANKID>123432123</BANKID>
OFX 2.0 Specification 3636/30/00

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<PMTTRNRS>

<TRNUID>0</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PMTRS>

<SRVRTID>1068405</SRVRTID>

<PAYEELSTID>123214</PAYEELSTID>

<CURDEF>USD</CURDEF>

<PMTINFO>

<BANKACCTFROM>

<BANKID>123432123</BANKID>

<ACCTID>516273</ACCTID>

<ACCTTYPE>CHECKING</ACCTTYPE>

</BANKACCTFROM>

<TRNAMT>123.45</TRNAMT>

<PAYEEID>9076</PAYEEID>

<PAYEELSTID>123214</PAYEELSTID>

<PAYACCT>10101</PAYACCT>

<DTDUE>19991001</DTDUE>

<MEMO>payment #4</MEMO>

</PMTINFO>

<EXTDPAYEE>

<PAYEEID>9076</PAYEEID>

<IDSCOPE>USER</IDSCOPE>

<NAME>J. C. Counts</NAME>

<DAYSTOPAY>3</DAYSTOPAY>

</EXTDPAYEE>

<PMTPRCSTS>

<PMTPRCCODE>WILLPROCESSON</PMTPRCCODE>

<DTPMTPRC>19991001</DTPMTPRC>

</PMTPRCSTS>

</PMTRS>

</PMTTRNRS>

</PMTSYNCRS>

</BILLPAYMSGSRSV1>

</OFX>
364 12.12 Examples

g

CHAPTER 13 INVESTMENTS

OFX supports download of security information and detailed investment account statements includin
transactions, open orders, balances, and positions.

Note: This release of OFX does not support trading or tax lots.

Client Sends Server Responds

Account identifier

Whether to download open orders

Whether to download transactions

Date range if transactions should be
downloaded

Whether to download positions

Whether to download balances

Additional securities to send information
about

Date and time for statement

Default currency for statement

Account identifier

Investment transactions

Banking transactions

Open orders

Positions

Account balances

Available Cash Balance

Short Balance

Margin Balance

Buying power

Marketing message

List of securities
OFX 2.0 Specification 3656/30/00

il

te set of
lar

ng

FIs
,

ffer for

nit type

d

it
13.1 Types of Response Information

The response consists of five types of information:

� Transactions – a combination of bank transaction detail records and investment transaction deta
records. Transactions only within the specified start and stop dates are sent.

� Positions – positions a user has at a brokerage. Each statement response must contain a comple
position records, even if no transactions occurred in the requested statement period for a particu
holding.

� Balances – current balances typically reported on an FI statement, such as cash balance or buyi
power. They can also convey other numbers of interest, such as current interest rates.

� Open Orders – current open trading orders that a user has at a brokerage.

� Securities – any security referenced in either transactions, positions, open orders or explicitly
requested.

13.2 Sub-Accounts

Many FIs distinguish between activity and positions in cash, margin, and short accounts, with some
having many other types of “sub-accounts.” OFX defines four standard types of sub-accounts: Cash
Margin, Short, Other. Position, Transaction, and Open Order records identify the sub-account.

13.3 Units, Precision, and Signs

This section provides information about numerical values for investment transactions. For more
information about common data types used within OFX, refer to Chapter 3, "Common Aggregates,
Elements, and Data Types."

13.3.1 Units

The units for security units and unit price are those commonly used on brokerage statements, and di
each type of security.

� Stocks and Other – use number of shares for units and dollar value for unit price.

� Mutual Funds – in most cases shares are used, but in some cases the dollar value is used. The u
is specified in cases in which it can be either.

� Bonds – use face value for units and percentage of par for unit price. For example, a $25,000 bon
trading at $88 would use 25000 as the units and 88 as the unit price.

� Options – use number of contracts (not shares) for units, and price per share (not contract) for un
price.
366 13.1 Types of Response Information

e
tock

s,

d

a
ed
13.3.2 Precision

OFX does not specify the precision of fields since the precision is client-dependent. However, it is
recommended that clients and servers follow these rules:

� Clients and servers should send as much precision as they have

� Clients and servers should use a precision equal to or better than 1/256 of a share

13.3.3 Signs

Chapter 3, "Common Aggregates, Elements, and Data Types,"describes how to use positive and negativ
numbers. Briefly, quantities and total values should be signed from the perspective of the user. In a s
buy, the total value is negative, the unit price is always positive, and the number of units is positive.

UNITS and TOTALS are signed from the perspective of the user (positive currency amount for SELL
negative currency amount for BUYs). All other Investment transaction amounts are always positively
signed. In other words UNITPRICE, COMMISSION, FEES, TAXES, PENALTY, WITHHOLDING,
STATEWITHHOLDING, LOAD, MARKUP and MARKDOWN are always positive numbers.

A positive COMMISSION, TAXES, LOAD, PENALTY, WITHHOLDING, STATEWITHHOLDING or
FEES increases the negatively signed TOTAL on a BUYSTOCK and decreases the positively signe
TOTAL on a SELLSTOCK.

MARKUP and MARKDOWN increase or decrease, respectively, the UNITPRICE.

Servers should return corrections to investment buys or sells as the opposite transaction type, e.g.,
correction to a buy is returned as a sell. A correction to MARGININTEREST or RETOFCAP is return
as an INVEXPENSE.
OFX 2.0 Specification 3676/30/00

l
ad

se the

nted
e also

nce
ous,
k

deled

the
t bank
13.4 Bank and Investment Transactions

Many FIs provide investment accounts that allow users to write checks and perform other traditiona
banking transactions, as well as investment transactions. OFX requires FIs to indicate in the downlo
whether check-writing privileges exist for a given account.

FIs need to use the correct transaction record, bank or investment, for each real-world transaction. U
following guidelines:

� Checks, electronic funds transfers, and ATM transactions associated with CMA or money market
sweep accounts are always represented with a bank transaction record.

� Investment actions that involve securities (buy, sell, stock split, reinvest, etc.) are always represe
with an investment record. Actions that are cash-only but are directly associated with a security ar
investment actions (for example, dividends).

� Other cash-only actions require careful analysis by the FI. Those that affect investment performa
analysis should be sent using the appropriate investment action (investment income - miscellane
investment expense). Those that are completely unrelated to investment should be sent as a ban
record.

13.5 Money Market Funds

Money market funds can be handled in one of three different ways depending on how the fund is mo
at the financial institution

� Separate account at the financial institution

� Sweep account within an investment account

� Position within an investment account

13.5.1 Separate Account at the Financial Institution

In this case, the money market fund is in its own account with its own account number, distinct from
investment account. In OFX, you should model the money market fund as a separate money marke
account; see Chapter 11, "Banking."The banking <STMTRQ> request aggregate and <STMTRS>
response aggregate will be used to download transactions.
368 13.4 Bank and Investment Transactions

nd
s the

in the
ot be

market
a

.

t-
13.5.2 Sweep Account Within an Investment Account

OFX uses the money market as a “sweep” account, where cash is “swept” as needed when buying a
selling securities. The money market fund does not have its own account number. The customer see
money market fund as an investment-account cash balance. In OFX, checks, ATMs, electronic fund
transfer, deposit, and withdrawal transactions should be downloaded using banking transactions with
investment account. However, the sweep transactions in and out of the money market fund should n
downloaded to the client.

13.5.3 Position Within an Investment Account

The customer purchases the money market fund and is held in the account as a position. The money
fund does not have its own account number. In OFX, the money market fund should be returned as
<POSOTHER> position in the <INVPOSLIST>, with a <UNITPRICE> of 1.00 and <UNITS> as the
current value of the position. Purchases and redemptions should be modeled as <BUYOTHER> and
<SELLOTHER> transactions with a <UNITPRICE> of 1.00 and <UNITS> as the transaction amount

13.6 Investment Accounts

Investment account information is downloaded using the account information response aggregate
<ACCTINFORS>. For more information, refer to Chapter 8, "Activation & Account Information."
<INVACCTFROM> specifies the account. The <INVACCTINFO> aggregate specifies the investmen
specific information.

13.6.1 Specifying the Investment Account <INVACCTFROM>

Brokers should use the domain name of their company’s URL as the BROKERID, e.g.,

If URL=www.broker.com

then BROKERID=broker.com

The <INVACCTTO> aggregate contains the same elements.

Tag Description

<INVACCTFROM> Account-from aggregate

<BROKERID> Unique identifier for the FI,A-22

<ACCTID> Account number at FI,A-22

</INVACCTFROM>
OFX 2.0 Specification 3696/30/00

pport

2
ssage
13.6.2 Investment Account Information <INVACCTINFO>

The <INVACCTINFO> aggregate should appear in the <ACCTINFO> aggregate for accounts that su
investment statement download. For more information about the <ACCTINFO> aggregate, refer to
Chapter 8, "Activation & Account Information."

If an investment account has payments functionality, the analogous PMTINFO aggregate (see 12.5.)
should also be sent in the ACCTINFO for the account. Payment information will be sent using the me
sets described in the 12.5.2 , "Payment Information <PMTINFO>."

Tag Description

<INVACCTINFO> Investment-account-information-record aggregate

<INVACCTFROM> Account at FI, see 13.6.1

</INVACCTFROM>

<USPRODUCTTYPE> Classification of account. See section 13.6.2.1for values

<CHECKING> Whether the account has check writing privileges,Boolean

<SVCSTATUS> Activation status for investment statement download for the account.
ACTIVE (signed up), PEND (in the process of signing up), AVAIL
(have not signed up).

<INVACCTTYPE> Type of account. INDIVIDUAL, JOINT, TRUST, CORPORATE

<OPTIONLEVEL> Text description of option trading privileges,A-40

</INVACCTINFO>
370 13.6 Investment Accounts

nded

r
e

n be
The
nt.
13.6.2.1 Values for <USPRODUCTTYPE>

<USPRODUCTTYPE> classifies accounts according to their account type. Valid values are:

Note: Server should return 401K as the value for <USPRODUCTTYPE> in the
<INVACCTINFO> aggregate for 401(k) accounts.

13.6.2.2 International Note

The <USPRODUCTTYPE> element is intended for use by FIs in the United States. OFX will be expa
to provide equivalent elements to support the needs for other countries.

13.6.3 Brokerage, Mutual Fund, and 401K Accounts

Investment accounts include brokerage accounts, mutual fund accounts, 401(k) accounts, and othe
retirement accounts. OFX supports transactions, positions, balances, and open orders for all of thes
account types.

13.6.3.1 401(k) Accounts

401(k) accounts have the following additional characteristics:

� Funds can be provided which are to be considered “before tax” or “after tax”. In addition, funds ca
provided which are not immediately available to the user (vesting of employer contributed funds).
separate sources of funds must be tracked separately in order to properly report the user’s accou

Product Type Description

401K A 401(K) account

403B A 403(B) account

IRA An IRA account

KEOGH Keogh (Money Purchase/Profit
Sharing)

OTHER Other account type

SARSEP Salary Reduction Simplified Employer
Pension plan

SIMPLE Savings Incentive Match Plan for
employees

NORMAL Regular account

TDA Tax Deferred Annuity

TRUST Trust (including UTMA)

UGMA Custodial account
OFX 2.0 Specification 3716/30/00

urities
yments

ase
rawal

s the

ancial
pter fall

), but

of

t

� The user may, in some circumstances, borrow cash from the account, then repay it over time. Sec
are sold to raise cash for the loan to be made; securities are purchased as loans are repaid.Repa
use the same source of money from which the loan was withdrawn.

� Some servers may not report the cash transactions, e.g. deposits are immediately used to purch
securities and only the buy transactions are reported. Similarly, securities are sold to fund a withd
and only the sell transactions are reported and not the actual withdrawal transaction.

13.6.3.2 Note on Downloading Positions and Transaction Detail for Investment
Accounts

In order for clients to properly show the user the state of an investment account (especially 401(k)
accounts), it is important that position and transaction detail information be downloaded. This allow
reporting of account performance down to the level of the individual securities.

Note: For 401(k) accounts, even though OFX does not require the downloading of the
<INVPOSLIST> in the response when the <INCPOS> flag is set in the request, it is highly
recommended that servers return this information. Similarly, even though OFX does not
require the downloading of the <INVTRANLIST> in the response when the <INCTRAN> flag
is set in the request, it is highly recommended that servers return this information for 401(k)
accounts.

13.7 Investment Message Sets and Profile

OFX separates messages that the client and server send into groups called message sets. Each fin
institution defines the message sets that the institution supports. The messages described in this cha
into two message sets:

� Investment Statement Download

� Security Information

Each message set contains options that allow a financial institution to customize its use of OFX. For
example, an institution can support the Investment Statement Download Set (INVSTMTMSGSETV1
it can choose not to support the download of open orders.

The options and attributes are defined in the profile as part of each message set definition. Each set
options and attributes appears within an aggregate that is specific to a message set. For example,
<INVSTMTMSGSETV1> contains all the options and attributes that pertain to investment statemen
download.
372 13.7 Investment Message Sets and Profile

nse to

fy
13.7.1 Investment Statement Download

13.7.1.1 Investment Message Set Profile <INVSTMTMSGSET>

The investment statement message set profile aggregate <INVSTMTMSGSET> is used in the respo
a financial institution profile request (seeChapter 7, "FI Profile") to specify which activities it supports.

Tag Description

<INVSTMTMSGSET> Investment-statement-message-set-profile aggregate

<INVSTMTMSGSETV1> Version 1 message set

<MSGSETCORE> Common message set information, see Chapter 7, "FI Profile"

</MSGSETCORE>

<TRANDNLD> Whether the FI server downloads investment statement transactions,Boolean

<OODNLD> Whether the FI server downloads investment open orders,Boolean

<POSDNLD> Whether the FI server downloads investment statement positions,Boolean

<BALDNLD> Whether the FI server downloads investment balances,Boolean

<CANEMAIL> Whether the FI supports investment e-mail. Use generic e-mail profile to speci
whether generic e-mail is supported; see Chapter 9, "Customer to FI
Communication."Boolean

<INV401KDNLD> Whether the FI server downloads 401(k) account information,Boolean

</INVSTMTMSGSETV1>

</INVSTMTMSGSET>
OFX 2.0 Specification 3736/30/00

13.7.1.2 Investment Statement Message Set and Messages

13.7.1.2.1 Investment Statement Message Set Request Messages

Tag Description

<INVSTMTMSGSET>

<INVSTMTMSGSETV1>

<INVSTMTMSGSRQV1> INVSTMTTRNRQ

INVSTMTTRQ

INVMAILTRNRQ

INVMAILRQ

INVMAILSYNCRQ

</INVSTMTMSGSRQV1>

</INVSTMTMSGSETV1>

</INVSTMTMSGSET>
374 13.7 Investment Message Sets and Profile

13.7.1.2.2 Investment Statement Message Set Response Messages

Tag Description

<INVSTMTMSGSET>

<INVSTMTMSGSETV1>

<INVSTMTMSGSRSV1> INVSTMTTRNRS

INVSTMTRS

INVMAILTRNRS

INVMAILRS

INVMAILSYNCRS

</INVSTMTMSGSRSV1>

</INVSTMTMSGSETV1>

</INVSTMTMSGSET>
OFX 2.0 Specification 3756/30/00

FI
13.7.2 Security Information

13.7.2.1 Security List Message Set Profile <SECLISTMSGSET>

The security list message set profile aggregate <SECLISTMSGSET> is used in the response to an
profile request (see Chapter 7, “FI Profile”) to specify which activities it supports.

Tag Description

<SECLISTMSGSET> Security-information-message-set-profile aggregate

<SECLISTMSGSETV1> Version 1 message set

<MSGSETCORE> Common message set information, see Chapter 7, "FI Profile"

</MSGSETCORE>

<SECLISTRQDNLD> Whether the FI server responds to security list requests,Boolean

</SECLISTMSGSETV1>

</SECLISTMSGSET>
376 13.7 Investment Message Sets and Profile

13.7.2.2 Security List Message Set and Messages

13.7.2.2.1 Security List Message Set Request Messages

Tag Description

<SECLISTMSGSET>

<SECLISTMSGSETV1>

<SECLISTMSGSRQ> SECLISTTRNRQ

SECLISTRQ

</SECLISTMSGSRQV1>

</SECLISTMSGSETV1>

</SECLISTMSGSET>
OFX 2.0 Specification 3776/30/00

13.7.2.2.2 Security List Message Set Response Messages

Note: The <SECLISTMSGSRS> aggregate may appear in a response file when no
corresponding <SECLISTMSGSRQ> aggregate appears in the request file. Servers should add
the message set response wrapper only when downloading a statement and providing the
<SECLIST>.

Tag Description

<SECLISTMSGSET>

<SECLISTMSGSETV1>

<SECLISTMSGSRSV1> SECLISTTRNRS

SECLISTRS

SECLIST

</SECLISTMSGSRSV1>

</SECLISTMSGSETV1>

</SECLISTMSGSET>
378 13.7 Investment Message Sets and Profile

e nor

d

suer

tifier
rity

pecific
he
13.8 Investment Securities

13.8.1 Security Identification <SECID>

Securities must be consistently identified to allow client applications to prepare accurate investment
reports across all user investment accounts, even at multiple FIs. At this time, neither a security nam
its symbol is standardized. Therefore, OFX uses CUSIP numbers (a unique 9-digit alphanumeric
identifier) to identify securities. CUSIP numbers are available for the vast majority of securities trade
today, including those without symbols such as bonds. For a security that does not have a CUSIP, a
financial institution must follow the standard procedure of assigning a CUSIP by using itself as the is
to avoid conflict with any other CUSIP.

13.8.1.1 International Note

Non-US financial institutions that do not have access to CUSIP numbers must supply a unique iden
for each security in the UNIQUEID field of this aggregate. OFX will be expanded to include other secu
identifying standards.

13.8.2 Security List Request

The user can use the SECLISTTRNRQ and SECLISTRQ aggregates to request information about s
securities. The SECLISTTRNRQ is the transaction-level aggregate that contains the SECLISTRQ. T
SECLISTRQ aggregate specifies for which securities information is being requested.

Tag Description

<SECID> Security-identifier aggregate

<UNIQUEID> Unique identifier for the security. CUSIP for US FIs.A-32

<UNIQUEIDTYPE> Name of standard used to identify the security i.e., “CUSIP” for FIs in the United
States,A-10

</SECID>
OFX 2.0 Specification 3796/30/00

bol, or

>,
13.8.2.1 Security List Transaction Request <SECLISTTRNRQ>

13.8.2.2 Security List Request <SECLISTRQ>

For the security list request, securities must be specified with either a SECID aggregate, a ticker sym
an FI assigned identifier.

Tag Description

<SECLISTTRNRQ> Transaction-request aggregate

<TRNUID> Client-assigned globally unique ID for this transactiontrnuid

<CLTCOOKIE> Data to be echoed in the transaction response,A-32

<TAN> Transaction authorization number; used in some countries with some types of
transactions. Country-specific documentation will define messages that require a <TAN
A-80

<SECLISTRQ> Aggregate for the security list request (see section 13.8.2.2)

</SECLISTRQ>

</SECLISTTRNRQ>

Tag Description

<SECLISTRQ> Security-list-request aggregate

<SECRQ> Security request (one or more)

Security identification.
Specify either
<SECID>,
<TICKER>, or
<FIID> .

<SECID> Security identifier aggregate

</SECID>

-or-

<TICKER>

-or-

Ticker symbol,A-32

<FIID> FI specific ID for the security,A-32

</SECRQ>

</SECLISTRQ>
380 13.8 Investment Securities

nse to
ist
bed in

uest.
13.8.3 Security List Response

If the client sends a security list request to an FI, then the server must send back a security list respo
the client application. The security list response is used primarily to report the status of the security l
request. The actual security information should be sent in the security list SECLIST aggregate descri
section13.8.4.

13.8.3.1 Security List Transaction Response <SECLISTTRNRS>

13.8.3.2 Status Codes

13.8.3.3 Security List Response <SECLISTRS>

The security list response aggregate, the only empty aggregate in OFX, is used to respond to the
<SECLISTRQ>. It is used to signify that the security list is generated as a result of a security list req
The actual security information should be included in the <SECLIST> aggregate.

Tag Description

<SECLISTTRNRS> Transaction-response aggregate

<TRNUID> Client-assigned globally unique ID for this transactiontrnuid

<STATUS> Status aggregate

</STATUS>

<CLTCOOKIE> Client-provided data,REQUIRED if provided in request,A-32

<SECLISTRS> Aggregate for the security list response, see 13.8.3.3

</SECLISTRS>

</SECLISTTRNRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2019 Duplicate request (ERROR)

12500 One or more securities not found (ERROR)

Tag Description

<SECLISTRS> Security-list-response (the only empty aggregate in OFX).

</SECLISTRS>
OFX 2.0 Specification 3816/30/00

ns, or

to
once,

te.
13.8.4 Security List <SECLIST>

The SECLIST should be sent in the following two cases.

� In response to a <SECLISTRQ>.

Note: An empty <SECLISTRS> is sent in response to the <SECLISTRQ>. The <SECLIST>
aggregate is sent after the <SECLISTTRNRS> aggregate that wraps the <SECLISTRS>.

� When the response file contains an investment statement download that has positions, transactio
open orders. The <SECLIST> should contain information about each security referenced in the
investment statement download. Clients are completely dependent on the security list to provide
descriptive information for the securities referenced in positions, transactions, and open orders.

Note: The <SECLISTMSGSRSV1> aggregate may appear in a response file when no
corresponding <SECLISTMSGSRQV1> aggregate appears in the request file. Servers should
add the message set response wrapper only when downloading a statement and providing the
<SECLIST>.

13.8.5 Securities Information

The <MFINFO>, <STOCKINFO>, <OPTINFO>, <DEBTINFO>, and <OTHERINFO> aggregates
provide security information. They define the type of security, and one or more sets of descriptive
information. These aggregates relate the <SECID> used in positions, transactions, and open orders
descriptive information about those securities. In this way, the system describes a given security only
no matter how many times it is referenced.

Tag Description

<SECLIST> Security-list-request aggregate

<xxxINFO> Security information aggregates (zero or more): <DEBTINFO>, <MFINFO>,
<OPTINFO>, <OTHERINFO>, or <STOCKINFO>.

While allowed by the DTD, servers should not send an empty <SECLIST> aggrega

</xxxINFO>

</SECLIST>
382 13.8 Investment Securities

sed in
13.8.5.1 General Securities Information <SECINFO>

The <SECINFO> aggregate contains fields that are common to all security types. This aggregate is u
the security type specific aggregates in the following sections.

Tag Description

<SECINFO> Security-information aggregate

<SECID> Security-identifier aggregate

</SECID>

<SECNAME> Full name of security,A-120

<TICKER> Ticker symbol (at most one),A-32

<FIID> FI ID number for this security (at most one),A-32

<RATING> Rating,A-10

<UNITPRICE> Current price of security,unitprice

<DTASOF> Date as of for the unit price,datetime

<CURRENCY> Overriding currency aggregate for unit price, see section 5.2

</CURRENCY>

<MEMO> Memo

</SECINFO>
OFX 2.0 Specification 3836/30/00

13.8.5.2 Debt Information <DEBTINFO>

Tag Description

<DEBTINFO> Opening tag for debt information aggregate

<SECINFO> Security information aggregate

</SECINFO>

<PARVALUE> Par value,amount

<DEBTTYPE> Debt type (at most one)

COUPON = coupon

ZERO = zero coupon

<DEBTCLASS> Classification of debt. TREASURY, MUNICIPAL, CORPORATE, OTHER.

<COUPONRT> Bond coupon rate for next closest call date (at most one),rate

<DTCOUPON> Maturity date for next coupon,date

<COUPONFREQ> When coupons mature. One of the following values: MONTHLY, QUARTERLY,
SEMIANNUAL, ANNUAL, or OTHER.

<CALLPRICE> Bond call price (at most one),unitprice

<YIELDTOCALL> Yield to next call,rate

<DTCALL> Next call date (at most one),date

<CALLTYPE> Type of next call. CALL, PUT, PREFUND, MATURITY

<YIELDTOMAT> Yield to maturity,rate

<DTMAT> Debt maturity date (at most one),date

<ASSETCLASS> Asset Class (at most one), DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

<FIASSETCLASS> Text string containing an FI defined asset class,A-32

</DEBTINFO>
384 13.8 Investment Securities

e)

e)
13.8.5.3 Mutual Fund Information <MFINFO>

Tag Description

<MFINFO> Mutual-fund-information aggregate

<SECINFO> Security-information aggregate

</SECINFO>

<MFTYPE> Mutual fund type. OPENEND, CLOSEEND, OTHER

<YIELD> Current yield reported as portion of the fund’s assets (at most one),rate

<DTYIELDASOF> As-of date for yield value,datetime

<MFASSETCLASS> Asset class breakdown for the mutual fund

<PORTION> Portion of the mutual fund with a specific asset classification (one or mor

<ASSETCLASS> Asset Class, DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

<PERCENT> Percentage of the fund that falls under this asset class,rate

</PORTION>

</MFASSETCLASS>

<FIMFASSETCLASS> FI defined asset class breakdown for the mutual fund

<FIPORTION> Portion of the mutual fund with a specific asset classification (one or mor

<FIASSETCLASS> Text string containing an FI defined asset class,A-32

<PERCENT> Percentage of the fund that falls under this asset class,rate

</FIPORTION>

</FIMFASSETCLASS>

</MFINFO>
OFX 2.0 Specification 3856/30/00

13.8.5.4 Option Information <OPTINFO>

13.8.5.5 Other Security Type Information <OTHERINFO>

Use this aggregate for security types other than debts, mutual funds, options, and stocks.

Tag Description

<OPTINFO> Option-information aggregate

<SECINFO> Security-information aggregate

</SECINFO>

<OPTTYPE> Option type:

PUT = put

CALL = call

<STRIKEPRICE> Strike priceunitprice

<DTEXPIRE> Expiration date,date

<SHPERCTRCT> Shares per contract,N-5

<SECID> Security ID of the underlying security

</SECID>

<ASSETCLASS> Asset Class (at most one), DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

<FIASSETCLASS> Text string containing an FI defined asset class,A-32

</OPTINFO>

Tag Description

<OTHERINFO> Other aggregate.

<SECINFO> Security information aggregate

</SECINFO>

<TYPEDESC> Description of security type,A-32

<ASSETCLASS> Asset Class (at most one), DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

<FIASSETCLASS> Text string containing an FI defined asset class,A-32

</OTHERINFO>
386 13.8 Investment Securities

ed in

rket

rket

ies
13.8.5.6 Stock Information <STOCKINFO>

13.8.5.7 Asset Class Descriptions

Tag Description

<STOCKINFO> Stock-information aggregate

<SECINFO> Security-information aggregate

</SECINFO>

<STOCKTYPE> Stock type: COMMON, PREFERRED, CONVERTIBLE, OTHER

<YIELD> Current yield reported as the dividend expressed as a portion of the current stock
price (at most one),rate

<DTYIELDASOF> As-of date for yield value,datetime

<ASSETCLASS> Asset Class (at most one): DOMESTICBOND, INTLBOND, LARGESTOCK
SMALLSTOCK, INTLSTOCK, MONEYMRKT, OTHER

<FIASSETCLASS> Text string containing an FI defined asset class,A-32

</STOCKINFO>

Asset Class Description

DOMESTICBOND The Domestic Bonds asset class consists of government or corporate bonds issu
the United States.

INTLBOND The International Bonds asset class consists of government or corporate bonds
issued in foreign countries or the United States.

LARGESTOCK The Large Cap Stocks asset class consists of stocks for U.S. companies with ma
capitalizations of $2 billion or more.

SMALLSTOCK The Small Cap Stocks asset class consists of stocks for U.S. companies with ma
capitalizations of approximately $100 million to $2 billion.

INTLSTOCK The International Stocks asset class consists of publicly-traded stocks for compan
based in foreign countries.

MONEYMRKT The Money Market asset class consists of stable, short-term investments which
provide income that rises and falls with short-term interest rates.

OTHER The Other asset class consists of investments which do not fit in any of the other
asset classes.
OFX 2.0 Specification 3876/30/00

nd

ess of
pplied

he

quest.

n
date
for the

. The
d

13.9 Investment Statement Download

Investment statement download allows a customer to receive transactions, positions, open orders, a
balances that are typically part of a regular paper statement.

Clients usually allow customers to view investment transactions and guide customers through a proc
updating their account registers based on the downloaded transactions. By using <FITID> values su
by FIs, OFX makes it possible for clients to insure that each transaction is downloaded only once. T
request also contains starting and ending dates to limit the amount of downloaded data. Clients can
remember the last date they receive a download, and use that date as the starting date in the next re

Investment statement download requires the client to designate an account for the download, and to
indicate what type of data should be downloaded. If the client wishes to download transactions, it ca
specify a date range that the transactions fall within. The server returns transactions that match the
range, if one is specified. If a date range is not specified, the server returns all available transactions
account.

13.9.1 Investment Statement Request

Investment statement download can be requested using the INVSTMTTRNRQ and INVSTMTRQ
aggregates. The INVSTMTTRNRQ is the transaction level aggregate that contains the INVSTMTRQ
INVSTMTRQ aggregate specifies what types of information to include in the statement download an
from which account to download the information.

13.9.1.1 Investment Statement Transaction Request <INVSTMTTRNRQ>

Tag Description

<INVSTMTTRNRQ> Transaction-request aggregate

<TRNUID> Client-assigned globally unique ID for this transaction,trnuid

<CLTCOOKIE> Data to be echoed in the transaction response,A-32

<TAN> Transaction authorization number; used in some countries with some types of
transactions. Country-specific documentation will define messages that require a
<TAN>, A-80

<INVSTMTRQ> Aggregate for the investment statement download request (see section 13.9.1.2)

</INVSTMTRQ>

</INVSTMTTRNRQ>
388 13.9 Investment Statement Download

t
cause
requests

on

nt
13.9.1.2 Investment Statement Request <INVSTMTRQ>

The following table shows the Investment Statement Request record. It is similar to a bank statemen
request, except that there are extra elements to indicate which pieces the user desires. Note that be
transaction and position requests require date information, they use aggregates, whereas the other
are elemental of type Boolean.

Clients and servers should interpret <DTSTART> and <DTEND> as described in Chapter 3, "Comm
Aggregates, Elements, and Data Types."

If <DTASOF> is not included with the <INCPOS> aggregate, the server should return the most curre
position information available.

If the profile indicates that 401(k) investment information is available, the <INC401K> and
<INC401KBAL> can be used.

Tag Description and Type

<INVSTMTRQ> Investment-request aggregate

<INVACCTFROM> Account-from aggregate, see 13.6.1

</INVACCTFROM>

<INCTRAN> Include-transactions aggregate (at most one)

<DTSTART> Start date of request,datetime

<DTEND> Ending date of request (at most one),datetime

<INCLUDE> Whether to include transactions in the statement download,Boolean

</INCTRAN>

<INCOO> Include investment open orders in response,Boolean

<INCPOS> Include investment positions in response

<DTASOF> Date that positions should be sent down for,datetime

<INCLUDE> Whether to include positions in the statement download,Boolean

</INCPOS>

<INCBAL> Include investment balance in response,Boolean

<INC401K> Include 401(k) information in response,Boolean

<INC401KBAL> Include 401(k) balance information in response,Boolean

</INVSTMTRQ>
OFX 2.0 Specification 3896/30/00

s own
stment

ed
for

Y.

at
13.9.2 Investment Statement Response

13.9.2.1 Investment Statement Transaction Response <INVSTMTTRNRS>

13.9.2.2 Investment Statement Response <INVSTMTRS>

The response can contain transaction, position, open order, and/or balance detail records; each in it
aggregate. The transaction list aggregate can contain a mixture of bank statement records and inve
transactions, as specified below.

For 401(k) accounts, both the <INV401KBAL> and the <INVBAL> aggregates can be returned if ask
for specifically. In other words, for 401(k) accounts the <INV401KBAL> aggregate is returned if asked
by the client with the <INC401KBAL> flag, and the <INVBAL> aggregate is returned if <INCBAL> is

Tag Description

<INVSTMTTRNRS> Transaction-response aggregate

<TRNUID> Client-assigned globally unique ID for this transaction,trnuid

<STATUS> Status aggregate

</STATUS>

<CLTCOOKIE> Client-provided data,REQUIRED if provided in request,A-32

<INVSTMTRS> Aggregate for the investment statement download response (see section 13.9.2.2)

</INVSTMTRS>

</INVSTMTTRNRS>

Tag Description

<INVSTMTRS> Investment-response aggregate

<DTASOF> As of date & time for the statement download,datetime

<CURDEF> Default currency for the statement,currsymbol

<INVACCTFROM> Which account at FI, see 13.6.1

</INVACCTFROM>

<INVTRANLIST> Begin transaction list (at most one)

<DTSTART> Start date for transaction data,datetime

<DTEND> This is the value that should be sent in the next <DTSTART> request to insure th
no transactions are missed,datetime

(investment transaction
aggregates)

Investment statement transaction aggregates (zero or more); see section
13.9.2.4.4.
390 13.9 Investment Statement Download

tion.

,

ld
The various sections of the investment statement download are returned only if requested.

13.9.2.2.1 Note on Margin Calls

For investment statement download, margin call information should be included in the balances sec
Margin call information should be contained in a <BAL> aggregate and included in the balance list
<BALLIST>.

<INVBANKTRAN> Banking-related transactions for the investment account (zero or more)

</INVBANKTRAN> (See section 13.9.2.3)

</INVTRANLIST> End of investment transaction list

<INVPOSLIST> Beginning of investment position list

Though the DTD allows an empty <INVPOSLIST> in the response, servers
should instead leave out the optional list aggregate.

<POSxxxxx> Security type specific position aggregates (zero or more): POSMF, POSSTOCK
POSDEBT, POSOPT, POSOTHER

</POSxxxxx>

</INVPOSLIST> End of investment position list

<INVBAL> Balances aggregate, see section 13.9.2.7

</INVBAL>

<INVOOLIST> Beginning of investment open order list

Though the DTD allows an empty <INVOOLIST> in the response, servers shou
instead leave out the optional list aggregate.

<OOxxxxx> Action and security type specific open order aggregates (zero or more): see
section 13.9.2.5.2

</OOxxxxx>

</INVOOLIST> End of investment open order list

<MKTGINFO> Marketing information (at most one),A-360.

<INV401K> 401(k) information aggregate (at most one) (See section 13.9.2.8).

</INV401K> End of 401(k) information.

<INV401KBAL> 401(k) balance information aggregate (see section 13.9.2.8).

</INV401KBAL> End of 401(k) balance information.

</INVSTMTRS>

Tag Description
OFX 2.0 Specification 3916/30/00

nload.

action

can

.2
13.9.2.3 Bank Transactions <INVBANKTRAN>

Use the INVBANKTRAN aggregate to download bank transactions in an investment statement dow

13.9.2.4 Investment Transactions

Note that the following types of investment actions found on statements shouldnot be sent in OFX:

� Transaction-specific miscellaneous/fees—fees or other amounts that affect the basis of the trans
should be incorporated into the <COMMISSION>, <FEES>, <LOAD>, <PENALTY>,
<WITHHOLDING>, <STATEWITHHOLDING> or <TAXES> amounts.

� Settlement actions.

� Sweeps, unless handled as any other investment position.

For transactions that involve securities, the client can create transactions based on the formula
total = (units * (unitprice +/- markup/markdown)) +/- (commission + fees + load + taxes + penalty +
withholding + statewithholding)
(after adjusting quantity and unitprice to standard units based on the type of security.)

Thus, it is important the FIs incorporate all other transactional fees into the commission field. Clients
account for bond accrued interest and withholding using separate client transactions.

Tag Description

<INVBANKTRAN> Banking related transactions for the investment account

<STMTTRN> Bank (cash) transaction aggregates

</STMTTRN> (See Chapter 11, "Banking")

<SUBACCTFUND> The sub-account associated with the funds for the transaction; see section 13.9.2.4

</INVBANKTRAN>
392 13.9 Investment Statement Download

nced
13.9.2.4.1 General Transaction Aggregate <INVTRAN>

The INVTRAN aggregate contains fields common to many of the investment transactions. It is refere
within the transaction aggregates in the following sections.

Each <INVTRAN> contains an <FITID> that the client uses to detect whether the server previously
downloaded the transaction.

Tag Description

<INVTRAN> Investment-transaction-response aggregate

<FITID> Unique FI-assigned transaction ID.

This ID is used to detect duplicate downloads.FITID

<SRVRTID> Server assigned transaction ID,SRVRTID

<DTTRADE> Trade date; for stock splits, day of record,datetime

<DTSETTLE> Settlement date; for stock splits, execution date,datetime

<MEMO> Other information about transaction (at most one),memo

</INVTRAN>
OFX 2.0 Specification 3936/30/00

ll

e

13.9.2.4.2 Transaction Aggregate Elements

The following elements are referenced within of the following investment transaction aggregates.

Tag Description

<ACCRDINT> For debt purchases, accrued interest,amount

<AVGCOSTBASIS> Average cost basis,amount

<BUYTYPE> Type of purchase: BUY, BUYTOCOVER

<COMMISSION> Transaction commission.amount

<DENOMINATOR> For stock splits, split ratio denominator,quantity

<DTPAYROLL> For 401(k)accounts, date the funds for this transaction was obtained via payro
deduction,datetime

<DTPURCHASE> The security’s original purchase date,date

<GAIN> For sales, total gain,amount

<FEES> Fees applied to trade,amount

<FRACCASH> Cash for fractional units., (used for stock splits),amount

<INCOMETYPE> Type of investment income: CGLONG (capital gains-long term), CGSHORT
(capital gains-short term), DIV (dividend), INTEREST, MISC

<INV401KSOURCE> For 401(k) accounts, source of money used for this security. Must be one of th
following:

PRETAX

AFTERTAX

MATCH

PROFITSHARING

ROLLOVER

OTHERVEST

OTHERNONVEST

Default if not present is OTHERNONVEST. The following cash source types
are subject to vesting: MATCH, PROFITSHARING, and OTHERVEST.

<LOAD> Load on the transaction,amount

<LOANID> For 401(k) accounts only. Indicates that the transaction was due to a loan or a
loan repayment, and which loan it was.A-32

<LOANINTEREST> For 401(k) accounts only. Indicates how much of the loan repayment was
interest.Amount

<LOANPRINCIPAL> For 401(k) accounts only. Indicates how much of the loan repayment was
principal.Amount

<MARKDOWN> Portion of the unit price that is attributed to the dealer markdown,unitprice
394 13.9 Investment Statement Download

,

,

).
<MARKUP> Portion of the unit price that is attributed to the dealer markup,unitprice

<NEWUNITS> For stock splits, number of shares after the split,quantity

<NUMERATOR> For stock splits, split ratio numerator,quantity

<OLDUNITS> For stock splits, number of shares before the split,quantity

<OPTACTION> For options, action type: EXERCISE, ASSIGN, EXPIRE

<OPTBUYTYPE> For options, type of purchase: BUYTOOPEN, BUYTOCLOSE

<OPTSELLTYPE> For options, type of sell: SELLTOCLOSE, SELLTOOPEN

<PENALTY> Indicates an amount withheld due to a penalty.Amount

<POSTYPE> Position type. LONG, SHORT

<PRIORYEARCONTRIB> For 401(k) accounts, indicates that this Buy was made with a prior year
contribution.Boolean

<RELFITID> ID of related trade,FITID

<RELTYPE> Related option transaction type: SPREAD, STRADDLE, NONE, OTHER

<SECURED> How an option is secured: NAKED, COVERED

<SELLREASON> Reason the sell of a debt security was generated: CALL (the debt was called)
SELL (the debt was sold), MATURITY (the debt reached maturity)

<SELLTYPE> Type of sell. SELL, SELLSHORT

<SHPERCTRCT> For options, number of shares per contract,N-5

<STATEWITHHOLDING> Used for withholdings for state taxes on a withdrawal. The (existing)
<WITHHOLDING> tag is used for identifying withholdings for Federal Taxes,
amount

<SUBACCTFROM> Sub-account that security or cash is being transferred from: CASH, MARGIN,
SHORT, OTHER

<SUBACCTFUND> Where did the money for the transaction come from or go to? CASH, MARGIN
SHORT, OTHER

<SUBACCTSEC> Sub-account type for the security: CASH, MARGIN, SHORT, OTHER

<SUBACCTTO> Sub-account that security or cash is being transferred to: CASH, MARGIN,
SHORT, OTHER

<TOTAL> Transaction total. Buys, sells, etc.:((quan. * (price +/- markup/markdown)) +/-
(commission + fees + load + taxes + penalty + withholding + statewithholding)
Distributions, interest, margin interest, misc. expense, etc.: amount. Return of
cap: cost basis;amount

<TAXES> Taxes on the trade,amount

<TAXEXEMPT> Tax-exempt transaction,Boolean

Tag Description
OFX 2.0 Specification 3956/30/00

13.9.2.4.3 Investment Buy/Sell Aggregates <INVBUY>/<INVSELL>

These aggregates are referenced within investment transaction aggregates

Note: For 401(k) accounts, securities can be sold to fund loans or other withdrawals. Loans
and loan repayments, and penalties are shown as part of the Buy and Sell transactions, rather
than directly on any associated Deposit or Withdrawal bank transactions (see section 11.4.3.1)
because some 401(k) providers might not report these bank transactions.

Also, for 401(k) accounts, as loans are repaid the funds are disbursed into the 401(k) sources of
money from they were originally withdrawn. To accurately reflect the disbursement of repaid
funds into each source, a separate Buy transaction will be issued with the
<INV401KSOURCE> tag set to indicate the source of money. Each of these transactions will
include the amount of principle and/or interest paid to the source.

<TFERACTION> Action for transfers: IN, OUT

<UNITPRICE> Price per commonly-quoted unit. Does not include markup/markdown,
unitprice.

Share price for stocks, mutual funds, and others

Percentage of par for bonds

Per share (not contract) for options

<UNITS> For security-based actions other than stock splits,quantity

Shares for stocks, mutual funds, and others.

Face value for bonds.

Contracts for options.

<UNITTYPE> Type of the units value: SHARES, CURRENCY

<WITHHOLDING> Federal Tax withholdings,amount

Tag Description
396 13.9 Investment Statement Download

Aggregate Name Elements Description

INVBUY <INVTRAN> aggregate

<SECID> aggregate

<UNITS>

<UNITPRICE>

<MARKUP>

<COMMISSION>

<TAXES>

<FEES>

<LOAD>

<TOTAL>

<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

<SUBACCTSEC>

<SUBACCTFUND>

<LOANID>

<LOANPRINCIPAL>

<LOANINTEREST>

<INV401KSOURCE>

<DTPAYROLL>

<PRIORYEARCONTRIB>

Though the DTD allows
<CURRENCY> and
<ORIGCURRENCY> together in
this aggregate, servers should
return neither or one of the two,
but not both.

Required if <LOANPRINCIPAL>
and <LOANINTEREST> are
provided. See section 13.9.2.4.2

<LOANID> and
<LOANINTEREST> must be
provided if <LOANPRINCIPLE>
is provided. See section 13.9.2.4.2

<LOANID> and
<LOANPRINCIPAL> must be
provided if <LOANINTEREST>
is provided. See section 13.9.2.4.2

Source of money for this
transaction. See section 13.9.2.4.2

See section 13.9.2.4.2

See section 13.9.2.4.2
OFX 2.0 Specification 3976/30/00

INVSELL <INVTRAN> aggregate

<SECID> aggregate

<UNITS>

<UNITPRICE>

<MARKDOWN>

<COMMISSION>

<TAXES>

<FEES>

<LOAD>

<WITHHOLDING>

<TAXEXEMPT>

<TOTAL>

<GAIN>

<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

<SUBACCTSEC>

<SUBACCTFUND>

<LOANID>

<STATEWITHHOLDING>

<PENALTY>

<INV401KSOURCE>

Though the DTD allows
<CURRENCY> and
<ORIGCURRENCY> together in
this aggregate, servers should
return neither or one of the two,
but not both.

See section 13.9.2.4.2

See section 13.9.2.4.2

See section 13.9.2.4.2

Source of money for this
transaction. See section 13.9.2.4.2

Aggregate Name Elements Description
398 13.9 Investment Statement Download

13.9.2.4.4 Investment Transaction Aggregates

Aggregate Name Elements Description

<BUYDEBT> <INVBUY> aggregate

<ACCRDINT>

Buy debt security

Accrued interest. This amount is not reflected in
the <TOTAL> field of a containing aggregate.

<BUYMF> <INVBUY> aggregate

<BUYTYPE>

<RELFITID>

Buy mutual fund

The BUYTOCOVER buy type used to close
short sales.

RELFITID used to relate transactions associated
with mutual fund exchanges.

<BUYOPT> <INVBUY> aggregate

<OPTBUYTYPE>

<SHPERCTRCT>

Buy option

The BUYTOOPEN buy type is like “ordinary”
buying of option and works like stocks.

<BUYOTHER> <INVBUY> aggregate Buy other security type

<BUYSTOCK> <INVBUY> aggregate

<BUYTYPE>

Buy stock

The BUYTOCOVER buy type used to close
short sales.

<CLOSUREOPT> <INVTRAN> aggregate

<SECID> aggregate

<OPTACTION>

<UNITS>

<SHPERCTRCT>

<SUBACCTSEC>

<RELFITID>

<GAIN>

Close a position for an option.

The EXERCISE action is used to close out an
option that is exercised. The ASSIGN action is
used when an option writer is assigned. The
EXPIRE action is used when the option’s
expired date is reached.

When the action is EXERCISE or ASSIGN
another transaction must be generated by the
server to represent the buy or sell of the
underlying security.

RELFITID refers to the transaction ID of the
underlying buy or sell.
OFX 2.0 Specification 3996/30/00

<INCOME> <INVTRAN> aggregate

<SECID> aggregate

<INCOMETYPE>

<TOTAL>

<SUBACCTSEC>

<SUBACCTFUND>

<TAXEXEMPT>

<WITHHOLDING>

<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

<INV401KSOURCE> aggregate

Investment income is realized as cash into the
investment account.

A negative TOTAL is used to denote
adjustments to income.

Though the DTD allows <CURRENCY> and
<ORIGCURRENCY> together in this aggregate,
servers should return neither or one of the two,
but not both.

Source of money for this transaction. See section
13.9.2.4.2.

<INVEXPENSE> <INVTRAN> aggregate

<SECID> aggregate

<TOTAL>

<SUBACCTSEC>

<SUBACCTFUND>

<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

<INV401KSOURCE> aggregate

Misc. investment expense that is associated with
a specific security.

If the expense is associated with the account then
an INVBANKTRAN - DEBIT should be used.

Though the DTD allows <CURRENCY> and
<ORIGCURRENCY> together in this aggregate,
servers should return neither or one of the two,
but not both.

Source of money for this transaction. See section
13.9.2.4.2.

<JRNLFUND> <INVTRAN> aggregate

<SUBACCTTO>

<SUBACCTFROM>

<TOTAL>

Journaling cash holdings between sub-accounts
within the same investment account.

Aggregate Name Elements Description
400 13.9 Investment Statement Download

<JRNLSEC> <INVTRAN> aggregate

<SECID> aggregate

<SUBACCTTO>

<SUBACCTFROM>

<UNITS>

Journaling security holdings between sub-
accounts within the same investment account.

<MARGININTEREST> <INVTRAN> aggregate

<TOTAL>

<SUBACCTFUND>

<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

Margin interest expense

Though the DTD allows <CURRENCY> and
<ORIGCURRENCY> together in this aggregate,
servers should return neither or one of the two,
but not both.

<REINVEST> <INVTRAN> aggregate

<SECID> aggregate

<INCOMETYPE>

<TOTAL>

<SUBACCTSEC>

<UNITS>

<UNITPRICE>

<COMMISSION>

<TAXES>

<FEES>

<LOAD>

<TAXEXEMPT>

<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

<INV401KSOURCE> aggregate

Reinvestment of income

REINVEST is a single transaction that contains
both income and an investment transaction. If
servers can’t track this as a single transaction
they should return an INCOME transaction and
an INVTRAN.

TOTAL and UNITS are signed as for an
investment buy. Corrections to a REINVEST are
signed as for an investment sell.

Though the DTD allows <CURRENCY> and
<ORIGCURRENCY> together in this aggregate,
servers should return neither or one of the two,
but not both.

Source of money for this transaction. See section
13.9.2.4.2.

Aggregate Name Elements Description
OFX 2.0 Specification 4016/30/00

<RETOFCAP> <INVTRAN>

<SECID>

<TOTAL>

<SUBACCTSEC>

<SUBACCTFUND>

<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

<INV401KSOURCE> aggregate

Return of capital

Though the DTD allows <CURRENCY> and
<ORIGCURRENCY> together in this aggregate,
servers should return neither or one of the two,
but not both.

Source of money for this transaction. See section
13.9.2.4.2.

<SELLDEBT> <INVSELL> aggregate

<SELLREASON>

<ACCRDINT>

Sell debt security. Used when debt is sold,
called, or reached maturity.

<SELLMF> <INVSELL> aggregate
<SELLTYPE>
<AVGCOSTBASIS>

<RELFITID>

Sell mutual fund

RELFITID used to relate transactions associated
with mutual fund exchanges.

<SELLOPT> <INVSELL> aggregate
<OPTSELLTYPE>

<SHPERCTRCT>

<RELFITID>

<RELTYPE>

<SECURED>

Sell option

The SELLTOCLOSE action is selling a
previously bought option. The SELLTOOPEN
action is writing an option

<SELLOTHER> <INVSELL> aggregate Sell other type of security

<SELLSTOCK> <INVSELL> aggregate
<SELLTYPE>

Sell stock

Aggregate Name Elements Description
402 13.9 Investment Statement Download

<SPLIT> <INVTRAN> aggregate

<SECID> aggregate

<SUBACCTSEC>

<OLDUNITS>

<NEWUNITS>

<NUMERATOR>

<DENOMINATOR>

<CURRENCY> aggregate

<ORIGCURRENCY> aggregate

<FRACCASH>

<SUBACCTFUND>

<INV401KSOURCE> aggregate

Stock or Mutual Fund Split

Note: the trade date is interpreted as the “day of
record” for the split.

Though the DTD allows <CURRENCY> and
<ORIGCURRENCY> together in this aggregate,
servers should return neither or one of the two,
but not both.

Source of money for this transaction. See section
13.9.2.4.2.

<TRANSFER> <INVTRAN> aggregate
<SECID> aggregate

<SUBACCTSEC>

<UNITS>

<TFERACTION>

<POSTYPE>

<INVACCTFROM> aggregate

<AVGCOSTBASIS>

<UNITPRICE>

<DTPURCHASE>

<INV401KSOURCE> aggregate

Transfer holdings in and out of the investment
account.

Source of money for this transaction. See section
13.9.2.4.2.

Aggregate Name Elements Description
OFX 2.0 Specification 4036/30/00

the

o
in that
13.9.2.4.5 Valid Transactions by Security Type

Since JRNLFUND and MARGININTEREST do not refer to securities, there are no checks in any of
security columns for these transactions.

13.9.2.4.6 Notes on Mutual Fund Exchanges

In investment statement download, two transactions are needed to reflect mutual fund exchanges. A
SELLMF should be generated for the mutual fund being switched from and a BUYMF should be
generated for the mutual fund being switched to. You can use the RELFITID element to link these tw
transactions to each other. You should use the MEMO element of the individual transactions to expla
a mutual fund exchange occurred.

Debt Mutual Fund Option Other Stock

BUYDEBT ×

BUYMF ×

BUYOPT ×

BUYOTHER ×

BUYSTOCK ×

CLOSUREOPT ×

INCOME × × × ×

INVEXPENSE × × × × ×

JRNLFUND

JRNLSEC × × × × ×

MARGININTEREST

REINVEST × × × ×

RETOFCAP × × × × ×

SELLDEBT ×

SELLMF ×

SELLOPT ×

SELLOTHER ×

SELLSTOCK ×

SPLIT × ×

TRANSFER × × × × ×
404 13.9 Investment Statement Download

e that
ore of

strike
There
t and
13.9.2.4.7 Notes on Corporate Actions

Since corporate actions can often be very complicated, it is difficult to define a single action aggregat
encompasses all possible scenarios. Instead, you should describe corporate actions using one or m
the provided basic action types. You should use the memo field of the individual transactions to link
transactions to an encompassing corporate action.

13.9.2.4.8 Notes on Option Splits

When the underlying security for an option splits, a new security is generated for the option since the
price changes. In investment statement download, you need two transactions to reflect this activity.
should be a TRANSFER transaction to show that the old option security is removed from the accoun
another TRANSFER transaction to show that the new option security is moved into the account.

13.9.2.4.9 Notes on Option actions

For options, the overall sequence of actions is as follows:

For an option writer:

Position is opened with Sell to Open.

Position is closed with one of the following:

� Buy to Close

� Expire

� Assigned

For an option buyer:

Position is opened with Buy to Open.

Position is closed with one of the following:

� Sell to Close

� Expire

� Exercise
OFX 2.0 Specification 4056/30/00

en
13.9.2.5 Open Orders

13.9.2.5.1 General Open Order Aggregate <OO>

The <OO> aggregate contains fields common to all open orders. Use this aggregate to define the op
order aggregates as show in the following section.

Note: An open order is assumed to be a market order if no limit price or stop price is specified.

Tag Description

<OO> General-open-order aggregate

<FITID> Unique FI-assigned transaction ID,FITID

<SRVRTID> Unique server-assigned transaction ID,SRVRTID

<SECID> Security identified aggregate

</SECID>

<DTPLACED> Date-time the order was placed,datetime

<UNITS> Quantity of the security the open order is for,unitprice

<SUBACCT> Sub-account type. CASH, MARGIN, SHORT, OTHER

<DURATION> How long the order is good for: DAY, GOODTILCANCEL, IMMEDIATE

<RESTRICTION> Special restriction on the order: ALLORNONE, MINUNITS, NONE

<MINUNITS> Minimum number of units that must be filled for the order,quantity

<LIMITPRICE> Limit price, unitprice

<STOPPRICE> Stop price,unitprice

<MEMO> Other information about order (at most one),memo

<CURRENCY> Overriding currency aggregate

</CURRENCY>

<INV401KSOURCE> For 401(k) accounts, source of money for this order. See section 13.9.2.4.2.

</OO>
406 13.9 Investment Statement Download

13.9.2.5.2 Investment Open Order Aggregates

Open Order
Aggregates Elements Description of Elements

<OOBUYDEBT> <OO> aggregate

<AUCTION>

<DTAUCTION>

Whether the debt should be purchased at the auction,Boolean

Date of the auction,date

<OOBUYMF> <OO> aggregate

<BUYTYPE>

<UNITTYPE>

Type of purchase: BUY, BUYTOCOVER.

What the units represent: SHARES, CURRENCY

<OOBUYOPT> <OO> aggregate

<OPTBUYTYPE> Type of purchase: BUYTOOPEN, BUYTOCLOSE

<OOBUYOTHER> <OO> aggregate

<UNITTYPE> What the units represent: SHARES, CURRENCY

<OOBUYSTOCK> <OO> aggregate

<BUYTYPE> Type of purchase: BUY, BUYTOCOVER

<OOSELLDEBT> <OO> aggregate

<OOSELLMF> <OO> aggregate

<SELLTYPE>

<UNITTYPE>

<SELLALL>

Type of sale: SELL, SELLSHORT

What the units represent: SHARES, CURRENCY.

Sell entire holding,Boolean

<OOSELLOPT> <OO> aggregate

<OPTSELLTYPE> Type of sale: SELLTOOPEN, SELLTOCLOSE

<OOSELLOTHER> <OO> aggregate

<UNITTYPE> What the units represent: SHARES, CURRENCY

<OOSELLSTOCK> <OO> aggregate

<SELLTYPE> Type of sale: SELL, SELLSHORT

<SWITCHMF> <OO> aggregate

<SECID> aggregate

<UNITTYPE>

<SWITCHALL>

Security ID of the mutual fund to switch to or purchase

What the units represent: SHARES, CURRENCY

Switch entire holding,Boolean
OFX 2.0 Specification 4076/30/00

and
y.

ent
itly
.

ds),

s

13.9.2.6 Investment Positions

Position records represent a user’s current positions, regardless of the transactional history. Prices
values should be the most recent available, even if different from a transaction price on the same da

In position records, securities are identified as being either short or long. Because each FI has differ
rules regarding which sub-accounts can be used for short compared to long activity, FIs must explic
indicate the type of position in addition to specifying the sub-account where the position takes place

For options, position type SHORT is equivalent to WRITING an option, and position type LONG is
equivalent to HOLDING an option. For security types where there is only one type (for example, bon
use LONG.

For 401(k) accounts, securities can be purchased with any of the 401(k) cash sources. Any securitie
purchased from more than one cash source will appear as a separate position for each.
408 13.9 Investment Statement Download

13.9.2.6.1 General Position Information <INVPOS>

The INVPOS aggregate contains fields relevant to all investment position types. It is included in the
position aggregates as shown in the following sections.

Tag Description

<INVPOS> General-position aggregate

<SECID> Security identifier

</SECID>

<HELDINACCT> Sub-account type

CASH, MARGIN, SHORT, OTHER

<POSTYPE> SHORT = Writer for options, Short for all others.

LONG = Holder for options, Long for all others.

<UNITS> For stocks, MFs, other, number of shares held.

Bonds = face value.

Options = number of contracts

quantity

<UNITPRICE> For stocks, MFs, other, price per share.

Bonds = percentage of par

Option = premium per share of underlying security

unitprice

<MKTVAL> Market value of this position,amount

<DTPRICEASOF> Date and time of unit price and market value.

Can be 0 if unit price and market value are unknown,datetime

<CURRENCY> Currency information if different from default currency.

</CURRENCY>

<MEMO> Comment,memo

<INV401KSOURCE> Source of money for this security in this position. See section 13.9.2.4.2.

</INVPOS>
OFX 2.0 Specification 4096/30/00

13.9.2.6.2 Investment Positions

Investment
Position
Aggregates Elements Description of Elements

<POSDEBT> <INVPOS> aggregate

<POSMF> <INVPOS> aggregate

<UNITSSTREET>

<UNITSUSER>

<REINVDIV>

<REINVCG>

Units in the FI’s street name,positive quantity

Units in the user’s name directly,positive quantity

Reinvest dividends,Boolean

Reinvest capital gains,Boolean

<POSOPT> <INVPOS> aggregate

<SECURED> How the option is secured. NAKED, COVERED.

<POSOTHER> <INVPOS> aggregate

<POSSTOCK> <INVPOS> aggregate

<UNITSSTREET>

<UNITSUSER>

<REINVDIV>

Units in the FI’s street name,positive quantity

Units in the user’s name directly,positive quantity

Reinvest dividends,Boolean
410 13.9 Investment Statement Download

ate

mplete
on the
call
13.9.2.7 Investment Balances <INVBAL>

The <INVBAL> aggregate contains five specified balances. It can also contain a <BALLIST> aggreg
that contains one or more <BAL> aggregates. The <BAL> aggregate (see Chapter 3, “Common
Aggregates, Elements, and Data Types”) allows an FI to send any number of balances to the user, co
with description and Help text. The intent is to capture the same type of balance information present
first page of many FI brokerage statements. You can also use the <BAL> aggregate to send margin
information.

Tag Description

<INVBAL> Balances aggregate

<AVAILCASH> Cash balance across all sub-accounts. Should include sweep funds.Amount

<MARGINBALANCE> Margin balance. A positive balance indicates a positive cash balance, while a
negative balance indicates the customer has borrowed funds.Amount

<SHORTBALANCE> Market value of all short positions. This is a positive balance,Amount

<BUYPOWER> Buying power,amount

<BALLIST> Beginning of Investment balance list (at most one)

<BAL> Balance aggregates (0 or more)

</BAL> SeeChapter 3, "Common Aggregates, Elements, and Data Types"

</BALLIST>

</INVBAL>
OFX 2.0 Specification 4116/30/00

13.9.2.8 Status Codes

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

12250 Investment transaction download not supported (WARN)

12251 Investment position download not supported (WARN)

12252 Investment positions for specified date not available (WARN)

12253 Investment open order download not supported (WARN)

12254 Investment balances download not supported (WARN)
412 13.9 Investment Statement Download

the
the

s,
13.9.2.9 401(k) Balances <INV401KBAL>

The <INV401KBAL> aggregate contains an optional cash balance. It also contrains the balances of
standard 401(k) sub-accounts. The date of these balances is taken from the <DTASOF> element of
<INVSTMTRS>aggregate.

Tag Description

<INV401KBAL> Beginning of 401(k) balances list (at most one)

<CASHBAL> Cash balance available for the 401(k) account

<PRETAX> Current value of all securities purchased with Before Tax Employee
contributions,amount

<AFTERTAX> Current value of all securities purchased with After Tax Employee contribution
amount

<MATCH> Current value of all securities purchased with Employer Match contributions,
amount

<PROFITSHARING> Current value of all securities purchased with Employer Proit Sharing
contributions,amount

<ROLLOVER> Current value of all securities purchased with Rollover contributions,amount

<OTHERVEST> Current value of all securities purchased with Other (vesting) Employer
contributions,amount

<OTHERNONVEST> Current value of all securities purchased with Other (non-vesting) Employer
contributions,amount

<TOTAL> Current value of all securities purchased with all contributions,amount

<BALLIST> Beginning of generic balance list (at most one)

<BAL> Balance aggregates (zero or more), see Chapter 3, "Common Aggregates,
Elements, and Data Types"

</BAL>

</BALLIST>

</INV401KBAL>
OFX 2.0 Specification 4136/30/00

mary
erver

t

13.9.2.10 Status Codes

13.9.3 401(k) Account Information

The following is included in the investment statement response for 401(k) accounts to provide a sum
of the user’s 401(k) plan information. Note that some of this information may not be available at the s
and may be omitted.

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

12250 Investment transaction download not supported (WARN)

12251 Investment position download not supported (WARN)

12252 Investment positions for specified date not available (WARN)

12253 Investment open order download not supported (WARN)

12254 Investment balances download not supported (WARN)

12255 401(k) information requested from a non-401(k) account (ERROR)

Tag Description

<INV401K> 401(k) Summary aggregate

<EMPLOYERNAME> Name of the employer,A-32

<PLANID> Plan number,A-32

<PLANJOINDATE> Date the employee joined the plan,date

<EMPLOYERCONTACTINFO> Name of contact person at employer, plus any available contac
information, such as phone number,A-255

<BROKERCONTACTINFO> Name of contact person at broker, plus any available contact
information, such as phone number, A-255
414 13.9 Investment Statement Download

r

t

<DEFERPCTPRETAX> Percent of employee salary deferred before tax,rate

<DEFERPCTAFTERTAX> Percent of employee salary deferred after tax,rate

<MATCHINFO> Aggregate containing employer match information. Absent if
employer does not contribute matching funds.

<MATCHPCT> Percent of employee contribution matched, e.g., 75% if
contribution rate is $0.75/$1.00,rate

<MAXMATCHAMT> Maximum employer contribution amount in any year,amount.

<MAXMATCHPCT> Current maximum employer contribution percentage. Maximum
match in a year is MAXMATCHPCT up to the
MAXMATCHAMT, if provided. rate

<STARTOFYEAR> Specifies when the employer contribution max is reset. Some
plans have a maximum based on the company fiscal year rathe
than calendar year. Assume calendar year if omitted. Only the
month and day (MMDD) are used; year (YYYY) and time are
ignored.date

<BASEMATCHAMT> Specifies a fixed dollar amount contributed by the employer if
the employee participates in the plan at all. This may be presen
in addition to the <MATCHPCT>. $0 if omitted.amount

<BASEMATCHPCT> Specifies a fixed percent of employee salary matched if the
employee participates in the plan at all. This may be present in
addition to the MATCHPCT>. 0% if omitted. Base match in a
year is BASEMATCHPCT up to the BASEMATCHAMT,if
provided.rate

</MATCHINFO>

<CONTRIBINFO> Aggregate to describe how new contributions are distributed
among the available securities.

<CONTRIBSECURITY> Identifies current contribution allocation for a security (1 or
more)

<SECID> Security identifier. See section 13.8.1.

</SECID>

Current contribution allocation. Specify either
<xxxPCT> or <xxxAMT>. The new
contributions to each security are either all
specified by a percentage of contributions or
by a fixed dollar amount, but not both. At least
one source must be provided.

Tag Description
OFX 2.0 Specification 4156/30/00

d

o

d

to

e

<PRETAXCONTRIBPCT>

-or-

<PRETAXCONTRIBAMT>

Percentage of each new employee pretax contribution allocate
to this security,rate.

Fixed amount of each new employee pretax contribution
allocated to this security,amount

<AFTERTAXCONTRIBPCT>

-or-

<AFTERTAXCONTRIBAMT>

Percentage of each new employee after tax contribution
allocated to this security,rate.

Fixed amount of each new employee pretax contribution
allocated to this security,amount.

<MATCHCONTRIBPCT>

-or-

<MATCHCONTRIBAMT>

Percentage of each new employer match contribution allocated
to this security,rate.

Fixed amount of each new employer match contribution
allocated to this security,amount.

<PROFITSHARINGCONTRIBP
CT>

-or-

<PROFITSHARINGCONTRIBA
MT>

Percentage of each new employer profit sharing contribution
allocated to this security,rate.

Fixed amount of each new employer profit sharing contribution
allocated to this security,amount.

<ROLLOVERCONTRIBPCT>

-or-

<ROLLOVERCONTRIBAMT>

Percentage of new rollover contributions allocated to this
security,rate.

Fixed amount of new rollover contributions allocated to this
security,amount.

<OTHERVESTPCT>

-or-

<OTHERVESTAMT>

Percentage of each new other employer contribution allocated t
this security,rate.

Fixed amount of each new other employer contribution allocate
to this security,amount.

<OTHERNONVESTPCT>

-or-

<OTHERNONVESTAMT>

Percentage of each new other employee contribution allocated
this security,rate.

Fixed amount of each new other employee contribution
allocated to this security,amount

</CONTRIBSECURITY>

</CONTRIBINFO>

<CURRENTVESTPCT> Estimated percentage of employer contributions vested as of th
current date. If omitted, assume 100%,rate.

<VESTINFO> Vest change dates. Provides the vesting percentage as of any
particular past, current, or future date. 0 or more.

<VESTDATE> Date at which vesting percentage changes. Default is that the
vested percentage applies to the current date.date

<VESTPCT> Estimated vested percentage as of the corresponding date.rate

Tag Description
416 13.9 Investment Statement Download

</VESTINFO>

<LOANINFO> List of loans outstanding against this account. 0 or more.

<LOANID> Indentifier of this loan,A-32

<LOANDESC> Loan description,A-32

<INITIALLOANBAL> Initial loan balance.amount

<LOANSTARTDATE> Start date of loan.date

<CURRENTLOANBAL> Current loan principal balance.amount

<DTASOF> Date and time of the current loan balance.datetime

<LOANRATE> Loan annual interest rate.rate

<LOANPMTAMT> Loan payment amount.amount

<LOANPMTFREQ> Frequency of loan repayments: WEEKLY, BIWEEKLY,
TWICEMONTHLY, MONTHLY, FOURWEEKS,
BIMONTHLY, QUARTERLY, SEMIANNUALLY,
ANNUALLY, OTHER. See section 10.2.1 for calculation rules.

<LOANPMTSINITIAL> Initial number of loan payments.

<LOANPMTSREMAINING> Remaining number of loan payments.N-5

<LOANMATURITYDATE> Expected loan end date.date

<LOANTOTALPROJINTEREST> Total projected interest to be paid on this loan.amount

<LOANINTERESTTODATE> Total interested paid to date on this loan.amount

<LOANNEXTPMTDATE> Next payment due date.date

</LOANINFO>

<INV401KSUMMARY> List of contributions to 401(k) account.

<YEARTODATE> Contributions to date for this calendar year.

<DTSTART> Start date for this calendar year.date

<DTEND> End date for this year-to-date information.date

<CONTRIBUTIONS> 401 (k) contribution aggregate (at most one) (See section
13.9.3.1)

</CONTRIBUTIONS>

Tag Description
OFX 2.0 Specification 4176/30/00

)

)

)

<WITHDRAWALS> 401(k) withdrawals aggregate (at most one) (See section
13.9.3.2)

</WITHDRAWALS>

<EARNINGS> 401(k) earnings aggregate (at most one) (See section 13.9.3.3

</EARNINGS>

</YEARTODATE>

<INCEPTODATE> Total contributions to date (since inception)

<DTSTART> Start date for the inception of this account.date

<DTEND> End date for the inception-to-date information.date

<CONTRIBUTIONS> 401(k) contribution aggregate (at most one) (See section
13.9.3.1)

</CONTRIBUTIONS>

<WITHDRAWALS> 401(k) withdrawals aggregate (at most one) (See section
13.9.3.2)

</WITHDRAWALS>

<EARNINGS> 401(k) earnings aggregate (at most one) (See section 13.9.3.3

</EARNINGS>

</INCEPTODATE>

<PERIODTODATE>

<DTSTART> Start date for the current period.date

<DTEND> End date for the period-to-date information.date

<CONTRIBUTIONS> 401(k) contribution aggregate (at most one) (See section
13.9.3.1)

</CONTRIBUTIONS>

<WITHDRAWALS> 401(k) withdrawals aggregate (at most one) (See section
13.9.3.2)

</WITHDRAWALS>

<EARNINGS> 401(k) earnings aggregate (at most one) (See section 13.9.3.3

</EARNINGS>

</PERIODTODATE>

</INV401KSUMMARY>

</INV401K>

Tag Description
418 13.9 Investment Statement Download

13.9.3.1 401(k) Contribution Aggregate <CONTRIBUTIONS>

The following table shows the new 401(k) contribution aggregate and its tags.

Tag Description

<CONTRIBUTIONS> 401(k) contribution aggregate. Note: this includes loan payments.

<PRETAX> Pretax contribution.amount

<AFTERTAX> After tax contribution.amount

<MATCH> Employer matching contribution.amount

<PROFITSHARING> Profit sharing contribution.amount

<ROLLOVER> Rollover contribution.amount

<OTHERVEST> Other vesting contributions.amount

<OTHERNONVEST> Other non-vesting contributions.amount

<TOTAL> Sum of contributions from all fund sources.amount

</CONTRIBUTIONS>
OFX 2.0 Specification 4196/30/00

nds/
13.9.3.2 401(k) Withdrawals Aggregate <WITHDRAWALS>

13.9.3.3 401(k) Earnings Aggregate <EARNINGS>

Tag Description

<WITHDRAWALS> 401(k) withdrawals aggregate. Note: this includes loan withdrawals.

<PRETAX> Pretax withdrawals.amount

<AFTERTAX> After tax withdrawals.amount

<MATCH> Employer matching withdrawals.amount

<PROFITSHARING> Profit sharing withdrawals.amount

<ROLLOVER> Rollover withdrawals.amount

<OTHERVEST> Other vesting withdrawals.amount

<OTHERNONVEST> Other non-vesting withdrawals.amount

<TOTAL> Sum of withdrawals from all fund sources.amount

</WITHDRAWALS>

Tag Description

<EARNINGS> 401(k) earnings aggregate. This is the market value change. It includes divide
interest, and capital gains - realized and unrealized.

<PRETAX> Pretax earnings.amount

<AFTERTAX> After tax earnings.amount

<MATCH> Employer matching earnings.amount

<PROFITSHARING> Profit sharing earnings.amount

<ROLLOVER> Rollover earnings.amount

<OTHERVEST> Other vesting earnings.amount

<OTHERNONVEST> Other non-vesting earnings.amount

<TOTAL> Sum of earnings from all fund sources.amount

</EARNINGS>
420 13.9 Investment Statement Download

ge, the
eipt of
rver. E-
13.10 Investment E-Mail

OFX currently defines one investment e-mail message that clients can send to an FI. With this messa
user can prepare a message to the FI regarding one of their accounts. The server acknowledges rec
the message. The FI prepares the response that the client picks up when it synchronizes with the se
mail is subject to synchronization, using <INVMAILSYNCRQ> / <INVMAILSYNCRS>.

13.10.1 Investment E-Mail Request and Response

13.10.1.1 Request <INVMAILRQ>

The client must identify to which investment account the customer query is related.

Client Sends Server Responds

Addressed message

Inv. account information

Acknowledgment

.

.

.

Synchronization request

Response to customer

Tag Description

<INVMAILRQ> Investment-e-mail-request aggregate

<INVACCTFROM> Account-from aggregate, see 13.6.1

</INVACCTFROM>

<MAIL> To, from, message information, see section 9.2.2

</MAIL>

</INVMAILRQ>
OFX 2.0 Specification 4216/30/00

13.10.1.2 Response <INVMAILRS>

13.10.1.3 Status Codes

Tag Description

<INVMAILRS> Investment-e-mail-response aggregate

<INVACCTFROM> Account-from aggregate, see 13.6.1

</INVACCTFROM>

<MAIL> To, from, message information, see section 9.2.2

</MAIL>

</INVMAILRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2019 Duplicate request (ERROR)

6502 Unable to process embedded transaction due
to out-of-date <TOKEN> (ERROR)

15508 Transaction not authorized (ERROR)

16500 HTML not allowed (ERROR)

16501 Unknown mail To: (ERROR)
422 13.10 Investment E-Mail

13.10.2 Investment E-Mail Synchronization

13.10.2.1 Request <INVMAILSYNCRQ>

Tag Description

<INVMAILSYNCRQ> Synchronization-request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of
synchronization request from server; 0 for first-time requests;
token

<TOKENONLY> Request for just the current <TOKEN> without the history,
Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,
Boolean

<INCIMAGES> Y if the client accepts mail with images in the message body. N
if the client does not accept mail with images in the message
body.Boolean

<USEHTML> Y if client wants an HTML response, N if client wants plain
text,Boolean

<INVACCTFROM> Investment account of interest; token must be interpreted in
terms of this account, see 13.6.1

</INVACCTFROM>

<INVMAILTRNRQ> Investment-mail transactions (0 or more)

</INVMAILTRNRQ>

</INVMAILSYNCRQ>
OFX 2.0 Specification 4236/30/00

13.10.2.2 Response <INVMAILSYNCRS>

Tag Description

<INVMAILSYNCRS> Synchronization-response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest
entry in the server’s history table. In this case, some responses have
been lost.

N if the token in the synchronization request is newer than or matches a
token in the server’s history table.Boolean

<INVACCTFROM> Investment account of interest; token must be interpreted in terms of
this account, see 13.6.1

</INVACCTFROM>

<INVMAILTRNRS> Investment-mail transactions (0 or more)

</INVMAILTRNRS>

</INVMAILSYNCRS>
424 13.10 Investment E-Mail

13.11 Complete Example

This example is for a user who requests an investment statement download for a single account.

The request file:

<OFX> <!--Beginning of request data-->

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ> <!--End of signon-->

</SIGNONMSGSRQV1>

<INVSTMTMSGSRQV1>

<INVSTMTTRNRQ> <!--First request in file-->

<TRNUID>1001</TRNUID> <!--Unique ID for this request-->

<INVSTMTRQ> <!--Beginning of statement download-->

<INVACCTFROM> <!--Identify the account: -->

<BROKERID>121099999</BROKERID><!--FI ID-->

<ACCTID>999988</ACCTID><!--Account number-->

</INVACCTFROM> <!--End of account ID-->

<INCTRAN> <!--Request transactions-->

<DTSTART>19990824130105</DTSTART><!--Send transactions posted
after-->

<!--Aug 24, 1999 1:01:05pm-->

<INCLUDE>Y</INCLUDE> <!--Include transactions -->

</INCTRAN>

<INCOO>Y</INCOO> <!--Include open orders in response-->

<INCPOS> <!--Request positions -->

<INCLUDE>Y</INCLUDE> <!--Include current positions -->

</INCPOS>

<INCBAL>Y</INCBAL> <!--Include balances in request-->

</INVSTMTRQ>

</INVSTMTTRNRQ> <!--End of first request-->

</INVSTMTMSGSRQV1>

</OFX> <!--End of OFX request data-->
OFX 2.0 Specification 4256/30/00

s, and
limit

d 100
s

A typical server response:

This user has one investment transaction, one bank transaction, one open order, two position entrie
one balance entry. The user deposits some money and buys shares in Acme. The user has an open
order to buy 100 shares of Hackson Unlimited at $50/share. The holdings show the user already ha
shares of Acme and now has 200 shares. The user also has one option contract to sell Lucky Airline
shares, bought before this download.

<OFX> <!--Beginning of request data-->

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS> <!--End of signon-->

</SIGNONMSGSRSV1>

<INVSTMTMSGSRSV1>

<INVSTMTTRNRS> <!--First request in file-->

<TRNUID>1001</TRNUID> <!--Client ID for this request-->

<STATUS>

<CODE>0</CODE> <!--0 = accepted, good data follows-->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<INVSTMTRS> <!--Beginning of statement download-->

<DTASOF>19990827010000</DTASOF> <!--Statement as of Aug 27, 1999
1am-->

<CURDEF>USD</CURDEF> <!--Default currency is US Dollar-->

<INVACCTFROM> <!--Beginning of account information-->

<BROKERID>121099999</BROKERID><!--FI ID-->

<ACCTID>999988</ACCTID><!--Account number-->

</INVACCTFROM> <!--End of account information-->

<INVTRANLIST> <!--Beginning of transactions-->

<DTSTART>19990824130105</DTSTART><!--Send transactions posted
after-->

<!--Aug 24, 1999 1:01:05pm-->

<DTEND>19990828101000</DTEND><!--End timestamp (now) -->

<BUYSTOCK> <!--Buy stock transaction-->

<INVBUY>

<INVTRAN>

<FITID>23321</FITID><!--FI transaction ID-->

<DTTRADE>19990825</DTTRADE><!--Trade date Aug 25,
1999-->

<DTSETTLE>19990828</DTSETTLE><!--Settlement date Aug
28, 1999-->

</INVTRAN>
426 13.11 Complete Example

<SECID> <!--Security ID-->

<UNIQUEID>123456789</UNIQUEID><!--CUSIP for ACME -->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<UNITS>100</UNITS><!--100 shares-->

<UNITPRICE>50.00</UNITPRICE><!--$50/share-->

<COMMISSION>25.00</COMMISSION><!--$25 commission -->

<TOTAL>5025.00</TOTAL><!--Total amount $5025.00-->

<SUBACCTSEC>CASH</SUBACCTSEC><!--Holding resides in cash
account-->

<SUBACCTFUND>CASH</SUBACCTFUND><!--Bought in cash
account-->

</INVBUY>

<BUYTYPE>BUY</BUYTYPE><!--Normal buy-->

</BUYSTOCK> <!--End of buy stock transaction-->

<INVBANKTRAN> <!--Investment acct bank transaction-->

<STMTTRN> <!--Beginning of a bank transaction-->

<TRNTYPE>CREDIT</TRNTYPE><!--Generic credit-->

<DTPOSTED>19990825</DTPOSTED><!--Aug 25, 1999-->

<DTUSER>19990825</DTUSER><!--Aug 25, 1999-->

<TRNAMT>1000.00</TRNAMT><!--$1,000.00-->

<FITID>12345</FITID><!--FI transaction ID 12345-->

<NAME>Customer deposit</NAME><!--Description of
transaction-->

<MEMO>Your check #1034</MEMO><!--Optional memo from FI-->

</STMTTRN> <!--End of bank transaction-->

<SUBACCTFUND>CASH</SUBACCTFUND><!--Credited to the cash
account -->

</INVBANKTRAN>

</INVTRANLIST> <!--End of transactions-->

<INVPOSLIST> <!--Beginning of positions list-->

<POSSTOCK> <!--Beginning of position -->

<INVPOS>

<SECID> <!--Security ID-->

<UNIQUEID>123456789</UNIQUEID><!--CUSIP for Acme
Development,

Inc.-->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<HELDINACCT>CASH</HELDINACCT><!--Cash account-->

<POSTYPE>LONG</POSTYPE><!--Long position-->

<UNITS>200</UNITS><!--200 shares-->

<UNITPRICE>49.50</UNITPRICE><!--Latest price-->
OFX 2.0 Specification 4276/30/00

<MKTVAL>9900.00</MKTVAL><!--Current market value
$9900.00-->

<DTPRICEASOF>19990827010000</DTPRICEASOF> <!--Prices as
of Aug27,1999

1am-->

<MEMO>Next dividend payable Sept 1</MEMO>

</INVPOS>

</POSSTOCK> <!--End of position-->

<POSOPT> <!--Beginning of position-->

<INVPOS>

<SECID> <!--Security ID-->

<UNIQUEID>000342222</UNIQUEID><!--CUSIP for the option
-->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<HELDINACCT>CASH</HELDINACCT><!--Cash account-->

<POSTYPE>LONG</POSTYPE><!--Long position-->

<UNITS>1</UNITS> <!--100 shares-->

<UNITPRICE>5</UNITPRICE><!--Latest price-->

<MKTVAL>500</MKTVAL><!--Current market value $500.00-->

<DTPRICEASOF>19990827010000</DTPRICEASOF> <!--Prices as
of Aug27,1999 1am-->

<MEMO> Option is in the money</MEMO>

</INVPOS>

</POSOPT> <!--End of option position -->

</INVPOSLIST> <!--End of position -->

<INVBAL>

<AVAILCASH>200.00</AVAILCASH><!--$200.00 cash balance-->

<MARGINBALANCE>-50.00</MARGINBALANCE><!--$50.00 owed on margin
balance-->

<SHORTBALANCE>0</SHORTBALANCE><!--$0 short balance-->

<BALLIST> <!--Beginning of FI-defined balances-->

<BAL> <!--Beginning of a balance-->

<NAME>Margin Interest Rate</NAME> <!--Name of balance
entry-->

<DESC>Current interest rate on margin balances</DESC>

<!--Help text for this balance-->

<BALTYPE>PERCENT</BALTYPE><!--Format as percent-->

<VALUE>7.85</VALUE><!--Will be formatted 7.85%-->

<DTASOF>19990827010000</DTASOF> <!--Rate as of Aug 27,
1999 1am-->

</BAL> <!--End of balance entry-->

</BALLIST> <!--End of balances-->
428 13.11 Complete Example

</INVBAL>

<INVOOLIST>

<OOBUYSTOCK>

<OO>

<FITID>23321</FITID><!--FI transaction ID-->

<SECID> <!--Security ID-->

<UNIQUEID>666678578</UNIQUEID><!--CUSIP for Hackson
Unlimited-->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<DTPLACED>19990624031505</DTPLACED> <!--Order placed 6/
24/96 3:15:05pm-->

<UNITS>100</UNITS><!--100 shares-->

<SUBACCT>CASH</SUBACCT><!--Purchase with cash-->

<DURATION>GOODTILCANCEL</DURATION><!--GOODTILCANCEL-->

<RESTRICTION>NONE</RESTRICTION><!--No special
restrictions-->

<LIMITPRICE>50.00</LIMITPRICE><!--Limit price $50/share-->

</OO>

<BUYTYPE>BUY</BUYTYPE><!--Normal buy-->

</OOBUYSTOCK>

</INVOOLIST>

</INVSTMTRS>

</INVSTMTTRNRS> <!--End of first response-->

</INVSTMTMSGSRSV1>

<SECLISTMSGSRSV1>

<SECLIST> <!--Beginning of securities list-->

<STOCKINFO> <!--Beginning of 1st security ID-->

<SECINFO>

<SECID> <!--Security ID-->

<UNIQUEID>123456789</UNIQUEID><!--CUSIP for the stock -->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<SECNAME>Acme Development, Inc.</SECNAME>

<TICKER>ACME</TICKER> <!--Ticker symbol-->

<FIID>1024</FIID> <!--FI internal security identifier-->

</SECINFO>

<YIELD>10</YIELD> <!--10% yield-->

<ASSETCLASS>SMALLSTOCK</ASSETCLASS><!--Small Capital Stock asset
class-->

</STOCKINFO> <!--End of security ID-->

<STOCKINFO>

<SECINFO>
OFX 2.0 Specification 4296/30/00

nt.
<SECID> <!--Security ID-->

<UNIQUEID>666678578</UNIQUEID><!--CUSIP for the stock -->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<SECNAME>Hackson Unlimited, Inc.</SECNAME>

<TICKER>HACK</TICKER> <!--Ticker symbol-->

<FIID>1027</FIID> <!--FI internal security identifier-->

</SECINFO>

<YIELD>17</YIELD> <!--17% yield-->

<ASSETCLASS>SMALLSTOCK</ASSETCLASS><!--Small Capital Stock asset
class-->

</STOCKINFO>

<OPTINFO> <!--End of security ID-->

<SECINFO>

<SECID> <!--Security ID-->

<UNIQUEID>000342222</UNIQUEID><!--CUSIP for the option -->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<SECNAME>Lucky Airlines Jan 97 Put</SECNAME>

<TICKER>LUAXX</TICKER> <!--Ticker symbol-->

<FIID>0013</FIID> <!--FI internal security identifier-->

</SECINFO>

<OPTTYPE>PUT</OPTTYPE>

<STRIKEPRICE>35.00</STRIKEPRICE><!--Strike price $35/share-->

<DTEXPIRE>19990121</DTEXPIRE><!--Option expires Jan 21, 1999-->

<SHPERCTRCT>100</SHPERCTRCT> <!--100 shares per contract-->

<SECID> <!--Security ID-->

<UNIQUEID>000342200</UNIQUEID><!--CUSIP for the underlying
stock -->

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<ASSETCLASS>LARGESTOCK</ASSETCLASS><!--Large Capital Stock asset
class-->

</OPTINFO> <!--End of option information-->

</SECLIST> <!--End of securities list-->

</SECLISTMSGSRSV1>

</OFX> <!--End of OFX request data-->

13.12 Complete 401(k) Example

This example is for a user who requests a 401(k) investment statement download for a single accou
430 13.12 Complete 401(k) Example

The request file:

<OFX> <!--Beginning of request data-->

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ> <!--End of signon-->

</SIGNONMSGSRQV1>

<INVSTMTMSGSRQV1>

<INVSTMTTRNRQ> <!--First request in file-->

<TRNUID>1002</TRNUID> <!--Unique ID for this request-->

<INVSTMTRQ> <!--Beginning of statement download-->

<INVACCTFROM> <!--Identify the account: -->

<BROKERID>121099999</BROKERID><!--FI ID-->

<ACCTID>999988</ACCTID><!--Account number-->

</INVACCTFROM> <!--End of account ID-->

<INCTRAN> <!--Request transactions-->

<DTSTART>20000101120000</DTASOF><!--Send transactions posted
after Jan 1, 2000 12pm-->

<INCLUDE>Y</INCLUDE> <!--Include transactions -->

</INCTRAN>

<INCPOS> <!--Request positions -->

<INCLUDE>Y</INCLUDE> <!--Include current positions -->

</INCPOS>

<INC401K>Y</INC401K> <!--Include 401(k) account info -->

<INC401KBAL>Y</INC401KBAL><!--Include 401(k) balances -->

</INVSTMTRQ>

</INVSTMTTRNRQ> <!--End of first request-->

</INVSTMTMSGSRQV1>

</OFX> <!--End of OFX request data-->
OFX 2.0 Specification 4316/30/00

ction
tax
)

A typical server response:

This user is paying back a loan from the 401(k) account and then contributing pretax dollars. A transa
is shown paying principle to Rollover and another paying interest to Rollover. Following that is a pre
contribution transaction. This is then followed by the list of the 401(k) balances and finally the 401(k
account information including a year-to-date summary.

<OFX> <!--Beginning of request data-->

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS> <!--End of signon-->

</SIGNONMSGSRSV1>

<INVSTMTMSGSRSV1>

<INVSTMTTRNRS> <!--First request in file-->

<TRNUID>1002</TRNUID><!--Client ID for this request-->

<STATUS>

<CODE>0</CODE> <!--0 = accepted, good data follows-->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<INVSTMTRS> <!--Beginning of statement download-->

<DTASOF>>20000131172605.000[-4:EST]</DTASOF> <!--Statement as
of Jan 31, 2000 5:26pm-->

<CURDEF>USD</CURDEF><!--Default currency is US Dollar-->

<INVACCTFROM><!--Beginning of account information-->

<BROKERID>121099999</BROKERID><!--FI ID-->

<ACCTID>999988</ACCTID><!--Account number-->

</INVACCTFROM><!--End of account information-->

<INVTRANLIST>

<DTSTART>20000105172532.000[-5:EST]

<DTEND>20000131172532.000[-4:EST]

<BUYMF>

<INVBUY>

<INVTRAN>

<FITID>212839062820295310723</FITID>

<DTTRADE>20000119000000.000[-5:EST]</DTTRADE>

</INVTRAN>

<SECID>

<UNIQUEID>744316100</UNIQUEID>

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<UNITS>14.6860</UNITS>
432 13.12 Complete 401(k) Example

<UNITPRICE>18.9000</UNITPRICE>

<TOTAL>277.5700</TOTAL>

<CURRENCY>

<CURRATE>1.0000</CURRATE>

<CURSYM>USD</CURSYM>

</CURRENCY>

<SUBACCTSEC>OTHER</SUBACCTSEC>

<SUBACCTFUND>OTHER</SUBACCTFUND>

<LOANID>2</LOANID>

<LOANPRINCIPAL>277.5700</LOANPRINCIPAL>

<LOANINTEREST>0.0000</LOANINTEREST>

<INV401KSOURCE>ROLLOVER</INV401KSOURCE>

<DTPAYROLL>20000114000000.000[-5:EST]</DTPAYROLL>

<PRIORYEARCONTRIB>N</PRIORYEARCONTRIB>

</INVBUY>

<BUYTYPE>BUY

</BUYMF>

<BUYMF>

<INVBUY>

<INVTRAN>

<FITID>212839062820510822977</FITID>

<DTTRADE>20000119000000.000[-5:EST]</DTTRADE>

</INVTRAN>

<SECID>

<UNIQUEID>744316100</UNIQUEID>

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<UNITS>2.0220</UNITS>

<UNITPRICE>18.9000</UNITPRICE>

<TOTAL>38.2200</TOTAL>

<CURRENCY>

<CURRATE>1.0000</CURRATE>

<CURSYM>USD</CURSYM>

</CURRENCY>

<SUBACCTSEC>OTHER</SUBACCTSEC>

<SUBACCTFUND>OTHER</SUBACCTFUND>

<LOANID>2</LOANID>

<LOANPRINCIPAL>0.0000</LOANPRINCIPAL>

<LOANINTEREST>38.2200</LOANINTEREST>

<INV401KSOURCE>ROLLOVER</INV401KSOURCE>

<DTPAYROLL>20000114000000.000[-5:EST]</DTPAYROLL>

<PRIORYEARCONTRIB>N</PRIORYEARCONTRIB>
OFX 2.0 Specification 4336/30/00

</INVBUY>

<BUYTYPE>BUY

</BUYMF>

<BUYMF>

<INVBUY>

<INVTRAN>

<FITID>212849815151950488609</FITID>

<DTTRADE>20000106000000.000[-5:EST]</DTTRADE>

</INVTRAN>

<SECID>

<UNIQUEID>744316100</UNIQUEID>

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<UNITS>4.9010</UNITS>

<UNITPRICE>18.7900</UNITPRICE>

<TOTAL>92.0900</TOTAL>

<CURRENCY>

<CURRATE>1.0000</CURRATE>

<CURSYM>USD</CURSYM>

</CURRENCY>

<SUBACCTSEC>OTHER</SUBACCTSEC>

<SUBACCTFUND>OTHER</SUBACCTFUND>

<INV401KSOURCE>PRETAX</INV401KSOURCE>

<DTPAYROLL>19991231000000.000[-5:EST]</DTPAYROLL>

<PRIORYEARCONTRIB>Y</PRIORYEARCONTRIB>

</INVBUY>

<BUYTYPE>BUY</BUYTYPE>

</BUYMF>

</INVTRANLIST>

<INV401KBAL>

<PRETAX>31690.340000</PRETAX>

<PROFITSHARING>10725.640000</PROFITSHARING>

<ROLLOVER>15945.750000</ROLLOVER>

<OTHERVEST>108.800000</OTHERVEST>

<TOTAL>58470.530000</TOTAL>

</INV401KBAL>

<INV401K>

<EMPLOYERNAME>ELGIN NATIONAL INDUSTRIES INC</EMPLOYERNAME>

<PLANID>4343</PLANID>

<PLANJOINDATE>19940101000000.000[-5:EST]</PLANJOINDATE>

<MATCHINFO>

<MATCHPCT>0.00</MATCHPCT>
434 13.12 Complete 401(k) Example

</MATCHINFO>

<CONTRIBINFO>

<CONTRIBSECURITY>

<SECID>

<UNIQUEID>744316100</UNIQUEID>

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<PRETAXCONTRIBPCT>50.0000</PRETAXCONTRIBPCT>

<PROFITSHARINGCONTRIBPCT>100.0000
</PROFITSHARINGCONTRIBPCT>

<ROLLOVERCONTRIBPCT>100.0000</ROLLOVERCONTRIBPCT>

<OTHERVESTPCT>100.0000</OTHERVESTPCT>

</CONTRIBSECURITY>

<CONTRIBSECURITY>

<SECID>

<UNIQUEID>74431M105</UNIQUEID>

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<PRETAXCONTRIBPCT>25.0000</PRETAXCONTRIBPCT>

<PROFITSHARINGCONTRIBPCT>0.0000
</PROFITSHARINGCONTRIBPCT>

<ROLLOVERCONTRIBPCT>0.0000</ROLLOVERCONTRIBPCT>

<OTHERVESTPCT>0.0000</OTHERVESTPCT>

</CONTRIBSECURITY>

<CONTRIBSECURITY>

<SECID>

<UNIQUEID>743969107</UNIQUEID>

<UNIQUEIDTYPE>CUSIP</UNIQUEIDTYPE>

</SECID>

<PRETAXCONTRIBPCT>25.0000</PRETAXCONTRIBPCT>

<PROFITSHARINGCONTRIBPCT>0.0000
</PROFITSHARINGCONTRIBPCT>

<ROLLOVERCONTRIBPCT>0.0000</ROLLOVERCONTRIBPCT>

<OTHERVESTPCT>0.0000</OTHERVESTPCT>

</CONTRIBSECURITY>

</CONTRIBINFO>

<INV401KSUMMARY>

<YEARTODATE>

<DTSTART>20000101000000</DTSTART>

<DTEND>20000131000000</DTEND>

<CONTRIBUTIONS>

<PRETAX>843.2500</PRETAX>

<AFTERTAX>43.4200</AFTERTAX>
OFX 2.0 Specification 4356/30/00

<MATCH>421.6200</MATCH>

<TOTAL>1308.2900</TOTAL>

</CONTRIBUTIONS>

</INV401KSUMMARY>

</INV401K>

</INVSTMTRS>

</INVSTMTTRNRS>

</INVSTMTMSGSRSV1>

</OFX>
436 13.12 Complete 401(k) Example

ith a

to

ith

rs.
is

ill
CHAPTER 14 BILL PRESENTMENT

14.1 Overview

Bill Presentment (PRES) is the electronic delivery of a bill from a biller to a customer.

Although some billers may provide Bill Presentment service themselves, many will choose to work w
bill publisher that provides Bill Presentment service on behalf of many billers. For this reason, Bill
Presentment focuses on connecting customers to bill publishers.

14.1.1 Bill Presentment Model

This section summarizes the process of receiving bills electronically, starting with the steps required
find a bill publisher and set up Bill Presentment service.

To receive bills electronically, the client:

� Finds one or more billers by searching a biller directory server.

� Determines which bill publishers provide Bill Presentment service for the billers.

� Enrolls with a bill publisher for Bill Presentment service

� Signs on with the bill publisher and activates Bill Presentment service for one or more accounts w
one or more billers.

� Requests electronic bills from the bill publisher.

� (Optionally) Pays bills using the OFX Bill Payment service.

14.1.2 Servers and Message Sets

During the billing process, the client typically communicates with two OFX servers:

� Biller directory server:An independent server that stores information about billers and bill publishe
Clients can query this server to find the bill publishers that serve the billers in which the customer
interested.

� Bill publisher server:The server that delivers bills to customers. A single bill publisher can provide B
Presentment service for many billers. In some cases, a biller might act as its own bill publisher.
OFX 2.0 Specification 4376/30/00

ly

for

rivate
this
t does
the
. For

y of
at
ess of
sitive

te the

s that
r that
Although it is possible for a single server to perform both of the functions listed above, it is more like
that independent directory servers will provide clients with a single source for finding billers. To allow
these functions to be routed separately by clients, Bill Presentment defines separate message sets
directory query and bill delivery.

� Biller Directory message set <PRESDIRMSGSETV1>

� Bill Delivery message set <PRESDLVMSGSETV1>

For additional information about the message sets defined for Bill Presentment, see section 14.7.

14.2 Biller Directory

To find billers, the client sends a <FINDBILLERRQ> request to the biller directory server. The biller
directory server returns a <FINDBILLERRS> response.

<FINDBILLERRQ> and <FINDBILLERRS> are part of the Biller Directory message set
<PRESDIRMSGSETV1>. The message set tags are <PRESDIRMSGSRQV1> and
<PRESDIRMSGSRSV1>.

14.2.1 Client Signon to the Biller Directory Server

Because the client does not enroll with the biller directory server and the directory does not contain p
data, the client may perform an anonymous signon (as described in section 2.5.1) when requesting
service. Unlike the FI Profile message set (see Chapter 7, especially section 7.1.4), this message se
not currently support customer-specific directories. The response should be identical whether or not
request arrived with an anonymous <SONRQ>. Compliant servers must support both request forms
more information about signon requests, refer to Chapter 2, "Structure."

14.2.2 Search Arguments

If the client omits all elements in the <FINDBILLERRQ>, the client is requesting a complete director
billers. Otherwise, the client wants to filter results based on the included elements. For each biller th
matches the elements in the request, the biller directory server returns the complete name and addr
the biller, plus the biller ID and bill publisher name. Servers can return information using case-insen
matching, but this is not required.

14.2.3 Identification of Bill Publishers

Bill Publishers must be uniquely and consistently identified by name. Clients need some way to rela
bill publisher name given by a directory server to their own databases of known and approved bill
publishers. Since the number of bill publishers is relatively small, and the number of directory server
must be coordinated even smaller, the official corporate name of a bill publisher will serve as an ID fo
publisher.
438 14.2 Biller Directory

e
that

a
date
e.

query,
nsitive
14.2.4 Find Biller Request <FINDBILLERRQ>

The <FINDBILLERRQ> request must appear within a <FINDBILLERTRNRQ> transaction wrapper.

The Biller directory timestamp in the <FINDBILLERRQ> (<DTUPDATE>) selection criterion allows th
client to request all directory entries that have been added or changed since a point in time. Clients
want to receive an updated list of billers and bill publishers can use <DTUPDATE> to avoid receiving
response if nothing has changed. <DTUPDATE> is returned by servers in responses to indicate the
and time of the newest or most recently changed entry, whether or not it was included in the respons
Clients performing narrow searches cannot use <DTUPDATE> unless they save the value for each
and send the corresponding value in future requests. Servers can return information using case-inse
matching, but this is not required.
OFX 2.0 Specification 4396/30/00

the
The name and address fields refer to the biller, except for <CONSUPOSTALCODE> which refers to
customer’s address.

Note: Future versions of OFX will require <ADDR1> if <ADDR2> is specified and
<ADDR2> if <ADDR3> is specified.

Tag Description

<FINDBILLERRQ>

<DTUPDATE> Date and time of last change to any biller entry as reported by the server on
previous query,datetime.

If present, <FINDBILLERRS> will include only Billers whose information has
changed or been added since this time.

<BILLERID> ID of this biller at this bill publisher,A-32

<NAME> Biller’s name,A-32

<ADDR1> Biller’s address line 1,A-32

<ADDR2> Biller’s address line 2,A-32

<ADDR3> Biller’s address line 3,A-32

<CITY> Biller’s city, A-32

<STATE> Biller’s state,A-5

<POSTALCODE> Biller’s postal code,A-11

<COUNTRY> ISO/DIS-3166 3-letter country code standard,A-3

<SIC> Standard Industry Code,N-6

<CONSUPOSTALCODE> Postal code of customer, to allow server to filter out billers that do not do
business in the customer’s area,A-11

<INCIMAGES> Y if the client wants images (logos) returned,Boolean

</FINDBILLERRQ>
440 14.2 Biller Directory

the
refer

ber.

r

14.2.5 Find Biller Response <FINDBILLERRS>

<FINDBILLERRS> must appear within a <FINDBILLERTRNRS> transaction wrapper.

The response is a list of <BILLERINFO> aggregates.

14.2.5.1 Biller Information <BILLERINFO>

<BILLERINFO> includes information about a single biller.

Besides basic name and address information, <BILLERINFO> includes the <BILLPUB> and
<BILLERID> elements. These elements will be used with the customer’s account number to identify
customer’s account with the biller. For more information about the account-identification aggregates,
to <PRESACCTFROM> and <PRESACCTTO> in section 14.3.2.2.

<BILLERINFO> can optionally include elements that specify the format of valid account numbers.
<ACCTFORMAT> and <ACCTEDITMASK> provide information to the client. <HELPMESSAGE>
provides a text message that the client can display to the customer.

To avoid the complications caused by invalid account numbers, <BILLERINFO> can also include a
<VALIDATE> URL element that the client application can use to validate the customer’s account num
See section 14.2.7for more detail on this.

Tag Description

<FINDBILLERRS>

<DTUPDATE> Date and time of last addition or modification to the entries in the directory, whethe
part of this response or not,datetime

<BILLERINFO> Zero or more <BILLERINFO> aggregates

</BILLERINFO>

</FINDBILLERRS>

Tag Description

<BILLERINFO>

<BILLPUB> Official standard name of the bill publisher,A-32

<BILLERID> ID of this biller at this bill publisher,A-32

<NAME> Name of the biller,A-32

<ADDR1> Biller’s address line 1,A-32

<ADDR2> Biller’s address line 2,A-32

<ADDR3> Biller’s address line 3,A-32
OFX 2.0 Specification 4416/30/00

s

,

r

er

te
Note: Future versions of OFX will require <ADDR1> if <ADDR2> is specified and
<ADDR2> if <ADDR3> is specified.

<CITY> Biller’s city, A-32

<STATE> Biller’s state,A-5

<POSTALCODE> Biller’s postal code,A-11

<COUNTRY> Biller’s country; 3-letter country code from ISO/DIS-3166,A-3

<SIC> Standard Industrial Classification Code,N-6

<PHONE> Biller’s phone number for customer information (if a special number exist
for electronic billing information, use that number),A-32

<PAYMENTINSTRUMENTS> Types of payment that the biller can accept electronically, see section
14.2.8.1

</PAYMENTINSTRUMENTS>

<ACCTFORMAT> Regular expression describing the account number format. For example
^[0-9]{8,10}$ means the account number must be numbers only, and the
length must be 8 to 10 numbers.A-255

<ACCTEDITMASK> An alternative string describing the account number format. See below fo
details. The client can use the edit mask to assist the user in entering the
account number.A-255

<HELPMESSAGE> Human-readable message that the client can display to assist the custom
in entering his or her account number. For example: “Enter in the last 10
digits of your account number without any spaces or dashes.” This is
defined by the biller during the implementation phase.A-255

<RESTRICT> Human-readable description of any restrictions on who may sign up with
this biller. For example: “Please be sure to enter each account number
separately if you have more than one account with us. Your mail bill will
be turned off only after another paper billing cycle has passed. Please no
that this program is initially available for account numbers beginning with
X Y and Z only.” This is defined by the biller during the implementation
phase.A-255

<LOGO> URL of the biller’s logo. If the client requested images, the logo should be
included via multipart MIME in this response.URL

<VALIDATE> URL for validation. The client application may use this to validate the
customer’s account number, see section 14.2.7. URL

<BILLERINFOURL> URL of human-readable description of additional information the biller
would like the customer to have with regard to signing up.URL

</BILLERINFO>

Tag Description
442 14.2 Biller Directory

t,
acter
s match

4128:
While <ACCTFORMAT> uses Unix-style regular expressions to describe the account number forma
<ACCTEDITMASK> provides a simpler, alternative method. It uses two special characters. The char
@ matches one letter, upper or lowercase. The character # matches one number. All other character
themselves (letters are case insensitive).

Usage examples:

The following represents a 16-digit account number:

################

A 16-digit account number, separated by hyphens into 4-digit chunks. First four characters must be

4128-####-####-####

4 letters, a hyphen, a number, a hyphen, 5 numbers:

@@@@-#-#####

10-digit account number that must begin with 153AG, and whose final 5 characters are numbers:

153AG#####

14.2.6 Status Codes <FINDBILLERRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)
OFX 2.0 Specification 4436/30/00

he

r.

est.

56-
14.2.7 Account Number Validation

Servers should implement a lightweight CGI (or equivalent) to validate account numbers. The URL
provided in the <VALIDATE> can be accessed with an HTTP GET with three arguments: BILLERID,
ACCOUNTNUMBER and CUSTOMERPOSTALCODE. The URL should respond with a text file that
includes the following values:

1. Status: (Mandatory)

Error: An error condition (wrong number of parameters, Database error, etc.). Clarifying text may
accompany the error status.

Passed: The account number is in an acceptable form for this biller (this is not a guarantee that t
account will be accepted for the service).

Failed: The account number does not correspond to an acceptable account number for this bille
Clarifying text may accompany the failed status.

2. Account: (Optional) The preferred format or version of the account number presented in the requ

Heading: (Optional) Additional text to help explain problems to end-users.

Example:
<VALIDATE> = http://testit.com/validate.cgi

Client application uses HTTP GET with “http://testit.com/validate.cgi?billerid=5454&accountnumber=123-4
7890&customerpostalcode=12345”

The server would respond with one of these:

1. Error
Content-type: text/plain

<STATUS>error

<HEADING>The server is unable to process your request at this time. Please resubmit.

2. Failure
Content-type: text/plain

<STATUS>failed

<HEADING>123-456-7890 does not appear to be a valid account number

3. Passed
Content-type: text/plain

<STATUS>passed

<ACCOUNT>1234567890
444 14.2 Biller Directory

c
nts can

means

trator.

rom
get

ent
rator
pport
the
14.2.8 Biller Payment Restrictions

In the <PAYMENTINSTRUMENTS> aggregate of <BILLERINFO> aggregate (see section 14.2.5.1), the
biller specifies the type of payment instruments it can accept for electronic payment. Since electroni
payment does not have to occur through the OFX Bill Payment message set, the payment instrume
include some that OFX doesn’t support—for example, CyberCash.

In some cases, a biller may have arranged for a certain party to act as its payment concentrator. This
that the biller expects to receive good funds and remit advice in a pre-arranged format from these
concentrators. Such a biller will want to have customers direct their payments to the payment concen

The <PAYMENTINSTRUMENTS> aggregate supports the specification of a payment concentrator f
which the biller wants to receive funds. However, OFX currently does not provide a way for clients to
information about payment concentrators. Knowledge of payment concentrators will have to be
“hardwired” into client applications. For example, the client application may know that a certain paym
concentrator, BigConcentrator, is capable of receiving DigiCash funds. A biller who has BigConcent
as its payment concentrator can then accept DigiCash funds from the customer without having to su
the DigiCash protocol and infrastructure directly. The application would direct the DigiCash funds to
concentrator, who would in turn transfer funds and remit advice to the biller using the agreed-upon
method.

14.2.8.1 Payment Instruments <PAYMENTINSTRUMENTS>

In the <PAYMENTINSTRUMENTS> aggregate, billers list which payment instruments they accept.

Tag Description

<PAYMENTINSTRUMENTS> Opening tag for payment instruments

<PAYMENTINSTRUMENT> One or more payment instrument aggregates, see section 14.2.8.2

</PAYMENTINSTRUMENT>

</PAYMENTINSTRUMENTS> Closing tag for payment instruments
OFX 2.0 Specification 4456/30/00

oes
re

th the

rtions of

nds
14.2.8.2 Payment Type and Brand <PAYMENTINSTRUMENT>

Each payment instrument is described by <PMTINSTRUMENTTYPE> and <BRAND>. If the server d
not specify <BRAND>, the client assumes that all brands of the given <PMTINSTRUMENTTYPE> a
acceptable.

14.2.8.3 Payment Instrument Types <PMTINSTRUMENTTYPE>

If the <BILLERINFO> does not list <PAYMENTINSTRUMENTS>, the following single
<PAYMENTINSTRUMENT> is implied:

<PAYMENTINSTRUMENT>

<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE>

</PAYMENTINSTRUMENT>

14.3 Customer Signup

Once the customer has located a biller and its associated bill publisher, the customer must enroll wi
bill publisher for Bill Presentment service and activate accounts for one or more billers at that bill
publisher.

Bill Presentment uses the standard OFX Signup message set. This section discusses only those po
signup that differ for Bill Presentment. For more information about the Signup message set, refer to
Chapter 8, "Activation & Account Information."

Tag Description

<PAYMENTINSTRUMENT> Opening tag for payment instrument aggregate

<PMTINSTRUMENTTYPE> Payment type, see section 14.2.8.3

<BRAND> Accepted brand for given payment type,A-32

</PAYMENTINSTRUMENT> Closing tag for payment instrument aggregate

Type Description

CONCENTRATOR Organization that has a business agreement with the biller to send the biller fu
and remittance advice.

CHECKINGACCOUNT Draft on a demand deposit account (US)

CREDITCARD Payment by Auth/Settle using Credit Card networks

ECOIN Protocol for payment with electronic cash
446 14.3 Customer Signup

The
lly

have

f its
ounts
r the

r

14.3.1 Enrollment

To enroll with a bill publisher, the client uses the standard OFX enrollment aggregate <ENROLLRQ>.
bill publisher server returns an <ENROLLRS> that provides status about the enrollment and optiona
returns a user ID and password to be used during subsequent signons.

14.3.2 Account Inquiry

To receive account information from a bill publisher, the client can use the standard OFX
<ACCTINFORQ> aggregate, contained in the <ACCTINFOTRNRQ> wrapper.

The <ACCTINFORS> response returns a <PRESACCTINFO> aggregate for each of the customer’s
accounts with the billers at that bill publisher. Typically, the response will list only those accounts that
been activated for Bill Presentment service, not all available accounts.

Unlike a financial institution, bill publishers generally won’t have information about all the accounts o
supported billers. Billers that also serve as their own bill publishers may be able return available acc
as well as activated accounts. The bill publisher can use the <AVAILACCTS> element in the profile fo
Signup message set to indicate whether the server can return available account information.

If the server cannot return information about all available accounts, the client must ask customers fo
account information prior to requesting service activation for one or more accounts.
OFX 2.0 Specification 4476/30/00

ser.
est.

ed to

ee this

>
a
dates

tifiers
14.3.2.1 Bill Presentment Account Information <PRESACCTINFO>

The <PRESACCTINFO> aggregate appears within the <ACCTINFORS> aggregate.

14.3.2.2 Account Identification <PRESACCTFROM> <PRESACCTTO>

The <PRESACCTFROM> aggregate uniquely identifies a customer’s account with a biller by the
combination of bill publisher, biller ID, and account number. Biller IDs must be unique within a bill
publisher.

Clients can optionally include a <USERID> in <PRESACCTFROM/TO> that is different from the one
used in the <SONRQ>. This <USERID> supports account activation by a third party on behalf of a u
Based on access rights granted to the <SONRQ>, it is up to the server whether to honor such a requ
More than one <SVCADD> can be present in a a single <OFX> request file on behalf of multiple
<USERID>s.

The <USERID> element is disallowed for single-customer OFX request files. When sent by or return
a client proxy (or, other group context), any <PRESACCTFROM/TO> aggregates must include the
USERID element. A client proxy would include (and receive) this element when initiating an OFX
session. But, customer-specific clients initiating a session with the same server would never use or s
information.

Note: <USERID> is not intended to identify individual users of joint accounts. If a transaction
might include two different USERIDs within otherwise identical <PRESACCTFROM>
aggregates, servers should deliver two separate bills (download the same bill twice in
<PRESLISTRS>), allow either to update the bill status (in <PRESNOTIFYRQ> or
<BILLSTATUSMODRQ>), or deliver two separate <PRESACCTINFO> aggregates in
<PRESGRPACCTINFOTRNRS>. It is up to the server to keep track of activity on joint
accounts.

The Bill Publisher would not normally know the <PAYEEID> and <PAYEELSTID> (or their <SPNAME
context) information relevant to a particular client or user. But, after setting up (or changing) Biller as
payee with some Payment provider, a client may execute a <SVCCHG> <ACCTRQ> request that up
the corresponding <PRESACCTFROM> at the Bill Publisher. This request could pass payment iden

Tag Description

<PRESACCTINFO> Opening tag for bill presentment account information

<PRESACCTFROM> Bill presentment account identification, see section 14.3.2.2

</PRESACCTFROM>

<SVCSTATUS> Status of the Bill Presentment service for this account– AVAIL, PEND, ACTIVE,
or REJECTED

<REASON> Relevant only if <SVCSTATUS>REJECTED is specified,A-255

</PRESACCTINFO> Closing tag for bill presentment account information
448 14.3 Customer Signup

ients
an
d
en (or
ment

nt

sts

on

a

to the Bill Publisher. Since this information does not make the <PRESACCTFROM> more unique, cl
may omit <SPNAME>, <PAYEEID> and <PAYEELSTID> when using <PRESACCTFROM> outside
<ACCTRQ> request. Servers should return this information in all contexts. After a client has supplie
payee information, servers must not make server-initiated changes to the information unless the giv
implied) <SPNAME> is controlled by the same provider. Such servers may include (and update) pay
identifiers from their Payment provider prior to the client including them in an <ACCTRQ> request.

Tag Description

<PRESACCTFROM>

<BILLPUB> Official standard name of bill publisher,A-32

<BILLERID> ID of this biller at this bill publisher,A-32

<BILLERNAME> Name of the biller; matches <NAME> element in <BILLERINFO>. See
section 14.2.5.1, This element may be used only in cases where
<PRESACCTFROM> is sent by the server (for example, in
<PRESBILLINFO> or <PRESACCTINFO>),A-32

<ACCTID> Account number,A-22

<PRESNAMEADDRESS> Customer’s name/address with the biller, see section 14.3.2.2.1

</PRESNAMEADDRESS>

<USERID> Customer’s user ID,A-32

<SPNAME> Service provider name. Used to scope the <PAYEEID> and /or
<PAYEELSTID> (if provided) to a particular Payment service. Allowed only
when <PAYEEID> or <PAYEELSTID> appear in <PRESACCTFROM>.A-32

Note: <SPNAME> must be supplied with <PAYEELSTID> unless Bill
Publisher also provides a payment service.

<PAYEEID2> Payee identifier. Identifies this Biller at the user's Payment provider. When se
in account activation, it is intended for storage on the Bill Presentment
database, such that it can be returned in subsequent inquiries utilizing this
aggregate. Used by clients to facilitate accurate Payee add or change reque
when the Bill Presentment service (possibly, due to a prior client <ACCTRQ>
request) knows the Payee ID at a Payment provider. The client may use this
identifier to match the Biller as known by the Bill Presentment service to a
Payee as known by the Payment provider.See section 14.5. SRVRTID

<PAYEELSTID> Payee list identifier. Identifies this Biller on the user's payee list at their
Payment provider. When sent in account activation, it is intended for storage
the Bill Presentment database, such that it can be returned in subsequent
inquiries utilizing this aggregate. Used by clients to facilitate accurate Payee
add or change requests when the Bill Presentment service (possibly, due to
prior client <ACCTRQ> request) knows the Payee List ID at a Payment
provider. The client may use this identifier to match the Biller as known by the
Bill Presentment service to a Payee as known by the Payment provider. See
section 14.5. SRVRTID

</PRESACCTFROM>
OFX 2.0 Specification 4496/30/00

n

at the

t.
<PRESACCTTO> follows the same structure as <PRESACCTFROM>.

14.3.2.2.1 Customer Information with the biller <PRESNAMEADDRESS>

Note: Future versions of OFX will require <ADDR1> if <ADDR2> is specified and
<ADDR2> if <ADDR3> is specified.

14.3.3 Service Activation

Bill Presentment uses the standard service activation messages defined in Chapter 8, "Activation &
Account Information."

The account service request aggregate <ACCTRQ> accepts action-specific aggregates for service
additions, changes, and deletions. To add Bill Presentment service to an account, the client sends a
<ACCTRQ> with an <SVCADD> for the service <SVC>PRESSVC.

14.3.3.1 Service Addition <SVCADD>

When requesting service activation using <SVCADD>, <PRESACCTTO> is used to specify the
customer’s account with a specific biller. <PRESACCTTO> includes the optional
<PRESNAMEADDRESS> aggregate to identify the customer’s name and address as it is registered
biller. In most cases however, the address specified in the <ENROLLRQ> or most recent
<CHGUSERINFORQ> is used to provide the <PRESNAMEADDRESS> when activating an accoun
Clients need only include <PRESNAMEADDRESS> if a special billing address is specified for the

Tag Description

<PRESNAMEADDRESS> Customer name and address information

<NAMEACCTHELD> Customer’s name as it appears on the account,A-96

<BUSNAMEACCTHELD> Optional “Does Business As” name associated with this account,A-96

<ADDR1> Customer’s address line 1,A-32

<ADDR2> Customer’s address line 2,A-32

<ADDR3> Customer’s address line 3,A-32

<CITY> Customer’s city,A-32

<STATE> Customer’s state,A-5

<POSTALCODE> Customer’s postal code,A-11

<COUNTRY> Customer’s country; 3-letter country code from ISO/DIS-3166,A-3

<DAYPHONE> Customer’s telephone number,A-32

<EVEPHONE> Customer’s telephone number,A-32

</PRESNAMEADDRESS>
450 14.3 Customer Signup

es for
ller’s
for

rather
tion
ate.

ld

e or
sts

it. The
to the

also

>
r the
customer at the given biller. For example, some billers and service providers may require exact match
remittance addresses. The user’s enrollment data may specify the same location described in the bi
database, but not provide an exact match. In that case, <PRESNAMEADDRESS> may be required
successful service activation.

In cases where <PRESACCTTO> is forwarded to other servers but enrollment information was used
than a client-provided <PRESNAMEADDRESS> aggregate, the <PRESNAMEADDRESS> informa
is neither stored at the server nor returned to the originating client with the <PRESACCTTO> aggreg
That is, clients which do not include the <PRESNAMEADDRESS> aggregate in their requests shou
never see it in a later response from the server.

14.3.3.2 Service Change <SVCCHG>

The server’s profile indicates support for storing <PRESNAMEADDRESS> information by including
<CANUPDATEPRESNAMEADDRESS>Y. In this case, <SVCCHG> requests may be used to updat
delete the <PRESNAMEADDRESS> information stored by the server. <CHGUSERINFORQ> reque
have no effect upon this information. Furthermore, no server-initiated transactions change the stored
address data. Servers must always return <PRESNAMEADDRESS> data exactly as the client sent
presentment server may however forward a customer’s change of address entered via <SVCCHG>
proper biller.

For servers that support storing <PRESNAMEADDRESS>, the <PRESNAMEADDRESS> data can
be used to support users who receive bills at multiple locations.

If a server’s profile includes <CANUPDATEPRESNAMEADDRESS>N, the <PRESNAMEADDRESS
should not be included in any <SVCCHG> requests. <PRESNAMEADDRESS> data is used only fo
initial activation in this case.
OFX 2.0 Specification 4516/30/00

d

ithin
es and
ngle
ccount

since
status

er for

d

14.3.4 Service Status Update for Groups of Customers

The service activation requested with <SVCADD> will often not happen immediately. In this case, a
request for account information <ACCTINFORQ> will return an <ACCTINFORS> with a
<SVCSTATUS>PEND. To find out whether the account has been activated, the client can either sen
<ACCTINFORQ> once per session until it returns <SVCSTATUS>ACTIVE, or it can include an
<ACCTSYNCRQ> in each session to catch an unsolicited <ACCTRS> response to the <SVCADD>
message.

This section describes a method of checking for status changes on behalf of a group of customers w
the Bill Presentation service. This method is designed to be used by customer service representativ
client proxy systems. This method applies only where <SVC> is PRESSVC. To check status for a si
customer, use the standard signup messages. For more information, see Chapter 8, "Activation & A
Information."

14.3.4.1 Account Information Request <ACCTINFORQ>

The client uses <ACCTINFORQ> to request information about accounts whose status has changed
the last time the request was made. This request is typically used to retrieve a list of accounts whose
has changed from <SVCSTATUS>PEND to <SVCSTATUS>ACTIVE.

For use in the Bill Presentation message set, the <ACCTINFORQ> request must appear within a
<PRESGRPACCTINFOTRNRQ> transaction wrapper. This transaction wrapper includes the identifi
the requested group. The <ACCTINFORQ> request may also appear in the <ACCTINFOTRNRQ>
wrapper described in Chapter 8, "Activation & Account Information."

Tag Description

<ACCTINFORQ> Opening tag for billing account information request

<DTACCTUP> Last <DTACCTUP> received in a response,datetime

<SVC> Zero or more. Services to be included in <ACCTINFORS>. If absent, all supporte
services are being requested.

BANKSVC = Banking service
BPSVC = Payment service
INVSVC = Investments
PRESSVC = Bill Presentment service

Note: If used in this message set, the value must be PRESSVC.

</ACCTINFORQ> Closing tag for billing account information request
452 14.3 Customer Signup

e

of
ach

owever
es are
14.3.4.2 Account Information Response <ACCTINFORS>

The <ACCTINFORS> aggregate contains zero or more <ACCTINFO> aggregates, which provide th
updated account information.

For use in this message set, the <ACCTINFORS> response must appear within a
<PRESGRPACCTINFOTRNRS> transaction wrapper.

14.3.4.3 Group Account Information Transaction Request
<PRESGRPACCTINFOTRNRQ>

As a special transaction wrapper for <ACCTINFORQ>, <PRESGRPACCTINFOTRNRQ> specifies
whether the client is requesting account information for a single user or a group of users.

If the client specifies <GROUPID>, the client is requesting updated account information for a group
users. The server returns an <ACCTINFORS> response with a <PRESACCTINFO> aggregate for e
account whose status has changed.

Standard signup messages are the preferred method for checking the status of a single customer, h
<PRESGRPACCTINFOTRNRQ> may also be used for a single customer. (Standard signup messag
described in Chapter 8, "Activation & Account Information.")

Tag Description

<ACCTINFORS> Opening tag for billing account information response

<DTACCTUP> Date and time of last update to account information on the server,datetime

<ACCTINFO> Zero or more account information aggregates, see section 8.5.3. Each
<ACCTINFO> aggregate contains at most one <PRESACCTINFO> aggregate,
consistent with section 8.5.3.

Left out of the response when no <SVC>PRESSVC accounts for the specified
<USERID> or <GROUPID> or current user are found.

Note: When <DTACCTUP> indicates the client is up-to-date, server should not
return surrounding <ACCTINFORS>.

</ACCTINFO>

</ACCTINFORS> Closing tag for billing account information response
OFX 2.0 Specification 4536/30/00

n
S>
e of

is up-
The client should specify either <USERID> or <GROUPID>; if both are absent, the server uses the
<USERID> from the signon request <SONRQ>.

14.3.4.4 Group Account Information Transaction Response
<PRESGRPACCTINFOTRNRS>

As a special transaction wrapper for <ACCTINFORS>, <PRESGRPACCTINFOTRNRS> contains a
<ACCTINFORS> aggregate with zero or more <PRESACCTINFO> aggregates. The <ACCTINFOR
aggregate returns one <PRESACCTINFO> aggregate for each account for which there was a chang
status since the <DTACCTUP> date specified. <ACCTINFORS> should not be sent when the client
to-date.

Note: Not sending a response aggregate in this case is an exception to rules outlined in
sections 2.4.6and 3.1.5. And, sending a partial response (not every <ACCTINFO> aggregate
for the user or group, just changed information) differs from the normal processing of
<ACCTINFORQ> (see section 8.5). Within the Signup message set, the <ACCTINFORS>
contains all account information if any portion is out of date.

The server includes information for only those USERIDs for which the requester has access rights.

Note: <USERID> is not intended to identify individual users of joint accounts. If a transaction
might include two different USERIDs within otherwise identical <PRESACCTFROM>
aggregates, servers should deliver two separate copies of the account information (download
almost the same account information twice). It is up to the server to keep track of activity on
joint accounts. This may occur if, for example, joint account holders are associated with the
same <GROUPID>,

Tag Description

<PRESGRPACCTINFOTRNRQ> Opening tag for the transaction request

<TRNUID> Client-assigned globally unique ID for this transaction,trnuid

<CLTCOOKIE> Data to be echoed in the transaction response,A-32

<TAN>

Specify either <USERID> or
<GROUPID>

Transaction authorization number,A-80

<USERID> Requests account information for the specified user,A-32

- or -

<GROUPID> Requests account information for users in the group,A-32

<ACCTINFORQ> Account information request aggregate, (See section 8.5.1).

</ACCTINFORQ>

</PRESGRPACCTINFOTRNRQ> Closing tag for the transaction request
454 14.3 Customer Signup

14.3.4.5 Status Codes <PRESGRPACCTINFORS>

Tag Description

<PRESGRPACCTINFOTRNRS> Opening tag for the transaction response

<TRNUID> Client-assigned globally unique ID for this transaction,trnuid

<STATUS>

</STATUS>

<CLTCOOKIE> Data to be echoed in the transaction response,A-32

<ACCTINFORS> Account information response aggregate. See section 8.5.2.

</ACCTINFORS>

</PRESGRPACCTINFOTRNRS> Closing tag for the transaction response

Code Meaning

0 Success (INFO)

1 The client is up-to-date

2000 General error (ERROR)

2002 General account error (ERROR)

2006 Account not found (ERROR)

2008 Account not authorized (ERROR)

15508 Transaction not authorized (ERROR)
OFX 2.0 Specification 4556/30/00

ds
ach
of

n bill.

quire

more
e server
d in an

ate,
ovide
14.4 Bill Delivery

The Bill Delivery message set contains messages to obtain bills. The message set
<PRESDLVMSGSETV1> contains the following aggregates: <PRESDLVMSGSRQV1> and
<PRESDLVMSGSRSV1>.

14.4.1 Bill Delivery Process

Typically, the client periodically requests a list of bills from the bill publisher. The bill publisher respon
with a list of bills, each of which contains summary data such as the due date and amount due. For e
bill, the bill publisher might also return a URL to a Web site that contains an HTML-rendered version
the bill. Depending on the client’s request, the server might also return structured bill detail for a give

The aggregate for a bill list request is <PRESLISTRQ>. This request must be wrapped inside
<PRESLISTTRNRQ>. There is no synchronization wrapper for bill list requests, since clients that re
a list of bills can send another <PRESLISTRQ>.

The transaction wrapper <PRESLISTTRNRQ> contains optional elements that allow bills for one or
customers to be accessed by customer service representatives or client proxy systems. It is up to th
to decide who can access bills other than their own; it is recommended that all such access be logge
audit trail.

14.4.2 Bill List Retrieval

<PRESLISTRQ> retrieves bills from the bill publisher. The bill publisher returns a <PRESLISTRS>
response that contains a list of one or more bills.

14.4.2.1 Bill List Request <PRESLISTRQ>

The client requests bills from a bill publisher by date range. To specify the date range, clients use
<DTSTART> and <DTEND>, as described in section 3.2.7. The date range includes all bills that were
added or modified within the date range.

The bill publisher returns information sufficient to identify the biller and provide the amount due, due d
and remittance information so that a payment can be made to the biller. The bill publisher does not pr
a viewable form of the bill, but returns a URL to an HTML rendering of the bill. Billing detail, such as
individual purchases or transactions, can be included in the original response or obtained from a
subsequent <PRESDETAILRQ>.
456 14.4 Bill Delivery

he

g.

.

ng
The <PRESLISTRQ> must be wrapped in the <PRESLISTTRNRQ> transaction wrapper.

Tag Description

<PRESLISTRQ> Opening tag for bill list request

<BILLPUB> Official standard name of bill publisher,A-32

<DTSTART> If present, indicates earliest date for which to include bills,datetime

<DTEND> If present, indicates latest date for which to include bills,datetime

<DTDUEBY> If present, indicates that the customer is requesting bills due on or before t
date/time specified in <DTDUEBY>.datetime

<BILLERID> Biller Identifier, If present, restricts the response to the given Biller,A-32

<BILLID> If present, restrict response to given statement identifier,A-32

<BILLTYPE> 0 or more. If present, indicates which types of bills the customer is
requesting. Possible values are:

BILL = Invoice of an amount due to the biller that is payable.

STATEMENT = History of activity on an account with the biller that is not
payable.

NOTICE = Generic letter from either the biller or the bill publisher that is
not payable.

<BILLSTATUSCODE> 0 or more. If present indicates which bill statuses the customer is requestin
Possible values are:

NEW = The server has not sent the bill to either the client or client proxy.
This is the initial status code of a bill.

DELIVERED = The server has sent the bill to either a client or client proxy

VIEWED = The customer has seen the bill. Implies previous status of
DELIVERED.

RETIRED = The customer no longer wishes to see this bill. Implies
previous status of DELIVERED.

WITHDRAWN = The biller or publisher no longer wishes this bill to be
displayed.

UNDELIVERABLE = Attempts to deliver this bill to the consumer in a
timely fashion have failed. This status is not generally used when presenti
a bill to a consumer. However, notifications using this status cover many
useful cases.
OFX 2.0 Specification 4576/30/00

e:

an

s

-

ng
d

e
e

<BILLPMTSTATUSCODE> 0 or more. Bill payment status code. If present, indicates the customer is
requesting bills matching the bill payment status code. Possible values ar

NONE = There is neither a payment scheduled, nor has one been made
against this bill. This may be the initial payment status of a bill.

SCHEDULED = A payment has been scheduled, but not yet processed
against this bill.

PROCESSED = The payment has been processed against this bill, and c
no longer be cancelled.

POSTED = The biller has posted the payment against this bill.

PAIDOUTOFBAND = A Payment has been initiated for this bill via a
mechanism that does not report status via OFX. This status is intended to
indicate the customer has paid the biller directly with cash or a check or ha
initiated an electronic payment through a mechanism that does not report
payment status through OFX.

AUTOPAY = The Biller or Service Provider will initiate the payment based
on a pre-authorization by the customer, typically a “good until cancelled”
instruction with no defined end date. In the US this is often implemented
using a recurring pre-authorized ACH debit, though some Billers offer pre
authorized automatic payment through credit card. Examples include
monthly deductions to cover a mortgage, regular payments from a checki
account to a credit card, and the Automatic Payment Service (APS) offere
by many utilities. Like NONE, this may be the initial payment status of the
bill.

CANCELLED = The customer cancelled the payment that was previously
scheduled.

UNPAYABLE = None of the Payment Instruments allowed for this bill are
supported by the Payment Provider. This is intended to be used where th
bill restricts payment to a subset of the Payment Instruments allowed in th
Biller Directory entry. This could occur if the Payment Provider or the
Biller changed their supported payment instrument types after enrollment
and account activation.

<NOTIFYWILLING> Flag indicating that client is prepared to send notifications of bill delivery, if
desired (see section 14.4.5), Boolean

<INCLUDEDETAIL> Flag indicating bill detail should be included too,Boolean

<INCLUDEBILLSTATUS> Flag indicating bill status should be included too,Boolean

Default is N.

<INCLUDEBILLPMTSTATUS> Flag indicating bill payment status should be included,Boolean

Default is N.

<INCLUDESTATUSHIST> Flag indicating bill status history and/or bill payment status history should
be included too. Only valid if <INCLUDEBILLSTATUS>Y and/or
<INCLUDEBILLPMTSTATUS>Y are specified.Boolean

Default is N.

Tag Description
458 14.4 Bill Delivery

t
<INCLUDECOUNTS> If Y, indicates that the response should include <PRESCOUNTS> and no
<PRESBILLINFO>,Boolean

May not be Y if <INCLUDESUMMARY>Y, <INCLUDEDETAIL>Y,
<INCLUDEBILLSTATUS>Y, <INCLUDEBILLPMTSTATUS>Y, or
<INCLUDESTATUSHIST>Y are specified.

Default is N.

<INCLUDESUMMARY> Include bill summaries (<PRESBILLINFO>),Boolean.

May not be N if <INCLUDEDETAIL>Y, <INCLUDEBILLSTATUS>Y,
<INCLUDEBILLPMTSTATUS>Y, <INCLUDESTATUSHIST>Y, or
<INCLUDECOUNTS>N are specified.

Unlike other boolean elements of this request, the default is Y.

</PRESLISTRQ> Closing tag for bill list request

Tag Description
OFX 2.0 Specification 4596/30/00

ill
n

ach

ue
14.4.2.2 Bill List Response <PRESLISTRS>

The <PRESLISTRS> response must appear within a <PRESLISTTRNRS> transaction wrapper.

The <PRESLISTRS> response can contain zero or more bill summaries, with optional detail. Each b
summary corresponds to a (usually monthly) bill. When a server has no bills to return, it should retur
<STATUS><CODE>0 and leave out the <PRESLIST> within the <PRESLISTRS>.

When multiple selection criteria are used they are ANDed (as described in section 2.4.4.4). When counts
are requested in the <PRESLISTRQ> (<INCLUDECOUNTS>), the server should include counts of e
status requested where the bill’s <BILLSTATUSCODE> matches one of those specified in the
<PRESLISTRQ>, and the bill's <BILLPMTSTATUSCODE> matches one of those specified in the
<PRESLISTRQ>. Thus, a request containing <BILLSTATUSCODE>NEW,
<BILLSTATUSCODE>DELIVERED, <BILLSTATUSCODE>WITHDRAWN>,
<BILLPMTSTATUSCODE>NONE, and <BILLPMTSTATUSCODE>CANCELLED>, will return three
<BILLSTATUSCODE> counts and two <BILLPMTSTATUSCODE> counts. The sum of
<BILLSTATUSCODE> counts will be equal to the sum of the <BILLPMTSTATUSCODE> counts. No
inference can be drawn as to which bills have a combination of a specific <BILLSTATUSCODE> val
and a specific <BILLPMTSTATUSCODE> value.

Tag Description

<PRESLISTRS> Opening tag for bill list response

<BILLPUB> Official standard name of bill publisher,A-32

<USERID> User whose bill data is being returned. Must match <USERID>
provided in <PRESLISTTRNRQ> (if specified),
“anonymous00000000000000000000000” (if <GROUPID> was
specified in the <PRESLISTTRNRQ>), or the <USERID> for the
authenticated user (otherwise),A-32

<DTSTART> Start date of bills returned,datetime

<DTEND> Date to present as start date for next request,datetime

<PRESLIST> Bill summary list, see section 14.4.2.2.1

</PRESLIST>

<PRESCOUNTS> Bill Counts Aggregate

<BILLSTATUSCOUNTS> Bill Status Counts, zero or more.

The count(s) of all bills matching the given selection criteria, having
a particular status(es). If <BILLSTATUSCODE> is not included in
the request with <INCLUDECOUNTS>Y, counts are returned for
every status with a non-zero count.

<BILLSTATUSCODE> Bill Status Code, see section 14.4.2.2.3

<COUNT> Count of Bills with the given Bill Status Code,Integer
460 14.4 Bill Delivery

the

or
the
e

ld
14.4.2.2.1 Bill List <PRESLIST>

The bill list aggregate <PRESLIST> contains a list of zero or more <PRESBILLINFO> aggregates.

14.4.2.2.2 Bill Information <PRESBILLINFO>

The bill information aggregate <PRESBILLINFO> provides information about a single bill, including
amount due, date due, and pointers to more information.

If the client requested bill detail in the <PRESLISTRQ>, the bill publisher provides the detail in zero
more <BILLDETAILTABLE> aggregates. If the client did not request bill detail, the server should use
<DETAILAVAILABLE> flag to indicate whether the client can request bill detail at a later time using th
<PRESDETAILRQ> aggregate.

The bill identifier <BILLID> must uniquely identify the bill with the bill publisher (not merely with the
biller). The <BILLPUB> and <BILLID> combination must be globally unique, not the <FI> and
<BILLID> combination.

</BILLSTATUSCOUNTS>

<BILLPMTSTATUSCOUNTS> Bill Payment Status Counts, zero or more. The count(s) of all bills
matching the given selection criteria, having a particular payment
status(es). If <BILLPMTSTATUSCODE> is not included in the
request with <INCLUDECOUNTS>Y, counts are returned for every
payment status with a non-zero count.

<BILLPMTSTATUSCODE> Bill Payment Status Code, see section 14.4.2.2.4

<COUNT> Count of Bills with the given Bill Payment Status Code,Integer

</BILLPMTSTATUSSCOUNTS>

</PRESCOUNTS>

</PRESLISTRS> Closing tag for bill list response

Tag Description

<PRESLIST> Opening tag for bill list

<PRESBILLINFO> Bill information aggregate (zero or more that meet the selection criteria)

While supported by the syntax of OFX, an empty <PRESLIST> aggregate shou
not be transmitted.

</PRESBILLINFO>

</PRESLIST> Closing tag for bill list

Tag Description
OFX 2.0 Specification 4616/30/00

ate

e
e

The bill date <DTBILL> is usually a fixed number of days after the end of the bill period. It is not the d
on which the bill publisher received the bill for publication.

Tag Description

<PRESBILLINFO> Opening tag for bill information

<BILLID> Identifier for this bill within the bill publisher,A-32

<PRESACCTFROM> Biller account information (see section 14.3.2.2)

</PRESACCTFROM>

<PAYEEID> Payee identifier. Specify only if the bill publisher is also provides Bill
Payment service. See section 14.5.2. SRVRTID

<BILLREFINFO> Biller-defined text to include with the payment, for the biller’s Accounts
Receivable reconciliation. Sections 14.5, 14.5.2. A-80

<AMTDUE> Full payment amount due,amount

<MINAMTDUE> Minimum payment amount due,amount

<DTPMTDUE> Payment due date,datetime

<DTBILL> Bill date,datetime

<DTOPEN> Opening statement date,datetime

<DTCLOSE> Closing statement date,datetime

<PREVBAL> Balance of the account as of the previous period,amount

<ACTIVITY> Net inflows and outflows for the account since the last period,amount

<ACCTBAL> Balance of the account at the end of the current period,amount

<INVOICE> Optional invoice data that the biller would like to receive with a payment (Se
12.5.2.3). Client applications should allow the user to edit the amounts befor
returning this in a payment

</INVOICE>

<NOTIFYDESIRED> Indicator that a delivery notification (see section 14.4.5) is desired,Boolean

<BILLTYPE> Bill Type. Possible values are:

BILL = Invoice of an amount due to the biller that is payable.

STATEMENT = History of activity on an account with the biller that is not
payable.

NOTICE = Generic letter from either biller or the bill publisher that is not
payable.

<BILLSTATUS> Zero or more bill status aggregates. See section 14.4.2.2.3.

</BILLSTATUS>

<BILLPMTSTATUS> Zero or more bill payment status aggregates. See section 14.4.2.2.4.
462 14.4 Bill Delivery

If <PREVBAL>, <ACTIVITY>, and <ACCTBAL> are all present, then <PREVBAL> and <ACTIVITY>
must add up to <ACCTBAL>.

Note: This means payments from the consumer received by the biller are counted as negative
activity.

</BILLPMTSTATUS>

<STMNTIMAGE> Statement image aggregate, see section 14.4.2.2.5

</STMNTIMAGE>

Choose DETAILAVAILABLE or
BILLDETAILTABLE, but not
both

<DETAILAVAILABLE> Indicator that structured detail is available,Boolean

-or-

<BILLDETAILTABLE> Bill details, when requested, see section 14.4.3.2.1

</BILLDETAILTABLE>

</PRESBILLINFO> Closing tag for bill information

Tag Description
OFX 2.0 Specification 4636/30/00

s

a

e a
14.4.2.2.3 Bill Status <BILLSTATUS>

Tag Description

<BILLSTATUS>

<BILLSTATUSCODE> Bill status code. Possible values are:

NEW = The server has not sent the bill to either the client or client proxy. This i
the initial status code of a bill.

DELIVERED = The server has sent the bill to either a client or client proxy.

VIEWED = The customer has seen the bill. Implies previous status of
DELIVERED.

RETIRED = The customer no longer wishes to see this bill. Implies previous
status of DELIVERED.

WITHDRAWN = The biller or publisher no longer wishes this bill to be
displayed.

UNDELIVERABLE = Attempts to deliver this bill to the consumer in a timely
fashion have failed. This status is not generally used when presenting a bill to
consumer. However, notifications using this status cover many useful cases

<DTEFF> Date/Time at which the status became effective (for example, the date and tim
bill is created in the initial status description for a bill).datetime

<STATUSMODBY> Status modified by. Servers are not required to store this information. Possible
values are:

CUSTOMER = customer.

CUSTAGENT = An automated software agent acting on behalf of customer.

BILLPUBLISHER = Bill Publisher.

BILLPUBLISHERSR = Service representative acting on behalf of the payment
provider.

PMTPROVIDER = Payment Provider.

PMTPROVIDERSR = Service representative acting on behalf of the payment
provider.

BILLER = biller.

BILLERSR = Service representative acting on behalf of the biller.

</BILLSTATUS>
464 14.4 Bill Delivery

14.4.2.2.4 Bill Payment Status <BILLPMTSTATUS>

Tag Description

<BILLPMTSTATUS> Zero or more bill payment status aggregates

<SRVRTID> The server transaction ID of the payment against this bill (see section 3.2.2),
A-36

<BILLPMTSTATUSCODE> Bill payment status code. Possible values are:

NONE = There is neither a payment scheduled, nor has one been made
against this bill.

SCHEDULED = A payment has been scheduled, but not yet processed
against this bill.

PROCESSED = The payment has been processed against this bill, and can
no longer be cancelled.

POSTED = The biller has posted the payment against this bill.

PAIDOUTOFBAND = A Payment has been initiated for this bill via a
mechanism that does not report status via OFX. This status is intended to
indicate the customer has paid the biller directly with cash or a check or has
initiated an electronic payment through a mechanism that does not report
payment status through OFX.

AUTOPAY = The Biller or Service Provider will initiate the payment based
on a pre-authorization by the customer, typically a “good until cancelled”
instruction with no defined end date. In the US this is often implemented
using a recurring pre-authorized ACH debit, though some Billers offer pre-
authorized automatic payment through credit card. Examples include
monthly deductions to cover a mortgage, regular payments from a checking
account to a credit card, and the Automatic Payment Service (APS) offered
by many utilities. Like NONE, this may be the initial payment status of the
bill.

CANCELLED = The customer cancelled the payment that was previously
scheduled.

UNPAYABLE = None of the Payment Instruments allowed for this bill are
supported by the Payment Provider. This is intended to be used where the
bill restricts payment to a subset of the Payment Instruments allowed in the
Biller Directory entry. This could occur if the Payment Provider or the
Biller changed their supported payment instrument types after enrollment
and account activation.

<DTEFF> Date/Time at which the status became effective (for example, the date and
time a bill is created in the initial status description for a bill).datetime
OFX 2.0 Specification 4656/30/00

<STATUSMODBY> Status modified by. Servers are not required to store this information.
Possible values are:

CUSTOMER = customer.

CUSTAGENT = An automated software agent acting on behalf of customer.

BILLPUBLISHER = Bill Publisher.

BILLPUBLISHERSR = Service representative acting on behalf of the
payment provider.

PMTPROVIDER = Payment Provider.

PMTPROVIDERSR = Service representative acting on behalf of the
payment provider.

BILLER = biller.

BILLERSR = Service representative acting on behalf of the biller.

</BILLPMTSTATUS>

Tag Description
466 14.4 Bill Delivery

the

to

ken

r might
could
e

s

14.4.2.2.5 Statement Image <STMNTIMAGE>

The <STMNTIMAGE> aggregate provides one or more URLs that point to a fully rendered image of
bill, in HTML.

<IMAGEURL> accesses the complete bill image. This URL may contain navigation to other sites, or
other pages of bill images at the same site.

To support off-line viewing of the bill, the server may provide one or more additional URLs. Each
<PREFETCHURL> points to a local Web page.

Each URL associated with <IMAGEURL> and <PREFETCHURL> must include an authentication to
at the end (for example, ?authtoken=randomString). These embedded tokens guarantee that only the
customer can access the Web page. Accessing the statement image requires SSL. The bill publishe
include an expiration date for the authentication token, and hence for the URLs. The expiration date
be quite short (for example, 1 hour) or quite long (for example, 1 month). After the expiration date, th
client can obtain a new authentication token only by sending a new <PRESLISTRQ> request.

Tag Description

<STMNTIMAGE> Opening tag for statement image

<IMAGEURL> URL address for retrieving an image of the complete bill encoded as HTML. Thi
can be cached by the client for later display, or it can be viewed live directly from
the Web.URL

<PREFETCHURL> Advice in support of off-line viewing. Zero or more.URL

<DTEXPIRE> Date after which embedded authentication token expires,datetime

</STMNTIMAGE> Closing tag for statement image
OFX 2.0 Specification 4676/30/00

sting
rt the

se bills

S>,

the

ent
14.4.2.3 Bill List Transaction Request <PRESLISTTRNRQ>

As the transaction wrapper for <PRESLISTRQ>, this aggregate specifies whether the client is reque
bills for a single user or a group of users. The optional <USERID> and <GROUPID> elements suppo
following scenarios:

� A customer requests his or her own bills from the bill publisher: In this case, the client can
optionally specify the customer’s <USERID> in the <PRESLISTTRNRQ>. If the client does not
specify <USERID>, the bill publisher uses the <USERID> in the signon request <SONRQ>.

� A customer service representative requests a bill on behalf of a user:The client sends the
representative’s <USERID> in the signon request <SONRQ>. To specify the user for which the
representative is retrieving bills, the client sends the customer’s <USERID> in the
<PRESLISTTRNRQ>. The bill publisher must ultimately decide whether the customer service
representative can access the requested bills. In its response, the bill publisher includes only tho
for which the requester has access privileges.

� A client proxy system fetches bills on behalf of a group of users:Instead of sending a <USERID>,
the client sends the <GROUPID> that identifies the group of users. Within the <PRESLISTTRNR
the bill publisher returns a single <PRESLISTRS> containing zero or more <PRESBILLINFO>
aggregates for each user in the named group. Individual customers are distinguished using the
<USERID> element of each <PRESACCTFROM> in the <PRESBILLINFO> aggregates. Again,
bill publisher decides whether access should be granted. Bill publishers that support usage of
<GROUPID> must maintain knowledge of which users are in which named group. The OFX
specification does not provide a way to track membership in a named group. Any such managem
must happen out-of-band.

Note: <USERID> is not intended to identify individual users of joint accounts. If a transaction
might include two different USERIDs within otherwise identical <PRESACCTFROM>
aggregates, servers should deliver two separate bills (download the same bill twice). It is up to
the server to keep track of activity on joint accounts.
468 14.4 Bill Delivery

14.4.2.4 Bill List Transaction Response <PRESLISTTRNRS>

Tag Description

<PRESLISTTRNRQ> Opening tag for bill list transaction request

<TRNUID> Client-assigned globally unique ID for this transaction,trnuid

<CLTCOOKIE> Data to be echoed in the transaction response,A-32

<TAN>

Specify either <USERID> or
<GROUPID>

Transaction authorization number,A-80

<USERID> If present, the bill request is on behalf of this particular user,

A-32

- or -

<GROUPID> If present, the bill request is on behalf of all users in the named group. If both
<USERID> and <GROUPID> are absent, the <USERID> in the <SONRQ> is
implied.A-32

<PRESLISTRQ> Bill List Request Aggregate

</PRESLISTRQ>

</PRESLISTTRNRQ> Closing tag for bill list transaction request

Tag Description

<PRESLISTTRNRS> Opening tag for bill list transaction response

<TRNUID> Client-assigned globally unique ID for this transactiontrnuid

<STATUS> Status aggregate

</STATUS>

<CLTCOOKIE> Client provided data.REQUIRED if provided in requestA-32

<PRESLISTRS> Bill list response aggregate, optional

</PRESLISTRS>

</PRESLISTTRNRS> Closing tag for bill list transaction response
OFX 2.0 Specification 4696/30/00

one

r.
14.4.2.5 Status Codes <PRESLISTRS>

14.4.3 Bill Detail Retrieval

If statement detail is available for a bill, the client can retrieve the detail using a bill detail request
<PRESDETAILRQ>. One example of statement detail is the individual telephone calls from a teleph
bill.

14.4.3.1 Bill Detail Request <PRESDETAILRQ>

The <PRESDETAILRQ> request must appear within a <PRESDETAILTRNRQ> transaction wrappe

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

2020 Invalid date (ERROR)

2027 Invalid date range (ERROR)

15508 Transaction not authorized (ERROR)

Tag Description

<PRESDETAILRQ> Opening tag for bill detail request

<BILLID> Statement identifier from <PRESBILLINFO>,A-32

<BILLDETAILTABLETYPE> If present, filters response to just tables of this type (See table 14.4.3.2.3), A-
32.

</PRESDETAILRQ> Closing tag for bill detail request
470 14.4 Bill Delivery

.

ht

t have
.

14.4.3.2 Bill Detail Response <PRESDETAILRS>

The <PRESDETAILRS> request must appear within a <PRESDETAILTRNRS> transaction wrapper

The bill detail response contains zero or more <BILLDETAILTABLE> aggregates.

14.4.3.2.1 Bill Detail Table <BILLDETAILTABLE>

The bill detail table allows billers to send tabular data to the customer in a flexible way. The table mig
contain phone calls from a telephone bill, or electrical meter readings for a utility bill.

A table consists of one or more rows, each having one or more columns. Within a table, all rows mus
identical structures. The <BILLDETAILTABLETYPE> determines the “shape” or schema of the table
The <TABLENAME> gives a name to this table, and should be unique within an <PRESDETAILRS>

Note: The bill detail table may be redesigned in the future. Please consider this area “under
construction.”.

Tag Description

<PRESDETAILRS> Opening tag for bill detail response

<PRESDETAIL> Zero or more bill detail aggregates

<BILLID> Statement identifier from <PRESBILLINFO>,A-32

<PRESACCTFROM> Identifies biller account, see section 14.3.2.2. Must be included if in response
to an <PRESDETAILRQ>, is redundant inside <PRESBILLINFO>

</PRESACCTFROM>

<BILLDETAILTABLE> Zero or more bill detail table aggregates. See section 14.4.3.2.1.

</BILLDETAILTABLE>

</PRESDETAIL> Closing tag for bill detail aggregate

</PRESDETAILRS> Closing tag for bill detail response

Tag Description

<BILLDETAILTABLE> Opening tag for bill detail table

<TABLENAME> Name of bill detail table,A-32

<BILLDETAILTABLETYPE> Type of bill detail table (See section 14.4.3.2.3), A-32.

<BILLDETAILROW> Zero or more bill detail row aggregates, see section 14.4.3.2.2

</BILLDETAILROW>

</BILLDETAILTABLE> Closing tag for bill detail table
OFX 2.0 Specification 4716/30/00

e of
s

null

their
14.4.3.2.2 Bill Detail Row <BILLDETAILROW>

A <BILLDETAILTABLE> contains zero or more bill detail rows <BILLDETAILROW>.

A <BILLDETAILROW> contains zero or more columns <C>, whose meanings are specific to the typ
table <BILLDETAILTABLETYPE> in which they occur. For the purpose of the DTD parser, all column
<C> are consider to beFormat: A-255.

OFX requires all elements return data. If bill publishers do not use specific columns, they can return
columns, represented by the element <N>. All columns <N> are considered to beFormat: A-1.

Note: Bill publishers must include one character of data in a null column. Bill publishers can
omit blank columns at the end of a <BILLDETAILROW>, tag and all. DTD should not enforce
ordering, i.e. it should look like this:

<!ELEMENT BILLDETAILROW - - (C | N)*>

14.4.3.2.3 Table Types <BILLDETAILTABLETYPE>

OFX defines some common table types. Individual billers can define their own table types, and hence
own table structures, but must honor the custom tag naming convention outlined in section 2.7.

Tag Description

<BILLDETAILROW> Opening tag for bill detail row

<C> Zero or more column data elements,A-255

<N> Zero or more column data elements,A-1

</BILLDETAILROW> Closing tag for bill detail row

Value Description

TransactionList Table defined for “payment register”-style line items

CallLog Table defined for record of telephone calls

ABC.Usage Table defined by biller, not by OFX
472 14.4 Bill Delivery

nt.

is
14.4.3.2.3.1 TransactionList Table Type

<BILLDETAILTABLE> aggregates marked with <BILLDETAILTABLETYPE>TransactionLists have
rows of 14 columns. The first column contains a unique identifier (like a BILLID), and must be prese
Other columns may not always apply and can be left blank.

The TransactionList table type is a subset of the <STMTTRN> aggregate in section 11.4.3.

Column Name Description

1 BillId Unique identifier token from server,A-32

2 TrnType Transaction type (see section 11.4.3.1)

3 DtPosted Date item was posted,datetime

4 DtUser Date user initiated transaction, if known,datetime

5 TrnAmount Amount of transaction,amount

6 CorrectBillId If present, unique identifier of previously sent transaction that is corrected by th
record,A-32

7 CorrectAction Replace or delete. Specify only if column 6 is present.

8 CheckNum Check or other reference number,A-12

9 RefNum Other reference number,A-12

10 SIC Standard Industrial Code,N-6

11 Name Name of payee or description of transaction,A-32

12 Memo Extra Information,memo

13 OrigCurSym Original Currency Identifier (ISO 42173 3-letter),A-3

14 CurRate Currency rate, ratio of currency to original currency,rate
OFX 2.0 Specification 4736/30/00

ient

h as a
14.4.3.2.3.2 CallLog Table Type

<BILLDETAILTABLE> aggregates marked with <BILLDETAILTABLETYPE>CallLog have rows of 10
columns.

14.4.3.3 Status Codes <PRESDETAILRS>

14.4.4 Table Structure Definition

Clients can obtain the definition of a table structure by sending a table structure request
<BILLTBLSTRUCTRQ>.

Clients need only request the structure of tables it does not already know about. For instance, the cl
might request the structure of a biller-specific table that starts with thex- prefix. Knowing the structure of
a table allows the client to display the data more clearly or store the data in a more compact form, suc
database table.

Column Name Description

1 TNCalledFrom Telephone number called from,A-32

2 CityStateFrom City, state (or place, region) called from,A-16

3 TNCalled Telephone number called,A-32

4 CityState City, state (or place, region) called,A-16

5 Originated Date/time call started,datetime

6 Type Type of call,A-8

7 Rate Rate (for example, Night, Day, Eve, Wknd),A-5

8 Duration Duration of call in tenths of seconds,N-6

9 Cost Cost of call,amount

10 TNChargedTo Telephone number charged to,A-32

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2023 Unknown BILLID (ERROR)

10600 Table type not found (ERROR)
474 14.4 Bill Delivery

n

onally
14.4.4.1 Table Structure Request <BILLTBLSTRUCTRQ>

To identify the table, the client includes the type of table <BILLDETAILTABLETYPE> and unique
identifier <BILLID> for the table. Although <BILLDETAILTABLETYPE> uniquely identifies the table,
OFX requires the <BILLID> as well to allow various server implementations.

The <BILLTBLSTRUCTRQ> request must appear within a <BILLTBLSTRUCTTRNRQ> transaction
wrapper.

14.4.4.2 Table Structure Response <BILLTBLSTRUCTRS>

The <BILLTBLSTRUCTRS> response must appear within a <BILLTBLSTRUCTTRNRS> transactio
wrapper.

The table structure response contains one or more column type definitions, which correspond positi
with the <C> aggregates in a <BILLDETAILROW> in a <BILLDETAILTABLE> of the corresponding
<TABLETYPE>.

Tag Description

<BILLTBLSTRUCTRQ> Opening tag for the table structure request

<BILLID> Statement Identifier,A-32

<BILLDETAILTABLETYPE> Table type for which the structure is requested (See table 14.4.3.2.3), A-32.

</BILLTBLSTRUCTRQ> Closing tag for the table structure request

Tag Description

<BILLTBLSTRUCTRS> Opening tag for table structure response

<BILLID> Table identifier,A-32

<BILLDETAILTABLETYPE> Table type (See table 14.4.3.2.3), A-32.

<COLDEF> Zero or more column definition aggregates (see section 14.4.4.2.1)

</COLDEF>

</BILLTBLSTRUCTRS> Closing tag for table structure response
OFX 2.0 Specification 4756/30/00

6

s to
the

l
e.
y

14.4.4.2.1 Column Definition <COLDEF>

A column definition <COLDEF> associates a name and a data type with a column.

14.4.4.3 Status Codes <BILLTBLSTRUCTRS>

14.4.5 Delivery Notification

In OFX 1.6, a new Bill Status Modify transaction was added. This new transaction (see section 14.4.) is a
semantic superset of Delivery Notification. Bill Status Modify should be used instead of Delivery
Notification.

The bill publisher can request delivery notification through the <NOTIFYDESIRED> flag in the
<PRESBILLINFO> aggregate (see section 14.4.2.2.2). The bill publisher will expect to receive the
delivery notification only if the <PRESLISTRQ> had the <NOTIFYWILLING> flag set.

The delivery notification request tells the bill publisher that the client has presented the specified bill
the customer. This is a stronger statement than acknowledging that the bills have been received by
client, specifically when the client software implements the pre-fetching or (push) model. Delivery
notification should be sent only once for any given bill, and it should be sent the first time that the Bil
Summary is displayed. Receipt of a delivery notification by the bill publisher has no legal significanc
OFX does not define the maximum elapsed time between the presentation of the bill and the deliver
notification.

Tag Description

<COLDEF> Opening tag for column definition

<COLNAME> Column name,A-32

<COLTYPE> Column type, valid values are (choose one): (A-255, D, N-6),A-8.Specifying D
in this field means the column type is datetime.

</COLDEF> Closing tag for column definition

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2023 Unknown BILLID (ERROR)

10600 Table type not found (ERROR)
476 14.4 Bill Delivery

t

er.

al
14.4.5.1 Delivery Notification Request <PRESNOTIFYRQ>

In OFX 1.6, a new Bill Status Modify request, <BILLSTATUSMODRQ>, was added. This new reques
(see section 14.4.6.1) should be used instead of <PRESNOTIFYRQ>.

The <PRESNOTIFYRQ> request must appear within a <PRESNOTIFYTRNRQ> transaction wrapp

14.4.5.1.1 Bill Delivery Identification <PRESDELIVERYID>

This aggregate identifies a bill delivery instance and suggests when the bill was “seen.”

<DTSEEN> is the date and time at which the client displayed the bill to the customer. There is no leg
significance to this bill delivery identification.

Tag Description

<PRESNOTIFYRQ> Opening tag for delivery notification request

<PRESDELIVERYID> A bill delivery ID aggregate (see section 14.4.5.1.1)

</PRESDELIVERYID>

</PRESNOTIFYRQ> Closing tag for delivery notification Request

Tag Description

<PRESDELIVERYID> Opening tag for the bill delivery identification

<PRESACCTFROM> Biller account information, see section 14.3.2.2

</PRESACCTFROM>

<BILLID> Identifies the bill from the given biller,A-32

<DTSEEN> Date and time at which the bill was made available to the requester’s client,
datetime

</PRESDELIVERYID> Closing tag for the bill delivery identification
OFX 2.0 Specification 4776/30/00

t

per.

ived
14.4.5.2 Delivery Notification Response <PRESNOTIFYRS>

In OFX 1.6, a new Bill Status Modify request, <BILLSTATUSMODRS>, was added. This new reques
(see section 14.4.6.2) should be used instead of <PRESNOTIFYRS>.

The <PRESNOTIFYRS> response must appear within a <PRESNOTIFYTRNRS> transaction wrap

The delivery notification response lets the client know that the delivery notification request was rece
by the bill publisher.

14.4.5.3 Status Codes <PRESNOTIFYRS>

Tag Description

<PRESNOTIFYRS> Opening tag for Delivery Notification Response

<PRESDELIVERYID> A bill delivery ID aggregate (See section 14.4.5.1.1)

</PRESDELIVERYID>

</PRESNOTIFYRS> Closing tag for Delivery Notification Response

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2023 BILLID not found (ERROR)

15508 Transaction not authorized (ERROR)
478 14.4 Bill Delivery

.4
14.4.6 Bill Status Modification

14.4.6.1 Request <BILLSTATUSMODRQ>

The Bill Status Modify Request <BILLSTATUSMODRQ> must appear within a
<BILLSTATUSMODTRNRQ> transaction wrapper.

14.4.6.2 Response <BILLSTATUSMODRS>

The Bill Status Modify Response <BILLSTATUSMODRS> must appear within a
<BILLSTATUSMODTRNRS> transaction wrapper.

Tag Description

<BILLSTATUSMODRQ>

<BILLID> Identifies the bill from a given biller,A-32

<BILLSTATUS> Bill status aggregate. See section 14.4.2.2.3.

</BILLSTATUS>

<BILLPMTSTATUS> Bill payment status aggregate. See section 14.4.2.2.4.

</BILLPMTSTATUS>

</BILLSTATUSMODRQ>

Tag Description

<BILLSTATUSMODRS>

<BILLID> Identifies the bill from a given biller,A-32

<BILLSTATUS> Bill status aggregate. Echoed from the request. See section 14.4.2.2.3.

</BILLSTATUS>

<BILLPMTSTATUS> Bill payment status aggregate. Echoed from the request. See section 14.4.2.2.

</BILLPMTSTATUS>

</BILLSTATUSMODRS>
OFX 2.0 Specification 4796/30/00

ge set

the
14.4.6.3 Status Codes <BILLSTATUSMODRS>

14.5 Bill Payment

To pay a bill received through a <PRESLISTRQ> request, the client can use the Bill Payment messa
defined in Chapter 12, "Payments."To construct the payment information <PMTINFO> (see section
12.5.2), the client can use the bill information from <PRESBILLINFO>.

14.5.1 Remittance Information

The client should include the <BILLREFINFO> from the <PRESBILLINFO> aggregate as the
<BILLREFINFO> in the <PMTINFO> aggregate. This token allows the biller to link the payment with
bill.

14.5.2 Payee Identification

Client software can produce <PAYEEID> or <PAYEE> in one of two ways.

If the same company provides Bill Presentment and Bill Payment services, the client can use the
<PAYEEID> included in the <PRESBILLINFO> aggregate.

If the Bill Payment provider is a different company, the client must use information from the
<PRESACCTINFO> to construct the <PAYEE> information.

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2023 BILLID not found (ERROR)

15508 Transaction not authorized (ERROR)
480 14.5 Bill Payment

h this

e client
14.6 Bill Presentment E-Mail

OFX currently defines a Bill Presentment e-mail message that clients can send to bill publishers. Wit
message, a customer can send a message to a bill publisher regarding one of his or her accounts.

The server acknowledges receipt of the message. The bill publisher then prepares a response that th
picks up when it synchronizes with the server. E-mail is subject to synchronization, using
<PRESMAILSYNCRQ> (defined in section 14.6.4) and <PRESMAILSYNCRS> (defined in section
14.6.5.)

Client Sends Server Responds

Addressed message

PRES account
information

Acknowledgment

.

.

.

Synchronization request

Response to customer
OFX 2.0 Specification 4816/30/00

14.6.1 Bill Presentment Mail Request <PRESMAILRQ>

The client must identify the account to which account the customer query is related.

The <PRESMAILRQ> request must appear with a <PRESMAILTRNRQ> transaction wrapper.

14.6.2 Bill Presentment Mail Response <PRESMAILRS>

The <PRESMAILRS> request must appear with a <PRESMAILTRNRS> transaction wrapper.

Tag Description

<PRESMAILRQ> PRES-e-mail-request aggregate

<PRESACCTFROM> Account-from aggregate, see section 14.3.2.2

</PRESACCTFROM>

<MAIL> To, from, message information, see section 9.2.2

</MAIL>

</PRESMAILRQ>

Tag Description

<PRESMAILRS> PRES-e-mail-response aggregate

<PRESACCTFROM> Account-from aggregate, see section 14.3.2.2

</PRESACCTFROM>

<MAIL> To, from, message information, see section 9.2.2

</MAIL>

</PRESMAILRS>
482 14.6 Bill Presentment E-Mail

14.6.3 Status Codes <PRESMAILRS>

Code Meaning

0 Success (INFO)

2000 General error (ERROR)

2002 General account error (ERROR)

2003 Account not found (ERROR)

2004 Account closed (ERROR)

2005 Account not authorized (ERROR)

15508 Transaction not authorized (ERROR)

16500 HTML not allowed (ERROR)

16501 Unknown mail To: (ERROR)
OFX 2.0 Specification 4836/30/00

t

14.6.4 Request <PRESMAILSYNCRQ>

Tag Description

<PRESMAILSYNCRQ> Synchronization request aggregate

Client synchronization option;
<TOKEN>, <TOKENONLY>, or
<REFRESH>

<TOKEN> Previous value of <TOKEN> received for this type of synchronization
request from server; 0 for first-time requests;token

<TOKENONLY> Request for just the current <TOKEN> without the history,Boolean

<REFRESH> Request for refresh of current state,Boolean

<REJECTIFMISSING> If Y, do not process requests if client <TOKEN> is out of date,Boolean

<INCIMAGES> Y if the client accepts mail with images in the message body. N if the clien
does not accept mail with images in the message body.Boolean

<USEHTML> Y if client wants an HTML response, N if client wants plain text,Boolean

<PRESACCTFROM> Account-from aggregate, see section 14.3.2.2

</PRESACCTFROM>

<PRESMAILTRNRQ> Bill presentment mail transactions (0 or more)

</PRESMAILTRNRQ>

</PRESMAILSYNCRQ>
484 14.6 Bill Presentment E-Mail

n

14.6.5 Response <PRESMAILSYNCRS>.

Tag Description

<PRESMAILSYNCRS> Synchronization response aggregate

<TOKEN> New synchronization token,token

<LOSTSYNC> Y if the token in the synchronization request is older than the earliest entry in
the server’s history table. In this case, some responses have been lost.

N if the token in the synchronization request is newer than or matches a toke
in the server’s history table.Boolean

<PRESACCTFROM> Account-from aggregate, see section 14.3.2.2

</PRESACCTFROM>

<PRESMAILTRNRS> Bill presentment mail transactions (0 or more)

</PRESMAILTRNRS>

</PRESMAILSYNCRS>
OFX 2.0 Specification 4856/30/00

profile
upports

nding
age set
se of
not

nd

bill
14.7 Message Sets and Profile

OFX separates the messages that the client and server send into groups called message sets. In its
response <PROFRS>, each bill publisher or other server provider defines the message sets that it s
and any options available for those message sets.

This section defines the message sets supported by Bill Presentment. It then describes the correspo
message set profile aggregates that can be provided in the profile response <PROFRS>. The mess
profile aggregates for the <PROFRS> allow a bill publisher or other server provider to customize its u
OFX. For example, a server might support the Bill Delivery message set <PRESDLVMSGSET>, but
the Group Account Information message set <PRESDIRMSGSET>.

For general information about profiles, see Chapter 7, "FI Profile."

14.7.1 Message Sets and Messages

Bill Presentment defines the following message sets:

� Biller Directory message set <PRESDIRMSGSET>, which includes messages for finding billers a
bill publishers

� Bill Delivery message set <PRESDLVMSGSET>, which includes messages for delivering bills and
detail to customers, as well as messages for getting account information for a group of users

14.7.1.1 Biller Directory Message Set and Messages

14.7.1.1.1 Biller Directory Request Messages

Message Set Message

<PRESDIRMSGSET>

<PRESDIRMSGSETV1>

<PRESDIRMSGSRQV1> FINDBILLERTRNRQ

FINDBILLERRQ

</PRESDIRMSGSRQV1>

</PRESDIRMSGSETV1>

</PRESDIRMSGSET>
486 14.7 Message Sets and Profile

14.7.1.1.2 Biller Directory Response Messages

Message Set Message

<PRESDIRMSGSET>

<PRESDIRMSGSETV1>

<PRESDIRMSGSRSV1> FINDBILLERTRNRS

FINDBILLERRS

</PRESDIRMSGSRSV1>

</PRESDIRMSGSETV1>

</PRESDIRMSGSET>
OFX 2.0 Specification 4876/30/00

14.7.1.2 Bill Delivery Message Set and Messages

14.7.1.2.1 Bill Delivery Request Messages

Message Set Message

<PRESDLVMSGSET>

<PRESDLVMSGSETV1>

<PRESDLVMSGSRQV1> PRESLISTTRNRQ

PRESLISTRQ

PRESDETAILTRNRQ

PRESDETAILRQ

BILLTBLSTRUCTTRNRQ

BILLTBLSTRUCTRQ

BILLSTATUSMODTRNRQ

BILLSTATUSMODRQ

PRESNOTIFYTRNRQ

PRESNOTIFYRQ

PRESGRPACCTINFOTRNRQ

ACCTINFORQ

PRESMAILTRNRQ

PRESMAILRQ

PRESMAILSYNCRQ

</PRESDLVMSGSRQV1>

</PRESDLVMSGSETV1>

</PRESDLVMSGSET>
488 14.7 Message Sets and Profile

14.7.1.2.2 Bill Delivery Response Messages

Message Set Message

<PRESDLVMSGSET>

<PRESDLVMSGSETV1>

<PRESDLVMSGSRSV1> PRESLISTTRNRS

PRESLISTRS

PRESDETAILTRNRS

PRESDETAILRS

BILLTBLSTRUCTTRNRS

BILLTBLSTRUCTRS

BILLSTATUSMODTRNRS

BILLSTATUSMODRS

PRESNOTIFYTRNRS

PRESNOTIFYRS

PRESGRPACCTINFOTRNRS

ACCTINFORS

PRESMAILTRNRS

PRESMAILRS

PRESMAILSYNCRS

</PRESDLVMSGSRSV1>

</PRESDLVMSGSETV1>

</PRESDLVMSGSET>
OFX 2.0 Specification 4896/30/00

e
ssage

hould
t.
14.7.2 Biller Directory Message Set Profile

This section defines the profile aggregate for the Biller Directory message set. This profile aggregat
should be included in the <PROFRS> response for those servers that support the Biller Directory me
set.

14.7.3 Bill Delivery Message Set Profile

This section defines the profile aggregate for the Bill Delivery message set. This profile aggregate s
be included in the <PROFRS> response for those servers that support the Bill Delivery message se

Message Set Message

<PRESDIRMSGSET> Opening tag for the Biller Directory message set profile

<PRESDIRMSGSETV1> Version 1 of Biller Directory message set, one or more

<MSGSETCORE> Common message-set core

</MSGSETCORE>

<PRESDIRPROF> Directory profile (if supported)

<PROCDAYSOFF> Days of week that no processing occurs: MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY. 0
or more <PROCDAYSOFF> can be sent.

<CANSUPPORTIMAGES> Supports delivery of images as multipart MIME,Boolean

<PROCENDTM> Time of day that day’s processing ends,time

</PRESDIRPROF>

</PRESDIRMSGSETV1>

</PRESDIRMSGSET> Closing tag for the Biller Directory message set profile

Tag Description

<PRESDLVMSGSET> Opening tag for the Bill Delivery message set profile

<PRESDLVMSGSETV1> Version 1 of Bill Delivery message set, one or more

<MSGSETCORE> Common message-set core

</MSGSETCORE>

<PRESDLVPROF> Bill Delivery profile (if supported)

<CANSUPPORTGROUPID
>

Supports account information requests for a group of users, that is
<PRESGRPACCTINFOTRNRQ> and <GROUPID> in
<PRESLISTTRNRQ>,Boolean
490 14.7 Message Sets and Profile

<PROCDAYSOFF> Days of week that no processing occurs: MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, or SUNDAY.
0 or more <PROCDAYSOFF> can be sent.

<CANSUPPORTIMAGES> Supports delivery of images as multipart MIME,Boolean

<PROCENDTM> Time of day that day’s processing ends,time

<CANUPDATEPRESNAME
ADDRESS>

Supports update of the PRESNAMEADDRESS associated with a
particular bill. See section 14.3.3.1

<CANMODSTATUS> Y if server supports the <BILLSTATUSMODRQ>. This must be
explicitly supported by the server before it is used by the client. The
default for this option is N.Boolean

Note: Servers that support <BILLSTATUSMODRQ> are required
to continue support for <PRESNOTIFYRQ>.

</PRESDLVPROF>

<EMAILPROF> E-mail profile

<CANEMAIL> Supports generalized e-mail,Boolean

<CANNOTIFY> Supports notification (of any kind),Boolean

</EMAILPROF>

</PRESDLVMSGSETV1>

</PRESDLVMSGSET> Closing tag for the Bill Delivery message set profile

Tag Description
OFX 2.0 Specification 4916/30/00

14.8 Bill Presentment Examples

14.8.1 Find Biller Examples

14.8.1.1 Get All Billers

The client sends a <FINDBILLERRQ> request, as shown in the following example, to retrieve all
available billers.

Note: These examples show the customer signing on anonymously. But, they may have
enrolled in the past and choose to use their actual <USERID> and <USERPASS>. Anonymous
signon is not required for use of the Biller Directory service (see section 14.2.1).

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- Begin anonymous signon -->

<DTCLIENT>19990707202000</DTCLIENT<!-- Jul. 7, 1999, 8:20:00 PM
-->

<USERID>anonymous00000000000000000000000</USERID>

<USERPASS>anonymous00000000000000000000000</USERPASS>

<LANGUAGE>ENG</LANGUAGE> <!-- Language used for text -->

<FI> <!-- ID of receiving institution -->

<ORG>NCH</ORG> <!-- Name of ID owner -->

<FID>1001</FID> <!-- Actual ID -->

</FI>

<APPID>MyApp</APPID>

<APPVER>0500</APPVER>

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>

<PRESDIRMSGSRQV1>

<FINDBILLERTRNRQ>

<TRNUID>1231239</TRNUID>

<FINDBILLERRQ> <!--Beginning of find biller request-->

<INCIMAGES>N</INCIMAGES><!--LOGO Images are not requested-->

</FINDBILLERRQ> <!--End of request-->

</FINDBILLERTRNRQ>

</PRESDIRMSGSRQV1>

</OFX>
492 14.8 Bill Presentment Examples

he
To keep the size of the example reasonable, we will assume that there are only four billers. Here is t
server reply.

<OFX> <!-- Begin response data -->

<SIGNONMSGSRSV1>

<SONRS> <!-- Begin signon -->

<STATUS> <!-- Begin status aggregate -->

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<DTSERVER>19990707202001</DTSERVER><!-- Jul. 7, 1999, 8:20:01 PM
-->

<LANGUAGE>ENG</LANGUAGE> <!-- Language used in response -->

<DTPROFUP>19990630000000</DTPROFUP> <!-- Last update to profile
-->

<DTACCTUP>19990701233045</DTACCTUP> <!-- Last account update -->

</SONRS> <!-- End of signon -->

</SIGNONMSGSRSV1>

<PRESDIRMSGSRSV1>

<FINDBILLERTRNRS>

<TRNUID>1231239</TRNUID>

<STATUS> <!-- Begin status aggregate -->

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<FINDBILLERRS> <!--Beginning of response-->

<DTUPDATE>19990415092000</DTUPDATE>
<!--Date last update 04/15/99 9:20am-->

<BILLERINFO>

<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->

<BILLERID>123456789</BILLERID><!--Biller ID at Wepubbills-->

<NAME>RealBig Credit Co.</NAME>
<!--Name of biller-->

<ADDR1>1324 Whatever St.</ADDR1>
<!--Street address of biller-->

<CITY>MajorMetro</CITY><!--City of the Biller-->

<STATE>OH</STATE> <!--State of the biller-->

<POSTALCODE>12345-1234</POSTALCODE>
<!--Postal code of biller-->

<COUNTRY>USA</COUNTRY>

<SIC>23</SIC> <!--Standard Industry Code of biller-->

<PHONE>614-235-2323</PHONE><!--Biller’s phone number-->

<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->

<PAYMENTINSTRUMENT>
OFX 2.0 Specification 4936/30/00

>

>

<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE

</PAYMENTINSTRUMENT>

<PAYMENTINSTRUMENT>

<PMTINSTRUMENTTYPE>CONCENTRATOR</PMTINSTRUMENTTYPE>

<BRAND>CityBank</BRAND>

</PAYMENTINSTRUMENT>

</PAYMENTINSTRUMENTS>

<ACCTFORMAT>([0-9]\{3\}-)\{3\}</ACCTFORMAT>
<!--Regular expression describing -->

<!--biller’s account number-->

<ACCTEDITMASK>###-###-####</ACCTEDITMASK>

<!--Edit mask for account number-->

<LOGO>http://www.realbig.com/logo.gif</LOGO>

<!--URL to logo of biller-->

</BILLERINFO>

<BILLERINFO>

<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->

<BILLERID>222334465</BILLERID><!--Biller ID at Wepubbills-->

<NAME>Aphone Company</NAME><!--Name of biller-->

<ADDR1>1324 Where Blvd<ADDR1>
<!--Street address of biller-->

<CITY>Sometown</CITY><!--City of the biller-->

<STATE>CA</STATE> <!--State of the biller-->

<POSTALCODE>10992-1234</POSTALCODE>
<!--Postal code of biller-->

<COUNTRY>USA</COUNTRY>

<SIC>39</SIC> <!--Standard Industry Code of biller-->

<PHONE>345-345-3489</PHONE><!--Biller’s phone number-->

<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->

<PAYMENTINSTRUMENT>

<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE

</PAYMENTINSTRUMENT>

</PAYMENTINSTRUMENTS>

<ACCTFORMAT>([1-9]\{2\}-)\{2\}[0-9]\{3\}</ACCTFORMAT>

<!--Regular expression describing-->

<!--biller’s account number-->

<ACCTEDITMASK>##-##-###</ACCTEDITMASK>
<!--Edit mask for account number-->

<LOGO>http://www.webup.com/aphone.gif</LOGO>

<!--URL to logo of biller-->

</BILLERINFO>

<BILLERINFO>

<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->
494 14.8 Bill Presentment Examples

>

<BILLERID>98765123454</BILLERID><!--Biller ID at Wepubbills-
->

<NAME>Goodol Mortgage</NAME><!--Name of biller-->

<ADDR1>8273 Magnolia St.</ADDR1>
<!--Street address of biller-->

<CITY>Atlanta</CITY> <!--City of the Biller-->

<STATE>GA</STATE> <!--State of the biller-->

<POSTALCODE>34342-6789</POSTALCODE>
<!--Postal code of biller-->

<COUNTRY>USA</COUNTRY>

<SIC>03</SIC> <!--Standard Industry Code of biller-->

<PHONE>864-234-6745</PHONE><!--Biller’s phone number-->

<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->

<PAYMENTINSTRUMENT>

<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE

</PAYMENTINSTRUMENT>

</PAYMENTINSTRUMENTS>

<ACCTFORMAT>[0-1]\{12\}</ACCTFORMAT>
<!--Regular expression describing-->

<!--biller’s account number-->

<HELPMESSAGE>Enter the first 13 digits of your account
number</HELPMESSAGE>

<!--to help user key account number-->

<RESTRICT> GA residents only.</RESTRICT>

<!--Indicate restricted availability-->

<LOGO>http://www.wepub.com/mort.gif</LOGO>

<!--URL to logo of biller-->

</BILLERINFO>

<BILLERINFO>

<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->

<BILLERID>32812816734</BILLERID><!--Biller ID at Wepubbills-
->

<NAME>Sam’s Widgets</NAME><!--Name of biller-->

<ADDR1>Apt B3</ADDR1><!--Street address of biller-->

<ADDR2>1267 Tank Rd</ADDR2>

<CITY>Columbus</CITY><!--City of Biller-->

<STATE>OH</STATE> <!--State of the biller-->

<POSTALCODE>77723-8989</POSTALCODE>
<!--Postal code of biller-->

<COUNTRY>USA</COUNTRY>

<SIC>12</SIC> <!--Standard Industry Code of biller-->

<PHONE>614-657-8934</PHONE><!--Biller’s phone number-->

<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->

<PAYMENTINSTRUMENT>
OFX 2.0 Specification 4956/30/00

>
<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYPE

</PAYMENTINSTRUMENT>

<PAYMENTINSTRUMENT>

<PMTINSTRUMENTTYPE>CONCENTRATOR</PMTINSTRUMENTTYPE>

<BRAND>BigConcentrator</BRAND>

</PAYMENTINSTRUMENT>

</PAYMENTINSTRUMENTS>

<ACCTEDITMASK>A###-####-####</ACCTEDITMASK>

<!--Edit mask for account number-->

<LOGO>http://www.relbig.com/logo.gif</LOGO>

<!--URL to logo of biller-->

<VALIDATE>http://www.wepub.com/sam.cgi</VALIDATE>

<!--URL used to validate acct number-->

</BILLERINFO>

</FINDBILLERRS>

</FINDBILLERTRNRS>

</PRESDIRMSGSRSV1>

</OFX>

14.8.1.2 Find Selected Billers

In the following example, the client requests only those billers that are located in Ohio.

Note: These examples show the customer signing on anonymously. But, they may have
enrolled in the past and choose to use their actual <USERID> and <USERPASS>. Anonymous
signon is not required for use of the Biller Directory service (see section 14.2.1).

<OFX> <!-- Begin request data -->

<SIGNONMSGSRQV1>

<SONRQ> <!-- Begin anonymous signon -->

<DTCLIENT>19990707202003</DTCLIENT> <!-- Jul. 7, 1999, 8:20:03
PM -->

<USERID>anonymous00000000000000000000000</USERID>

<USERPASS>anonymous00000000000000000000000</USERPASS>

<LANGUAGE>ENG</LANGUAGE> <!-- Language used for text -->

<FI> <!-- ID of receiving institution -->

<ORG>NCH</ORG> <!-- Name of ID owner -->

<FID>1001</FID> <!-- Actual ID -->

</FI>

<APPID>MyApp</APPID>

<APPVER>0500</APPVER>

</SONRQ> <!-- End of signon -->

</SIGNONMSGSRQV1>
496 14.8 Bill Presentment Examples

<PRESDIRMSGSRQV1>

<FINDBILLERTRNRQ>

<TRNUID>1231245</TRNUID>

<FINDBILLERRQ>

<STATE>OH</STATE>

<INCIMAGES>N</INCIMAGES>

</FINDBILLERRQ>

</FINDBILLERTRNRQ>

</PRESDIRMSGSRQV1>

</OFX>

In the same circumstances as before, the response would be:

<OFX> <!-- Begin response data -->

<SIGNONMSGSRSV1>

<SONRS> <!-- Begin signon -->

<STATUS> <!-- Begin status aggregate -->

<CODE>0</CODE> <!-- OK -->

<SEVERITY>INFO</SEVERITY>

</STATUS>

<DTSERVER>19990707202004</DTSERVER> <!-- Jul. 7, 1999, 8:20:04
PM

<LANGUAGE>ENG</LANGUAGE> <!-- Language used in response -->

<DTPROFUP>19990630000000</DTPROFUP> <!-- Last update to profile
-->

<DTACCTUP>19990701233045</DTACCTUP> <!-- Last account update -->

</SONRS> <!-- End of signon -->

</SIGNONMSGSRSV1>

<PRESDIRMSGSRSV1>

<FINDBILLERTRNRS>

<TRNUID>1231245</TRNUID>

<STATUS> <!-- Begin status aggregate -->

<CODE>0</CODE> <!-- OK --><

<SEVERITY>INFO</SEVERITY>

</STATUS>

<FINDBILLERRS>

<DTUPDATE>19990415092000</DTUPDATE>

<!--Date last update 04/15/99 9:20am-->

<BILLERINFO>

<BILLPUB>Wepubbills</BILLPUB><!--Name of Bill Publisher-->

<BILLERID>123456789</BILLERID><!--Biller ID at Wepubbills-->

<NAME>RealBig Credit Co.</NAME>

<!--Name of biller-->
OFX 2.0 Specification 4976/30/00

E>
<ADDR1>1324 Whatever St.</ADDR1>

<!--Street address of biller-->

<CITY>MajorMetro</CITY><!--City of the Biller-->

<STATE>OH</STATE> <!--State of the biller-->

<POSTALCODE>12345-1234</POSTALCODE>

<!--Postal code of biller-->

<COUNTRY>USA</COUNTRY>

<SIC>23</SIC> <!--Standard Industry Code of biller-->

<PHONE>614-235-2323</PHONE><!--Biller’s phone number-->

<PAYMENTINSTRUMENTS> <!--Type of payment accepted-->

<PAYMENTINSTRUMENT>

<PMTINSTRUMENTTYPE>CHECKINGACCOUNT</PMTINSTRUMENTTYP

</PAYMENTINSTRUMENT>

<PAYMENTINSTRUMENT>

<PMTINSTRUMENTTYPE>CONCENTRATOR</PMTINSTRUMENTTYPE>

<BRAND>CityBank</BRAND>

</PAYMENTINSTRUMENT>

</PAYMENTINSTRUMENTS>

<ACCTFORMAT>([0-1]\{3\}-)\{3\}</ACCTFORMAT>

<!--Regular expression describing-->

<!--biller’s account number-->

<ACCTEDITMASK>###-###-###-</ACCTEDITMASK>

<!--Edit mask for account number-->

<LOGO>http://www.relbig.com/logo.gif</LOGO>

<!--URL to logo of biller-->

</BILLERINFO>

</FINDBILLERRS>

</FINDBILLERTRNRS>

</PRESDIRMSGSRSV1>

</OFX>
498 14.8 Bill Presentment Examples

14.8.2 Enrollment Examples

In this example, the client wants to enroll with a bill publisher.

14.8.2.1 Enrollment Request

<OFX>

<SIGNONMSGSRQV1> <!--Signon Request-->

<SONRQ>

<DTCLIENT>19990307022243</DTCLIENT><!--Timestamp, 3/07/99,
2:22:43am-->

<USERID>anonymous00000000000000000000000</USERID>

<USERPASS>anonymous00000000000000000000000</USERPASS>

<LANGUAGE>ENG</LANGUAGE>

<APPID>OFXAPP</APPID>

<APPVER>0201</APPVER>

</SONRQ>

</SIGNONMSGSRQV1>

<SIGNUPMSGSRQV1> <!--Enrollment Request-->

<ENROLLTRNRQ>

<TRNUID>10001</TRNUID>

<ENROLLRQ>

<FIRSTNAME>Cindy</FIRSTNAME>

<MIDDLENAME>P</MIDDLENAME>

<LASTNAME>Williams</LASTNAME>

<ADDR1>123 Oak St</ADDR1>

<CITY>San Jose</CITY>

<STATE>CA</STATE>

<POSTALCODE>94111<POSTALCODE>

<COUNTRY>USA</COUNTRY>

<DAYPHONE>415-555-0123</DAYPHONE>

<EVEPHONE>408-555-2323</EVEPHONE>

<EMAIL>cindy@aol.com</EMAIL>

<USERID>cindyid</USERID>

<TAXID>111-33-5555</TAXID>

<SECURITYNAME>wynona</SECURITYNAME>

<DATEBIRTH>19650402</DATEBIRTH>

</ENROLLRQ>

</ENROLLTRNRQ>

</SIGNUPMSGSRQV1>

</OFX>
OFX 2.0 Specification 4996/30/00

end an
14.8.2.2 Enrollment Response

For this example, the server responds with immediate acceptance. In practice, many servers would s
enrollment status code of 13000 and send the user ID and password in a welcome letter.

<OFX>

<SIGNONMSGSRSV1> <!--Signon response->

<SONRS>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<DTSERVER>19990307081437</DTSERVER><!--Timestamp, 3/07/99,
8:14:37am-->

<LANGUAGE>ENG</LANGUAGE>

<DTPROFUP>19990301070000</DTPROFUP><!--Timestamp, 3/01/99,
7:00:00am-->

<DTACCTUP>19990301070000</DTACCTUP><!--Timestamp, 3/01/99,
7:00:00am-->

</SONRS>

</SIGNONMSGSRSV1>

<SIGNUPMSGSRSV1> <!--Enrollment response-->

<ENROLLTRNRS>

<TRNUID>10001</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<ENROLLRS>

<TEMPPASS>y12345</TEMPPASS>

<USERID>cindyid</USERID>

<DTEXPIRE>19990407</DTEXPIRE><!--When Temp Password Expires-->

</ENROLLRS>

</ENROLLTRNRS>

</SIGNUPMSGSRSV1>

</OFX>
500 14.8 Bill Presentment Examples

ith
14.8.3 Activation Example

After enrollment, Cindy wants to sign up with a biller, presumably found with the directory services, w
biller ID 415-552-9923 of bill publisher Publisher, Inc.

14.8.3.1 Activation Request

<OFX>

<SIGNONMSGSRQV1> <!--Signon Request-->

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<SIGNUPMSGSRQV1> <!--Activation Request-->

<ACCTTRNRQ>

<TRNUID>10002</TRNUID>

<ACCTRQ> <!—-Activate biller acct -->

<SVCADD>

<PRESACCTTO>

<BILLPUB>Publisher, Inc.</BILLPUB>

<BILLERID>415-552-9923</BILLERID>

<ACCTID>4128 9343 2324 2314</ACCTID>

<PRESNAMEADDRESS>

<NAMEACCTHELD>Cindy P Williams</NAMEACCTHELD><!--Name as
on biller’s statement-->

<ADDR1>123 Oak St</ADDR1><!--Address as on statement-->

<CITY>San Jose</CITY>

<STATE>CA</STATE>

<POSTALCODE>94111</POSTALCODE>

<COUNTRY>USA</COUNTRY>

<DAYPHONE>408-555-2323</DAYPHONE>

</PRESNAMEADDRESS>

<USERID>cindyid</USERID>

</PRESACCTTO>

</SVCADD>

<SVC>PRESSVC</SVC>

</ACCTRQ>

</ACCTTRNRQ>

</SIGNUPMSGSRQV1>

</OFX>
OFX 2.0 Specification 5016/30/00

14.8.3.2 Activation Response

<OFX>

<SIGNONMSGSRSV1> <!--Signon Response->

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<SIGNUPMSGSRSV1> <!--Enrollment Response-->

<ACCTTRNRS> <!--Service Activation Response-->

<TRNUID>10002</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<ACCTRS>

<SVCADD>

<PRESACCTTO>

<BILLPUB>Publisher, Inc.</BILLPUB>

<BILLERID>415-552-9923</BILLERID>

<ACCTID>4128 9343 2324 2314</ACCTID>

<PRESNAMEADDRESS>

<NAMEACCTHELD>Cindy P Williams</NAMEACCTHELD>

<ADDR1>123 Oak St</ADDR1>

<CITY>San Jose</CITY>

<STATE>CA</STATE>

<POSTALCODE>94111</POSTALCODE>

<COUNTRY>USA</COUNTRY>

<DAYPHONE>408-555-2323</DAYPHONE>

</PRESNAMEADDRESS>

<USERID>cindyid</USERID>

</PRESACCTTO>

</SVCADD>

<SVC>PRESSVC</SVC>

</ACCTRS>

</ACCTTRNRS>

</SIGNUPMSGSRSV1>

</OFX>
502 14.8 Bill Presentment Examples

is bills.
14.8.4 Bill Delivery Examples

14.8.4.1 Customer Bill Delivery

The customer, Dan North, wants to see his bills since 3/1/99, which is the last time he asked to see h

14.8.4.1.1 Customer Bill Delivery Request

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<PRESDLVMSGSRQV1>

<PRESLISTTRNRQ>

<TRNUID>12345</TRNUID>

<PRESLISTRQ>

<BILLPUB> ABillPublisher</BILLPUB>

<DTSTART>19990301000000</DTSTART><!--Get Dan's bills since 3/
1/99-->

<NOTIFYWILLING>Y</NOTIFYWILLING>

<INCLUDEDETAIL>Y</INCLUDEDETAIL>

</PRESLISTRQ>

</PRESLISTTRNRQ>

</PRESDLVMSGSRQV1>

</OFX>

14.8.4.1.2 Customer Bill Delivery Response

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<PRESDLVMSGSRSV1>

<PRESLISTTRNRS>

<TRNUID>12345</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY

</STATUS>
OFX 2.0 Specification 5036/30/00

<PRESLISTRS>

<BILLPUB>ABillPublisher</BILLPUB>

<USERID>123-45-6789</USERID>

<DTSTART>19990301000000</DTSTART><!--Same as in request: no
data loss-->

<DTEND>19990409090000</DTEND>

<!--Value for DTSTART next time-->

<PRESLIST>

<PRESBILLINFO>

<BILLID>65432</BILLID>

<PRESACCTFROM>

<BILLPUB>ABillPublisher</BILLPUB>

<BILLERID>1001</BILLERID><!--Biller id for Power Inc-->

<ACCTID>1245678GL7</ACCTID><!--Dan North’s acct w/
Power Inc-->

</PRESACCTFROM>

<BILLREFINFO>1234678GL7970501</BILLREFINFO>

<AMTDUE>124.24</AMTDUE><!--Dan North to pay $124.24-->

<DTPMTDUE>19990501</DTPMTDUE><!--by 5/1/99 -->

<DTBILL>19990401</DTBILL>

<NOTIFYDESIRED>N</NOTIFYDESIRED>

<STMNTIMAGE>

<IMAGEURL>

https://www.Power.com/bills/apr/dannorth.htm?authtoken=65j3ltfm7

<DTEXPIRE>199904101200</DTEXPIRE>

<!--Must visit url by 4/10/99 12am-->

</STMNTIMAGE>

<BILLDETAILTABLE>

<TABLENAME>usage</TABLENAME>

<BILLDETAILTABLETYPE>x_Power_usage</BILLDETAILTABLETYPE>

<!--Power Inc format for usage-->

<BILLDETAILROW>

<C>elec</C><!--Consumable-->

<C>19990228</C>

<!--Date meter reading start of period-->

<C>65543</C>

<!--Meter reading at start of period-->

<C>19990328</C>

<!--Date meter reading end of period-->

<C>65643</C><!--Meter reading at end of
period-->

<C>100</C><!--Difference in meter readings-->

<C>KWH</C><!--Units-->
504 14.8 Bill Presentment Examples

<C>.8934</C><!--Rate (price per unit)-->

<C>89.34</C><!--Charge -->

</BILLDETAILROW>

<BILLDETAILROW>

<C>gas</C><!--Consumable -->

<C>19990226</C>

<!-Date meter reading start of
period-->

<C>509843</C>

<!--Meter reading at start of period-->

<C>19990327</C>

<!--Date meter reading end of period-->

<C>510843</C><!--Meter reading at end of
period->

<C>1000</C><!--Difference in meter readings -
->

<C>Therms</C><!--Units -->

<C>.02543</C><!--Rate (price per unit) -->

<C>25.43</C><!--Charge -->

</BILLDETAILROW>

</BILLDETAILTABLE>

</PRESBILLINFO>

<PRESBILLINFO>

<BILLID>65436</BILLID>

<PRESACCTFROM>

<BILLPUB>ABillPublisher</BILLPUB>

<BILLERID>2021</BILLERID>

<!--Biller id of FluteRental, Inc. -->

<ACCTID>8765XY95</ACCTID>

<!--Dan North’s account number -->

</PRESACCTFROM>

<BILLREFINFO>8765XY95970428</BILLREFINFO>

<AMTDUE>16.21</AMTDUE><!--Total to be paid -->

<DTPMTDUE>19990428</DTPMTDUE><!--by 4/28/99 -->

<DTBILL>19990408</DTBILL>

<NOTIFYDESIRED>N</NOTIFYDESIRED>

<STMNTIMAGE>

<IMAGEURL>

https://www.FluteRental.com/95rs3vlx/bill.asp</
IMAGEURL>

<DTEXPIRE>19990601</DTEXPIRE><!--Must visit url by
6/1/99-->

</STMNTIMAGE>
OFX 2.0 Specification 5056/30/00

to see

is
er Inc
<DETAILAVAILABLE>N</DETAILAVAILABLE><!--No structured
detail exists-->

</PRESBILLINFO>

</PRESLIST>

</PRESLISTRS>

</PRESLISTTRNRS>

</PRESDLVMSGSRSV1>

</OFX>

14.8.4.2 Bill Delivery for Customer Service Representative

This example assumes that Dan North calls Power Inc with a question about his power bill. Power's
customer service representative, Maria Smith, uses a similar application and a similar OFX request
the same bill that Dan sees.

14.8.4.2.1 Bill Delivery Request Example for a Customer Service Representative

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<PRESDLVMSGSRQV1>

<PRESLISTTRNRQ>

<TRNUID>23456/<TRNUID>

<USERID>123-45-6789</USERID><!--Asks for Dan North’s bills -->

<PRESLISTRQ>

<BILLPUB> ABillPublisher</BILLPUB>

<DTSTART>19990330</DTSTART><!--Approximate date -->

<DTEND>1999040410</DTSTART><!--Approximate date -->

<NOTIFYWILLING>N</NOTIFYWILLING>

<INCLUDEDETAIL>Y</INDLUDEDETAIL>

</PRESLISTRQ>

</PRESLISTTRNRQ>

</PRESDLVMSGSRQV1>

</OFX>

14.8.4.2.2 Bill Delivery Response Example for a Customer Service Representative

The response from the server includes the Power Incorporated bill, but not the FluteRental bill. This
because the server decides that Maria Smith’s credentials are good enough to see Dan North’s Pow
bill, but not good enough to see anything else.
506 14.8 Bill Presentment Examples

<OFX>

<SIGNONMSGSRSV1>

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<PRESDLVMSGSRSV1>

<PRESLISTTRNRS>

<TRNUID>23456</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<PRESLISTRS>

<BILLPUB>ABillPublisher</BILLPUB>

<USERID>123-45-6789</USERID><!--Dan North’s userid, so Dan’s
bill-->

<DTSTART>19990328</DTSTART><!--Same as in request: no data
loss-->

<DTEND>19990409</DTEND><!--Same as in request-->

<PRESLIST>

<PRESBILLINFO>

<BILLID>65432</BILLID>

<PRESACCTFROM>

<BILLPUB>ABillPublisher</BILLPUB>

<BILLERID>1001</BILLERID><!--Biller id for Power Inc-->

<ACCTID>1245678GL7</ACCTID>

<!--Dan's account with Power Inc-->

<USERID>123-45-6789</USERID><!--Dan North’s userid-->

</PRESACCTFROM>

<BILLREFINFO>1234678GL7970501</BILLREFINFO>

<AMTDUE>124.24</AMTDUE><!--Dan to pay $124.24-->

<DTPMTDUE>19990501</DTPMTDUE><!--by 5/1/99 -->

<DTBILL>19990401</DTBILL>

<NOTIFYDESIRED>N</NOTIFYDESIRED>

<STMNTIMAGE>

<IMAGEURL>https://www.Power.com/bills/apr/
dannorth.htm?authtoken=987ab6gr8y</IMAGEURL>

<DTEXPIRE>199904111200</DTEXPIRE>

<!--Must visit url by 4/11/99 12am-->

</STMNTIMAGE>

<BILLDETAILTABLE>
OFX 2.0 Specification 5076/30/00

<TABLENAME>usage</TABLENAME>

<BILLDETAILTABLETYPE>x_Power_usage</
BILLDETAILTABLETYPE> <!--Power Inc format for usage-->

<BILLDETAILROW>

<C>elec</C><!--Consumable-->

<C>19990228</C>

<!--Date meter reading start of period-->

<C>65543</C>

<!--Meter reading at start of period-->

<C>19990328</C>

<!--Date meter reading end of period-->

<C>65643</C>

<!--Meter reading at end of period-->

<C>100</C><!--Difference in meter readings-->

<C>KWH</C><!--Units-->

<C>.8934</C><!--Rate (price per unit)-->

<C>89.34</C><!--Charge-->

</BILLDETAILROW>

<BILLDETAILROW>

<C>gas</C><!--Consumable-->

<C>19990226</C>

<!--Date meter reading start of period-->

<C>509843</C>

<!--Meter reading at start of period-->

<C>19990327</C>

<!--Date meter reading end of period-->

<C>510843</C>

<!--Meter reading at end of period-->

<C>1000</C><!--Difference in meter readings-->

<C>Therms</C><!--Units-->

<C>.02543</C><!--Rate (price per unit)-->

<C>25.43</C><!--Charge-->

</BILLDETAILROW>

</BILLDETAILTABLE>

</PRESBILLINFO>

</PRESLIST>

</PRESLISTRS>

</PRESLISTTRNRS>

</PRESDLVMSGSRSV1>

</OFX>
508 14.8 Bill Presentment Examples

sking

ver, the
All this

nly
ones
14.8.4.3 Bill Delivery for a Group of Users

In this example, Realtors Company downloads the phone bills for the employees’ office phones by a
the bill publisher to see the bills for the group RealtorsEmployees. The composition of the group
RealtorsEmployees has been agreed upon between Realtors Company and the bill publisher; moreo
bill publisher has agreed to grant Realtors Company access rights to the RealtorsEmployees group.
took place outside of OFX.

14.8.4.3.1 Bill Delivery Request Example for a Group of Users

<OFX>

<SIGNONMSGSRQV1>

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<PRESDLVMSGSRQV1>

<PRESLISTTRNRQ>

<TRNUID>34567<TRNUID>

<GROUPID>RealtorsEmployees</GROUPID><!--Asks for Employee’s
phone bills-->

<PRESLISTRQ>

<BILLPUB> ABillPublisher</BILLPUB>

<DTSTART>19990430</DTSTART><!--since 4/30/1999-->

<NOTIFYWILLING>N</NOTIFYWILLING>

<INCLUDEDETAIL>Y</INCLUDEDETAIL>

</PRESLISTRQ>

</PRESLISTTRNRQ>

</PRESDLVMSGSRQV1>

</OFX>

14.8.4.3.2 Bill Delivery Response Example for a Group of Users

The response, not shown here, will include several bills each marked with its own <USERID>. The o
bills returned will be the employees’ phone bills for their office phones, since those bills are the only
to which Realtor Company has access rights.
OFX 2.0 Specification 5096/30/00

ers.
14.8.4.4 Group Account Information

This is an example of a client proxy system that is tracking changes to the accounts of a group of us

14.8.4.4.1 Group Account Information Request

<OFX>

<SIGNONMSGSRQV1> <!--Signon Request->

<SONRQ> <!-- ...Sign on request. For a
complete example, see section
11.14.1-->

</SONRQ>

</SIGNONMSGSRQV1>

<PRESDLVMSGSRQV1> <!--Group Account Info Request-->

<PRESGRPACCTINFOTRNRQ>

<TRNUID>10001</TRNUID>

<GROUPID>AClientProxysCustomers</GROUPID>

<!--Predefined group of customers-->

<ACCTINFORQ>

<DTACCTUP>19990104</DTACCTUP><!--Last DTACCTUP received for
group-->

</ACCTINFORQ>

</PRESGRPACCTINFOTRNRQ>

</PRESDLVMSGSRQV1>

</OFX>

14.8.4.4.2 Group Account Information Response

<OFX>

<SIGNONMSGSRSV1> <!--Signon Response->

<SONRS> <!-- ...Sign on response. For a
complete example, see section
11.14.1-->

</SONRS>

</SIGNONMSGSRSV1>

<PRESDLVMSGSRSV1> <!--Group Account Info Response-->

<PRESGRPACCTINFOTRNRS>

<TRNUID>10001</TRNUID>

<STATUS>

<CODE>0</CODE>

<SEVERITY>INFO</SEVERITY>

</STATUS>

<ACCTINFORS>

<DTACCTUP>19990122092431</DTACCTUP>

<ACCTINFO>
510 14.8 Bill Presentment Examples

<PRESACCTINFO>

<PRESACCTFROM>

<BILLPUB>PUBLISHER, INC.</BILLPUB>

<BILLERID>415-552-9923</BILLERID>

<ACCTID>408-555-4342-M132</ACCTID>

<USERID>bygeorge</USERID>
<!--User from group with new status-->

</PRESACCTFROM>

<SVCSTATUS>ACTIVE</SVCSTATUS>

</PRESACCTINFO>

</ACCTINFO>

</ACCTINFORS>

<ACCTINFORS>

<DTACCTUP>19990123082423</DTACCTUP>

<ACCTINFO>

<PRESACCTINFO>

<PRESACCTFROM>

<BILLPUB>PUBLISHER, INC.</BILLPUB>

<BILLERID>415-552-9923</BILLERID>

<ACCTID>408-555-2341-U421</ACCTID>

<USERID>132-42-5242</USERID>
<!--User from group with new status-->

</PRESACCTFROM>

<SVCSTATUS>REJECTED</SVCSTATUS>

<REASON>ACCOUNT NOT FOUND</REASON>

<!--User supplied account with biller->

<!--didn’t match biller’s records-->

</PRESACCTINFO>

</ACCTINFO>

</ACCTINFORS>

</PRESGRPACCTINFOTRNRS>

</PRESDLVMSGSRSV1>

</OFX>
OFX 2.0 Specification 5116/30/00

512 14.8 Bill Presentment Examples

each
APPENDIX A STATUS CODES

The following table provides a complete list of the status codes that can be returned by a server. For
status code, the table includes the following information:

� Number of the status code

� Meaning of the status code

� Conditions under which a server must return the status code

Note: If a server must send an unsupported message to an earlier client, it should include a
<MESSAGE> element describing the general error.

Code Meaning Condition

Code Meaning Condition

0 Success (INFO) The server successfully processed the
request.

1 Client is up-to-date (INFO) Based on the client timestamp, the client has
the latest information. The response does not
supply any additional information.

2000 General error (ERROR) Error other than those specified by the
remaining error codes.

Note: Servers should provide a more
specific error whenever possible. Error code
2000 should be reserved for cases in which a
more specific code is not available.

2001 Invalid account (ERROR)

2002 General account error (ERROR) Account error not specified by the remaining
error codes.

2003 Account not found (ERROR) The specified account number does not
correspond to one of the user’s accounts.

2004 Account closed (ERROR) The specified account number corresponds to
an account that has been closed.

2005 Account not authorized
(ERROR)

The user is not authorized to perform this
action on the account, or the server does not
allow this type of action to be performed on
the account.

2006 Source account not found
(ERROR)

The specified account number does not
correspond to one of the user’s accounts.

2007 Source account closed (ERROR) The specified account number corresponds to
an account that has been closed.
OFX 2.0 Specification 5136/30/00

2008 Source account not authorized
(ERROR)

The user is not authorized to perform this
action on the account, or the server does not
allow this type of action to be performed on
the account.

2009 Destination account not found
(ERROR)

The specified account number does not
correspond to one of the user’s accounts.

2010 Destination account closed
(ERROR)

The specified account number corresponds to
an account that has been closed.

2011 Destination account not
authorized (ERROR)

The user is not authorized to perform this
action on the account, or the server does not
allow this type of action to be performed on
the account.

2012 Invalid amount (ERROR) The specified amount is not valid for this
action; for example, the user specified a
negative payment amount.

2014 Date too soon (ERROR) The server cannot process the requested
action by the date specified by the user.

2015 Date too far in future (ERROR) The server cannot accept requests for an
action that far in the future.

2016 Transaction already committed
(ERROR)

Transaction has entered the processing loop
and cannot be modified/cancelled using OFX.
The transaction may still be cancelled or
modified using other means (for example, a
phone call to Customer Service).

2017 Already canceled (ERROR) The transaction cannot be canceled or
modified because it has already been
canceled.

2018 Unknown server ID (ERROR) The specified server ID does not exist or no
longer exists.

2019 Duplicate request (ERROR) A request with this <TRNUID> has already
been received and processed.

2020 Invalid date (ERROR) The specified datetime stamp cannot be
parsed; for instance, the datetime stamp
specifies 25:00 hours.

2021 Unsupported version (ERROR) The server does not support the requested
version. The version of the message set
specified by the client is not supported by this
server.

2022 Invalid TAN (ERROR) The server was unable to validate the TAN
sent in the request.

Code Meaning Condition
514

2023 Unknown FITID (ERROR)

[BILLID not found (ERROR) in
the billing message sets]

The specified FITID/BILLID does not exist
or no longer exists.

2025 Branch ID missing (ERROR) A <BRANCHID> value must be provided in
the <BANKACCTFROM> aggregate for this
country system, but this field is missing.

2026 Bank name doesn’t match bank
ID (ERROR)

The value of <BANKNAME> in the
<EXTBANKACCTTO> aggregate is
inconsistent with the value of <BANKID> in
the <BANKACCTTO> aggregate.

2027 Invalid date range (ERROR) Response for non-overlapping dates, date
ranges in the future, et cetera.

2028 Requested element unknown
(WARNING)

One or more elements of the request were not
recognized by the server or the server (as
noted in the FI Profile) does not support the
elements. The server executed the element
transactions it understood and supported. For
example, the request file included private tags
in a <PMTRQ> but the server was able to
execute the rest of the request.

6500 <REJECTIFMISSING>Y
invalid without <TOKEN>
(ERROR)

This error code may appear in the
<SYNCERROR> element of an
<xxxSYNCRS> wrapper (in
<PRESDLVMSGSRSV1> and V2 message
set responses) or the <CODE> contained in
any embedded transaction wrappers within a
sync response. The corresponding sync
request wrapper included
<REJECTIFMISSING>Y with
<REFRESH>Y or <TOKENONLY>Y, which
is illegal.

6501 Embedded transactions in
request failed to process: Out of
date (WARNING)

<REJECTIFMISSING>Y and embedded
transactions appeared in the request sync
wrapper and the provided <TOKEN> was out
of date. This code should be used in the
<SYNCERROR> of the response sync
wrapper.

6502 Unable to process embedded
transaction due to out-of-date
<TOKEN> (ERROR)

Used in response transaction wrapper for
embedded transactions when
<SYNCERROR>6501 appears in the
surrounding sync wrapper.

10000 Stop check in process (INFO) Stop check is already in process.

Code Meaning Condition
OFX 2.0 Specification 5156/30/00

10500 Too many checks to process
(ERROR)

The stop-payment request <STPCHKRQ>
specifies too many checks.

10501 Invalid payee (ERROR) Payee error not specified by the remaining
error codes.

10502 Invalid payee address (ERROR) Some portion of the payee’s address is
incorrect or unknown.

10503 Invalid payee account number
(ERROR)

The account number <PAYACCT> of the
requested payee is invalid.

10504 Insufficient funds (ERROR) The server cannot process the request
because the specified account does not have
enough funds.

10505 Cannot modify element
(ERROR)

The server does not allow modifications to
one or more values in a modification request.

10506 Cannot modify source account
(ERROR)

Reserved for future use.

10507 Cannot modify destination
account (ERROR)

Reserved for future use.

10508 Invalid frequency (ERROR) The specified frequency <FREQ> does not
match one of the accepted frequencies for
recurring transactions.

10509 Model already canceled
(ERROR)

The server has already canceled the specified
recurring model.

10510 Invalid payee ID (ERROR) The specified payee ID does not exist or no
longer exists.

10511 Invalid payee city (ERROR) The specified city is incorrect or unknown.

10512 Invalid payee state (ERROR) The specified state is incorrect or unknown.

10513 Invalid payee postal code
(ERROR)

The specified postal code is incorrect or
unknown.

10514 Transaction already processed
(ERROR)

Transaction has already been sent or date due
is past

10515 Payee not modifiable by client
(ERROR)

The server does not allow clients to change
payee information.

10516 Wire beneficiary invalid
(ERROR)

The specified wire beneficiary does not exist
or no longer exists.

10517 Invalid payee name (ERROR) The server does not recognize the specified
payee name.

Code Meaning Condition
516

10518 Unknown model ID (ERROR) The specified model ID does not exist or no
longer exists.

10519 Invalid payee list ID (ERROR) The specified payee list ID does not exist or
no longer exists.

10600 Table type not found (ERROR) The specified table type is not recognized or
does not exist.

12250 Investment transaction download
not supported (WARN)

The server does not support investment
transaction download.

12251 Investment position download
not supported (WARN)

The server does not support investment
position download.

12252 Investment positions for
specified date not available
(WARN)

The server does not support investment
positions for the specified date.

12253 Investment open order download
not supported (WARN)

The server does not support open order
download.

12254 Investment balances download
not supported (WARN)

The server does not support investment
balances download.

12255 401(k) not available for this
account (ERROR)

401(k) information requested from a non-
401(k) account.

12500 One or more securities not found
(ERROR)

The server could not find the requested
securities.

13000 User ID & password will be sent
out-of-band (INFO)

The server will send the user ID and
password via postal mail, e-mail, or another
means. The accompanying message will
provide details.

13500 Unable to enroll user (ERROR) The server could not enroll the user.

13501 User already enrolled (ERROR) The server has already enrolled the user.

13502 Invalid service (ERROR) The server does not support the service
<SVC> specified in the service-activation
request.

13503 Cannot change user information
(ERROR)

The server does not support the
<CHGUSERINFORQ> request.

13504 <FI> Missing or Invalid in
<SONRQ> (ERROR)

The FI requires the client to provide the <FI>
aggregate in the <SONRQ> request, but
either none was provided, or the one provided
was invalid.

14500 1099 forms not available
(ERrOR)

1099 forms are not yet available for the tax
year requested.

Code Meaning Condition
OFX 2.0 Specification 5176/30/00

14501 1099 forms not available for user
ID (ERROR)

This user does not have any 1099 forms
available.

14600 W2 forms not available
(ERROR)

W2 forms are not yet available for the tax
year requested.

14601 W2 forms not available for user
ID (ERROR)

The user does not have any W2 forms
available.

15000 Must change USERPASS
(INFO)

The user must change his or her
<USERPASS> number as part of the next
OFX request.

15500 Signon invalid (ERROR) The user cannot signon because he or she
entered an invalid user ID or password.

15501 Customer account already in use
(ERROR)

The server allows only one connection at a
time, and another user is already signed on.
Please try again later.

15502 USERPASS lockout (ERROR) The server has received too many failed
signon attempts for this user. Please call the
FI’s technical support number.

15503 Could not change USERPASS
(ERROR)

The server does not support the <PINCHRQ>
request.

15504 Could not provide random data
(ERROR)

The server could not generate random data as
requested by the <CHALLENGERQ>.

15505 Country system not supported
(ERROR)

The server does not support the country
specified in the <COUNTRY> field of the
<SONRQ> aggregate.

15506 Empty signon not supported
(ERROR)

The server does not support signons not
accompanied by some other transaction.

15507 Signon invalid without
supporting pin change request
(ERROR)

The OFX block associated with the signon
does not contain a pin change request and
should.

15508 Transaction not authorized.
(ERROR)

Current user is not authorized to perform this
action on behalf of the <USERID>.

16500 HTML not allowed (ERROR) The server does not accept HTML formatting
in the request.

16501 Unknown mail To: (ERROR) The server was unable to send mail to the
specified Internet address.

16502 Invalid URL (ERROR) The server could not parse the URL.

16503 Unable to get URL (ERROR) The server was unable to retrieve the
information at this URL (e.g., an HTTP 400
or 500 series error).

Code Meaning Condition
518

ion 1.6

is

nd thus
APPENDIX B DIFFERENCES BETWEEN OFX 1.6 AND

OFX 2.0

B.1 OFX 1.6 to 2.0

This appendix describes the revisions made to Open Financial Exchange that occurred between vers
and version 2.0. Major changes include:

1) The Data Formatting standard has changed from that of SGML to XML.

2) V2 message sets have been removed.

3) 401(k) support has been added to Investments.

4) A new Tax OFX Addendum which adds support for 1099 and W2 download has been added and
available separately bound from this document.

Note that some detailed changes are not shown below if they are part of one of the changes above a
are identified that way. 401(k) changes have been itemized in full, however.
OFX 2.0 Specification 5196/30/00

.

in

re
B.1.1 Specification Changes by Chapter

Location Subject Change Type Change

Global SGML->XML Change The Data Formatting standard has changed from
that of SGML to XML.

Global End tags required Change Ends tags are now required. All examples were
changed as well as textual references to end tags.

Global Header changed Change The OFX header has changed from that of an
SGML-type header to a standard XML declaration
syntax. Examples were changed as appropriate.

Global V2 eliminated Change V2 tags and message sets have been eliminated
<SRVRTID2>, <TOKEN2>, <MESSAGE2> and
<URL2> are among those tags that have been
deleted.

Global "1.6 add" tags eliminated Change All "1.6 add" tags were eliminated except those
the bill presentment message set and
<REFRESHSUPT> in <MSGSETCORE>

2.3 Special character handling Change Special characters are predefined in XML.

3.1.2.1 Handling of user values Clarification This section was rewritten to clarify rules for
handling user values by a client or server.

6.4 Token and
Synchronization
Summary

Addition New section added to clarify rules for token and
synchronization handling.

11.7 Immediate Transfers Clarification Clarified handling of immediate transfers which a
batched and done that night or next day.

12.2.2 scope of PAYEELSTID Clarification Clarified handling of PAYEELSTID scoping

12.9.2.1 <PAYEEMODRQ> Change Optional tag <MODPENDING> was removed.

12.9.2.2 <PAYEEMODRS> Change Optional tag <MODPENDING> was removed.

13.3.3 change to signage rules Change PENALTY, WITHHOLDING and
STATEWITHHOLDING were added to list of
elements affecting signage of units and totals.

13.6.3.1 New 401(k) section Addition Entitled "401(k) Accounts"

13.6.3.2 New section on download
detail

Addition Entitled, "Note on Downloading Positions and
Transaction Detail for Investment Accounts"

13.7.1.1 New profile tag Addition New tag <INV401KDNLD>

13.8.4 SECLIST return info Clarification better description of when to return <SECLIST>

13.9.1.2 new <INVSTMTRQ> tags Addition <INC401K> and <INC401KBAL>
520 B.1 OFX 1.6 to 2.0

.

L

gate

tags
13.9.2.2 New <INVSTMTRS>
aggregates

Addition <INV401K> and <INV401KBAL>

13.9.2.4 New elements added to
verbiage on transactions

Addition PENALTY, WITHHOLDING and
STATEWITHOLDING included in text

13.9.2.4 New elements added to
computation of total

Addition PENALTY, WITHHOLDING and
STATEWITHOLDING included in text

13.9.2.4.2 New elements added Addition DTPAYROLL, INV401KSOURCE,
LOANINTEREST, LOANID, LOANPRINCIPAL,
PENALTY, PRIORYEARCONTRIB,
STATEWITHHOLDING

13.9.2.4.2 Total description changed Change calculation changed

13.9.2.4.2 WITHHOLDING
description changed

Change Indicates that this element is for federal taxes only

13.9.2.4.3 401(k) verbiage added Addition Describes funding loans or other withdrawals

13.9.2.4.3 Some elements added Change New elements added to INVBUY and INVSEL

13.9.2.4.4 New element added Change <INV401KSOURCE> added to INCOME,
INVEXPENSE, REINVEST, RETOFCAP, SPLIT
and TRANSFER aggregates

13.9.2.6.1 New element added Change <INV401KSOURCE> added to INVPOS aggre

13.9.2.7 </BAL> no longer bolded Correction Corrected mismatch between beginning/ending

13.9.2.8 New section Addition Entitled, "401(k) Balances <INV401KBAL>"

13.9.2.9 Status code added to table Addition Error status code 12255 added

13.9.3 New section Addition Entitled "401(k) Account Information"

13.11 New section (example) Addition Entitled "Complete 401(k) Example"

Appendix
A

Status code 12254 Addition Investment Balances Download not supported
(WARN)

Appendix
A

Status code 14500 Addition 1099 forms not available (INFO)

Appendix
A

Status code 14501 Addition 1099 forms not available for user ID (ERROR)

Appendix
A

Status code 14600 Addition W2 forms not available (INFO)

Appendix
A

Status code 14601 Addition W2 forms not available for user ID (ERROR)

Location Subject Change Type Change
OFX 2.0 Specification 5216/30/00

522 B.1 OFX 1.6 to 2.0

TAG INDEX

Conventions

qÜáë=áåÇÉñ=ìëÉë=íÜÉ=ÅçåîÉåíáçåë=ëÜçïå=áå=íÜÉ=
ÑçääçïáåÖ=í~ÄäÉ=íç=áÇÉåíáÑó=ÇáÑÑÉêÉåí=Éåíêó=
íóéÉëK

A
^``oafkq=PVQI=PVVI=QMO
^``q_^i=QSOI=QSP
^``qbafqj^ph=QQNI=QQOI=QQPI=QVQI=QVSI=

QVU

^``qcloj^q=QQNI=QQOI=QQPI=QVQI=QVRI=QVU
^``qfa=OMI=NMQI=NMRI=NOSI=NPOI=NRRI=NRSI=NRVI=

NSOI=NSQI=NSSI=NTRI=OSPI=OSQI=OSSI=OSTI=

OSUI=OTMI=OTNI=OTRI=OTSI=OTTI=OTVI=OUMI=

PQSI=PQTI=PQUI=PQVI=PRMI=PRNI=PROI=PRPI=

PRSI=PRTI=PRUI=PRVI=PSPI=PSQI=PSVI=QORI=

QOSI=QPNI=QPOI=QQVI=RMNI=RMOI=RMQI=RMRI=

RMTI=RNN

^``qfkcl=NOPI=NOQI=NORI=NOSI=PTMI=QRPI=RNMI=
RNN

^``qfkclon=NOQI=NOQI=NOSI=QQTI=QROI=QROI=
QROI=QRPI=QRQI=RNM

^``qfkclop=NOPI=NOQI=NOQI=NOQI=NOSI=PSVI=
QQTI=QQUI=QROI=QRPI=QRPI=QRQI=QRRI=RNMI=

RNN

^``qfkclqokon=NOQI=NOSI=QQTI=QRO
^``qfkclqokop=NOQI=NOS
^``qhbv=NSPI=NSQI=NSSI=NTR
^``qobnrfoba=NPS
^``qon=NOTI=NOTI=NPNI=NPOI=NPSI=QQUI=QQVI=

QRMI=RMN

^``qop=NOVI=NOVI=NPNI=NPOI=QROI=RMO

^``qpvk`on=VOI=NPNI=NPNI=QRO
^``qpvk`op=VOI=NPNI=NPN
^``qqokon=NOTI=NPOI=RMN
^``qqokop=NOVI=NPOI=RMO
^``qqvmb=OMI=NMQI=NMRI=NOSI=NPOI=NRRI=NRSI=

NRVI=NSOI=NSQI=NSRI=OSPI=OSQI=OSSI=OSTI=

OSUI=OTMI=OTNI=OTOI=OTRI=OTSI=OTTI=OTVI=

OUMI=PQSI=PQTI=PQUI=PQVI=PRMI=PRNI=PROI=

PRPI=PRSI=PRTI=PRUI=PRVI=PSPI=PSQ

^`qfsfqv=QSOI=QSP
^aaoN=NNNI=NOMI=NOOI=NPPI=NPQI=ONOI=OVOI=

PQSI=PQTI=PRMI=PRNI=PROI=PRPI=PSNI=PSOI=

QQMI=QQNI=QQOI=QRMI=QVPI=QVQI=QVRI=QVUI=

QVVI=RMNI=RMO

^aaoO=NNNI=NOMI=NPPI=NPQI=ONOI=OVOI=PSNI=
PSOI=QQMI=QQNI=QQOI=QRMI=QVR

^aaoP=NNNI=NOMI=NPPI=NPQI=ONOI=OVOI=QQMI=
QQNI=QQOI=QRM

^ag^jq=OVRI=OVR
^aga^qb=OVRI=OVR
^agabp`=OVRI=OVR
^agkl=OVRI=OVR
^agrpqjbkq=OVQI=OVRI=OVR
^cqboq^u=QNPI=QOMI=QPR
^cqboq^u`lkqof_^jq=QNS
^cqboq^u`lkqof_m`q=QNS
^jqarb=QSOI=RMQI=RMRI=RMT
^mmfa=OMI=QQI=OSPI=QVOI=QVSI=QVV
^mmsbo=OMI=OSI=QQI=OSPI=QVOI=QVSI=QVV
^ppbq`i^pp=PUQI=PURI=PUSI=PUTI=QOVI=QPM
^r`qflk=QMT
^s^fi^``qp=NPSI=QQT
^s^fi_^i=UPI=NTPI=NTSI=OSR
^s^fi`^pe=QNNI=QOU
^sd`lpq_^pfp=PVQI=QMOI=QMP

B
_^i=RVI=RVI=UPI=PVNI=QNNI=QOU
_^i^jq=NTPI=NTPI=NTSI=OSR
_^i`ilpb=NUPI=NUS
_^iakia=PTP
_^iifpq=PVNI=QNNI=QNNI=QOU
_^ijfk=NUP

Entry Type Text Style

q~Ö=ÇÉÑáåáíáçå _çäÇ=íÉñí

q~Ö=ëÜçïå=áå=Éñ~ãéäÉ fí~äáÅ=íÉñí

q~Ö=ìëÉÇ=ïáíÜáå=ÄçÇó=
çÑ=íÉñí

mä~áå=íÉñí
OFX 1.6 Specification 5236/30/00

_^ilmbk=NUPI=NUS
_^iqvmb=RVI=RVI=QOU
_^kh^``qcolj=OMI=UPI=NMQI=NMRI=NOMI=NOSI=

NOUI=NRRI=NRSI=NRVI=NSOI=NSOI=NSTI=NSVI=

NTOI=NTPI=NUNI=NUOI=NUUI=NUVI=NVSI=OMRI=

ONNI=ONQI=OOMI=OOTI=OPPI=OPQI=OPSI=OPTI=

OPUI=OPVI=OQMI=OQNI=OQOI=OQPI=OQQI=OQRI=

OQSI=OQTI=OQUI=OQVI=ORMI=ORUI=OSPI=OSQI=

OSSI=OSTI=OSUI=OTMI=OTNI=OTRI=OTSI=OTTI=

OTVI=OUVI=OVMI=PMOI=PNPI=PPSI=PPTI=PPUI=

PPVI=PQSI=PQTI=PQUI=PQVI=PRMI=PRNI=PROI=

PRPI=PRSI=PRTI=PRUI=PRVI=PSPI=PSQI=RNR

_^kh^``qfkcl=NORI=NOSI=NSTI=NST
_^kh^``qql=NOUI=NPOI=NSOI=NSQI=NSVI=NTVI=

ONOI=OSSI=OSTI=OTMI=OTNI=OTTI=OTVI=OUMI=

OUQI=OVMI=PORI=POSI=POUI=POVI=RNR

_^khfa=OMI=NMQI=NMRI=NOSI=NPOI=NRRI=NRSI=
NRVI=NSOI=NSQI=ONOI=OSPI=OSQI=OSSI=OSTI=

OSUI=OTMI=OTNI=OTRI=OTSI=OTTI=OTVI=OUMI=

PQSI=PQTI=PQUI=PQVI=PRMI=PRNI=PROI=PRPI=

PRSI=PRTI=PRUI=PRVI=PSPI=PSQI=RNR

_^khj^fion=OPPI=OPP
_^khj^fiop=OPQI=OPQ
_^khj^fipvk`on=VOI=OQVI=OQV
_^khj^fipvk`op=VOI=ORMI=ORM
_^khj^fiqokon=OPPI=OQV
_^khj^fiqokop=OPQI=OPSI=OPTI=ORM
_^khjpdpbq=OROI=ORPI=ORUI=ORU
_^khjpdpbqsN=PVI=NMUI=OROI=ORPI=ORU
_^khjpdponsN=OMI=PTI=OROI=OSPI=OSSI=OSTI=

OTMI=OTR

_^khjpdpopsN=ORPI=OSQI=OSSI=OSUI=OTNI=
OTPI=OTR

_^khk^jb=RNR
_^khqo^kifpq=NTPI=NTSI=OSQ
_^pbj^q`e^jq=QNR
_^pbj^q`em`q=QNR
_fiiabq^fiolt=QTNI=QTOI=QTOI=QTRI=RMQI=

RMRI=RMU

_fiiabq^fiq^_ib=QSNI=QSPI=QTNI=QTNI=QTNI=
QTOI=QTPI=QTQI=QTRI=RMQI=RMT

_fiiabq^fiq^_ibqvmb=QTMI=QTNI=QTOI=QTOI=
QTPI=QTQI=QTRI=RMQI=RMU

_fiibofa=QQMI=QQNI=QQNI=QQVI=QRTI=QVPI=QVQI=
QVRI=QVTI=RMNI=RMOI=RMQI=RMRI=RMTI=RNN

_fiibofkcl=QQNI=QQNI=QQNI=QQRI=QQSI=QQVI=
QVPI=QVQI=QVRI=QVT

_fiibofkclroi=QQO

_fiibok^jb=QQV
_fiifa=QRTI=QSNI=QSOI=QTMI=QTNI=QTRI=QTTI=QTVI=

RMQI=RMRI=RMT

_fiim^vjpdpbq=RNI=PQOI=PQPI=PQQI=PQQ
_fiim^vjpdpbqsN=PVI=NMUI=OURI=PQNI=PQOI=

PQPI=PQQ

_fiim^vjpdponsN=PQOI=PQSI=PQUI=PRMI=PROI=
PRQI=PRRI=PRSI=PRUI=PSMI=PSNI=PSP

_fiim^vjpdpopsN=OUQI=PMNI=PQPI=PQTI=PQVI=
PRNI=PRPI=PRQI=PRRI=PRTI=PRVI=PSMI=PSOI=

PSP

_fiimjqpq^qrp=QSOI=QSRI=QTVI=QTV
_fiimjqpq^qrp`lab=QRUI=QSMI=QSNI=QSR
_fiimjqpq^qrp`lrkqp=QSN
fiimr=QQNI=QQNI=QQVI=QRTI=QSMI=QSNI=QVPI=

QVQI=QVRI=QVTI=RMNI=RMOI=RMPI=RMQI=RMRI=

RMSI=RMTI=RMVI=RNN

_fiiobcfkcl=OVNI=OVNI=QSOI=QUMI=RMQI=RMRI=
RMT

_fiipq^qrp=QSOI=QSQI=QTV
_fiipq^qrp`lab=QRTI=QSMI=QSQ
_fiipq^qrp`lrkqp=QSM
_fiipq^qrpjlaon=QTTI=QTVI=QTVI=QVN
_fiipq^qrpjlaop=QTUI=QTVI=QTV
_fiipq^qrpjlaqokon=QTV
_fiiq_ipqor`qon=QTQI=QTRI=QTR
_fiiq_ipqor`qop=QTRI=QTRI=QTS
_fiiq_ipqor`qqokon=QTR
_fiiq_ipqor`qqokop=QTR
_fiiqvmb=QRTI=QSO
_lav=NQRI=NQSI=NQT
_m^``qfkcl=OUVI=OUV
_o^k`efa=NSOI=NSQI=RNR
_o^ka=QQSI=QQSI=QVQI=QVSI=QVU
_olhbo`lkq^`qfkcl=QNQ
_olhbofa=PSVI=QORI=QOSI=QPNI=QPO
_rpk^jb^``qebia=QRM
_rvab_q=PVV
_rvjc=PVV
_rvlmq=PVV
_rvlqebo=PSVI=PVV
_rvmltbo=QNN
_rvpql`h=PVVI=QOS
_rvqvmb=PVQI=PVVI=QMTI=QOTI=QOV
524

C
`=QTOI=QTOI=QTRI=RMQI=RMRI=RMU
`^iimof`b=PUQ
`^iiqvmb=PUQ
`^k^aam^vbb=PQR
`^k_fiim^v=OSN
`^k`bitka=OSN
`^kbj^fi=OSMI=PTPI=QVN
`^kjlajaip=ORVI=PQR
`^kjlamjqp=PQR
`^kjlapq^qrp=QVN
`^kjlaucbop=ORV
`^kklqfcv=OSMI=QVN
`^kmbkafkd=NRUI=OOPI=OOPI=OPMI=OTRI=OTSI=

PNTI=PNUI=PSMI=PSN

`^kob`ro=ORV
`^kp`eba=ORVI=ORVI=OSO
`^kprmmloqdolrmfa=QVM
`^kprmmloqfj^dbp=QVMI=QVN
`^krma^qbmobpk^jb^aaobpp=QRNI=

QVN

`^krpbabp`=ORV
`^krpbo^kdb=ORV
`^pbpbk=NNQ
`^pe_^i=QNP
``^``qcolj=NSOI=NSSI=NSSI=NSUI=NSVI=NTRI=

NTSI=NUQI=NVSI=OMRI=OPPI=OPQI=OQMI=OQNI=

OQOI=OQPI=OQRI=OQSI=OQTI=OQUI=OQVI=ORM

``^``qfkcl=NSU
``^``qql=NSSI=NSSI=NSVI=NTV
```ilpfkd=NUQI=NURI=NURI=NUS
``pqjqbkaon=NUQI=NUQ
``pqjqbkaop=NUQI=NUQ
``pqjqbkaqokon=NUQ
``pqjqbkaqokop=NUQ
``pqjqon=NTQI=NTRI=NTRI=NUS
``pqjqop=NTSI=NTS
``pqjqqokon=NTR
``pqjqqokop=NTS
`e^iibkdbon=RMI=RMI=TUI=UMI=RNU
`e^iibkdbop=RMI=RMI=TUI=UM
`e^iibkdbqokon=RM
`e^iibkdbqokop=RM
`e^oqvmb=NNQ
`eb`hfkd=PTM
`eb`hkrj=NTUI=NUVI=NVMI=OPSI=OSRI=OSUI=

OSVI=OVVI=PMTI=PRS

`edmfkcfopq=NNQI=NNQ
`edrpbofkcl=NPS
`edrpbofkclon=NPPI=NPPI=QRMI=QRNI=RNT
`edrpbofkclop=NPQ
`edrpbofkclpvk`on=VOI=NPPI=NPR
`edrpbofkclpvk`op=VOI=NPPI=NPR
`edrpbofkclqokon=NPPI=NPR
`edrpbofkclqokop=NPPI=NPR
`eh^kaab_=NUP
`ehabp`=NUUI=NUVI=NUV
`ehboolo=NVM
`ehj^fiop=OPSI=OPS
`ehkrjbka=NUUI=OSU
`ehkrjpq^oq=NUUI=OSU
`eho^kdb=NUUI=NUUI=OSU
`ehpq^qrp=NVMI=OSUI=OSV
`fqv=NNNI=NOMI=NOOI=NPPI=NPQI=ONOI=OVOI=PQSI=

PQTI=PRMI=PRNI=PROI=PRPI=PSNI=PSOI=QQMI=

QQOI=QRMI=QVPI=QVQI=QVRI=QVUI=QVVI=RMNI=

RMO

`ifbkq^`qobn=NPS
`ifbkqbkolii=NPSI=NPS
`ifbkqolrqfkd=NNM
`ilpfkd=NUOI=NUOI=NUP
`ilpfkd^s^fi=ORUI=OSM
`ilproblmq=PVV
`iq`llhfb=QMI=QNI=PUMI=PUNI=PUUI=PVMI=QRQI=

QRRI=QSV

`lab=PQI=QNI=QSI=RNI=ROI=SMI=SNI=NOOI=NOSI=NPOI=
NQSI=NQTI=NQVI=NRVI=NVPI=OMPI=OSQI=OSSI=

OSUI=OTNI=OTSI=OTTI=OTVI=OVUI=PQTI=PQVI=

PRNI=PRPI=PRQI=PRRI=PRTI=PRVI=PSMI=PSOI=

PSQI=QOSI=QPOI=QSMI=QVPI=QVTI=RMMI=RMOI=

RMPI=RMTI=RNMI=RNR

`liabc=QTRI=QTSI=QTS
`lik^jb=QTS
`liqvmb=QTS
`ljjfppflk=PVOI=PVQI=PVTI=PVUI=QMNI=QOT
`lkcjpd=ONQ
`lkprmlpq^i`lab=QQMI=QQM
`lkqof_fkcl=QNRI=QPR
`lkqof_pb`rofqv=QNRI=QPR
`lkqof_rqflkp=QNTI=QNUI=QNVI=QPR
`loob`q^`qflk=NTUI=NTU
`loob`qcfqfa=SPI=NTU
`lrkq=QSMI=QSN
OFX 1.6 Specification 5256/30/00



`lrkqov=NNNI=NOMI=NOOI=NPPI=NPQI=ONOI=OVOI=
QQMI=QQOI=QRMI=QVPI=QVQI=QVRI=QVUI=QVVI=

RMNI=RMOI=RNU

`lrmlkcobn=PUQ
`lrmlkoq=PUQ
`obafq`^oajpdpbq=ORQI=ORQI=OSM
`obafq`^oajpdpbqsN=PVI=ORQI=OSM
`obafq`^oajpdponsN=ORQ
`obafq`^oajpdpopsN=ORQ
`obafqifjfq=NUS
`pmelkb=NNO
`roabc=UPI=UPI=UQI=NTPI=NTSI=NUOI=NUQI=NUVI=

NVQI=OMPI=ONQI=OSQI=OSTI=OSUI=OTNI=OTVI=

OVVI=PNNI=PQTI=PQVI=PRTI=PSQI=PVMI=QOSI=

QPO

`roo^qb=UPI=UQ
`roobk`v=RVI=UPI=UPI=UQI=UQI=NTVI=NUPI=NUSI=

NVMI=PUPI=PVTI=PVUI=QMMI=QMNI=QMOI=QMPI=

QMSI=QMV

`roobkqil^k_^i=QNT
`roobkqsbpqm`q=QNS
`ropvj=UQI=UQ

D
a^qb_foqe=NOMI=NOOI=QVV
a^vmelkb=NOMI=NOOI=NPPI=NPQI=QRMI=QVVI=

RMNI=RMO

a^vpqlm^v=OVSI=PMNI=PQQI=PQUI=PQVI=PSOI=
PSQ

a^vptfqe=ORVI=PQQI=PQQ
ab_^ag=NUS
ab_q`i^pp=PUQ
ab_qfkcl=PUOI=PUQI=PUQ
ab_qqvmb=PUQ
abcbom`q^cqboq^u=QNR
abcbom`qmobq^u=QNR
abkljfk^qlo=QMP
abm^ka`obafq=NUP
abmj^fiop=OPTI=OPT
abp`=RVI=NORI=NOSI=QOU
abq^fi^s^fi^_ib=QSNI=QSPI=RMS
aciqa^vpqlm^v=ORVI=PQQI=PQQ
afcccfopqmjq=PQR
afp`lrkq=OVQI=OVQ
aljucbocbb=OSNI=OSO
ap`^jq=OVQI=OVQ

ap`a^qb=OVQI=OVQ
ap`abp`=OVQI=OVQ
ap`o^qb=OVQI=OVQ
aq^``qrm=QRI=NOPI=NOQI=NOQI=NOSI=OSQI=QROI=

QRPI=QRQI=QVPI=QVTI=RMMI=RNMI=RNN

aq^plc=RVI=NTPI=NTSI=OSRI=PUPI=PUVI=PVMI=
QOSI=QOUI=QPO

aq^r`qflk=QMT
aq^s^fi=NTU
aq_fii=QSOI=QSOI=RMQI=RMRI=RMT
aq`^ii=PUQ
aq`e^kdba=QV
aq`ifbkq=OMI=QQI=OSPI=QVOI=QVSI=QVV
aq`ilpb=NUPI=NUSI=QSO
aq`lrmlk=PUQ
aq`ob^qba=NQMI=NQRI=NQSI=NQT
aqarb=NRRI=NRSI=NSVI=NSVI=ONNI=ONQI=OTNI=

OTOI=OVNI=PNPI=PQQI=PQSI=PQTI=PQUI=PQVI=

PRMI=PRNI=PROI=PRPI=PRSI=PRTI=PRUI=PRVI=

PSQ

aqarb_v=QRTI=QRT
aqbcc=QSQI=QSR
aqbka=SRI=SRI=SSI=NTOI=NTPI=NTRI=NTSI=NUNI=

NUPI=NUQI=NUSI=OSPI=OSQI=PUVI=PVMI=QOSI=

QRSI=QRTI=QSMI=RMQI=RMSI=RMT

aqbumfob=NONI=NOOI=PUSI=QPMI=QSTI=RMMI=RMQI=
RMRI=RMT

aqfkcl`ed=NPQ
aqj^q=PUQ
aqkbuq=NUPI=NUS
aqlmbk=NUPI=NUSI=QSO
aqm^volii=PVTI=QPP
aqmi^`ba=QMSI=QOV
aqmjqarb=SUI=NUSI=QSOI=RMQI=RMRI=RMT
aqmjqmo`=OVSI=PMOI=PQUI=PRMI=PRSI=PSQ
aqmlpqba=NTUI=NVQI=OMPI=ONQI=OSRI=QOT
aqmlpqbka=NUPI=NUPI=NUS
aqmlpqpq^oq=NUPI=NUPI=NUS
aqmof`b^plc=QMVI=QOU
aqmolcrm=QRI=NNMI=NNNI=OSQI=QVPI=QVTI=RMM
aqmro`e^pb=PVQI=QMP
aqpbbk=QTTI=QTT
aqpbosbo=QRI=OSQI=QVPI=QVTI=RMM
aqpbqqib=PVPI=QOS
aqpq^oq=SRI=SRI=NTOI=NTPI=NTRI=NTSI=NUNI=

NUPI=NUQI=NUSI=OSPI=OSQI=PUVI=PVMI=QORI=

QOSI=QPNI=QRSI=QRTI=QSMI=RMPI=RMQI=RMSI=

RMTI=RMV
526



aqqo^ab=PVPI=QOS
aqrma^qb=QPVI=QQMI=QQNI=QVPI=QVT
aqrpbo=NTUI=NUVI=NVMI=OPSI=OPTI=OSRI=QOT
aqucbomo`=NTMI=NTMI=OTUI=OTV
aqucbomog=NVQI=NVQI=NVQI=OMPI=ONQI=OSTI=OUM
aqvfbia^plc=PURI=PUT
aro^qflk=QMSI=QOV

E
b^okfkdp=QNUI=QOM
bj^fi=NNOI=NOMI=NOOI=NPPI=NPQI=QVV
bj^fijpdpbq=NRNI=NRN
bj^fijpdpbqsN=PVI=NRN
bj^fimolc=ORUI=OSMI=OSMI=QVN
bjmilvbo`lkq^`qfkcl=QNQ
bjmilvbok^jb=QNQI=QPQ
bkoliion=QPI=NNVI=NOMI=NOOI=NOUI=NPPI=QQTI=

QRMI=QVV

bkoliiop=NOMI=NONI=NOOI=QQTI=RMM
bkoliiqokon=NOMI=NOOI=QVV
bkoliiqokop=NONI=NOOI=RMM
bsbmelkb=NOMI=NOOI=NPPI=NPQI=QRMI=QVV
buq_^kh^``qql=RNR
buq_^khabp`=ONNI=ONOI=ONOI=ONQ
buqam^vbb=OUUI=OVSI=OVSI=OVVI=PMNI=PNNI=

POSI=POVI=PQQI=PQTI=PQVI=PSOI=PSQ

buqamjq=OUNI=OVMI=OVPI=OVP
buqamjq`eh=OVP
buqamjqap`=OVPI=OVP
buqamjqclo=OVP
buqamjqfkcl=OVM
buqamjqfks=OVPI=OVQI=OVQI=OVR

F

c^umelkb=NNO
cbb=NUVI=ONPI=ONQI=OPSI=OPTI=OSV
cbbjpd=NUVI=OSV
cbbp=PVOI=PVQI=PVTI=PVUI=QMN
cf=OMI=QQI=QRI=QTI=QTI=OSPI=QSNI=QVOI=QVS
cf^ppbq`i^pp=PUQI=PURI=PUSI=PUT
cf`boqfa=RMI=RMI=RM
cfa=OMI=QTI=OSPI=QVOI=QVS
cffa=PUMI=PUMI=PUPI=QOVI=QPM
cfjc^ppbq`i^pp=PUR

cfk^i^jq=PNMI=PNNI=PNQI=PNR
cfk^jb=NNN
cfk`ed=NUS
cfka_fiiboon=QPI=QPUI=QPVI=QPVI=QQMI=QVOI=

QVOI=QVT

cfka_fiiboop=QPUI=QQNI=QQNI=QVPI=QVT
cfka_fiiboqokon=QPVI=QVOI=QVT
cfka_fiiboqokop=QQNI=QQPI=QVPI=QVT
cfmloqflk=PUR

cfopqk^jb=NOMI=NOOI=NPPI=NPQI=QVV
cfqfa=SOI=SPI=SPI=SPI=VMI=NTTI=NTUI=NUOI=NUPI=

NURI=NUSI=OSRI=PUUI=PVPI=QMSI=QOSI=QOTI=

QOV

co^``^pe=PVQI=QMP
cobn=NRQI=NRQI=NRRI=NRSI=OTMI=OTNI=PNPI=PRSI=

PRTI=PRUI=PRVI=RNS

colj=NQMI=NQRI=NQSI=NQT

G

d^fk=PVQI=PVUI=PVV
dbkrpbohbv=QPI=QQ
dbqjfjbon=ROI=NQUI=NQUI=NQUI=NQV
dbqjfjbop=ROI=ROI=NQUI=NQUI=NQUI=NRM
dbqjfjbprm=NRN
dbqjfjbqokon=NQV
dbqjfjbqokop=NQV
dolrmfa=QRPI=QRQI=QRQI=QSMI=QSUI=QSVI=QSVI=

QSVI=RMVI=RNM

H
e^pbuqamjq=PQR
ebiafk^``q=QMVI=QOTI=QOU
ebimjbpp^db=QQNI=QQOI=QVR
eqji=NQRI=NQSI=NQTI=NRM

I
fap`lmb=OVSI=OVSI=PQUI=PQVI=PSOI=PSQ
fj^dbroi=QSTI=QSTI=RMQI=RMRI=RMT
fk`QMNh=PUVI=QPN
fk`QMNh_^i=PUVI=QPN
fk`_^i=PUVI=QOR
fk`bmqla^qb=QNU
OFX 1.6 Specification 5276/30/00



fk`fj^dbp=NQMI=NQNI=NQNI=NQQI=NQRI=NQSI=
NQTI=OQVI=POOI=QOPI=QQMI=QUQI=QVOI=QVT

fk`irab=OMI=NTOI=NTOI=NTRI=OSPI=PUVI=QORI=
QPN

fk`irab_fiimjqpq^qrp=QRUI=QRUI=QRV
fk`irab_fiipq^qrp=QRUI=QRUI=QRV
fk`irab`lrkqp=QRVI=QSM
fk`irababq^fi=QRUI=QRVI=RMPI=RMSI=RMV
fk`irabpq^qrpefpq=QRUI=QRV
fk`irabprjj^ov=QRVI=QRV
fk`ljb=QMM
fk`ljbqvmb=PVQI=QMMI=QMN
fk`ll=PUVI=QOR
fk`mlp=PUVI=PUVI=QORI=QPN
fk`qo^k=OMI=NTOI=NTOI=NTRI=OSPI=PUVI=QORI=

QPN

fkfqf^i^jq=PNMI=PNNI=PNQI=PNR
fkfqf^iil^k_^i=QNT
fkqbo`^kon=OMUI=OMU
fkqbo`^kop=OMUI=OMU
fkqbojlaon=OMRI=OMR
fkqbojlaop=OMSI=OMS
fkqboon=OMOI=OMOI=OORI=OOT
fkqboop=OMPI=OMPI=OORI=OOU
fkqbopvk`on=VOI=OQOI=OQOI=OQT
fkqbopvk`op=VOI=OQPI=OQP
fkqboqokon=OMOI=OMRI=OMUI=OQO
fkqboqokop=OMPI=OMSI=OMUI=OQP
fkqboucbojpdpbq=ORRI=ORSI=OSN
fkqboucbojpdpbqsN=PVI=ORRI=ORSI=OSN
fkqboucbojpdponsN=ORR
fkqboucbojpdpopsN=ORS
fkqiucbocbb=OSNI=OSO
fkqo^`^kon=NVVI=NVV
fkqo^`^kop=NVVI=NVV
fkqo^jlaon=NVSI=NVSI=ORV
fkqo^jlaop=NVTI=NVTI=OTTI=OTV
fkqo^on=NVPI=NVPI=ONUI=OOMI=OSSI=OTM
fkqo^op=NVPI=NVQI=ONUI=OONI=OSSI=OTNI=OTV
fkqo^pvk`on=VOI=OQMI=OQMI=OQR
fkqo^pvk`op=VOI=OQNI=OQN
fkqo^qokon=PUI=NVPI=NVSI=NVVI=OQMI=OSS
fkqo^qokop=NVQI=NVTI=NVVI=OQNI=OSSI=OTTI=

OTU

fksQMNh=PVNI=QNQI=QPQ
fksQMNh_^i=PVNI=QNPI=QPQ
fksQMNhakia=PTP

fksQMNhplro`b=PVQI=PVTI=PVUI=QMMI=QMNI=
QMOI=QMPI=QMSI=QMVI=QPP

fksQMNhprjj^ov=QNTI=QPR
fks^``qcolj=NOMI=NOUI=PSVI=PSVI=PSVI=PTMI=

PUVI=PVMI=QMPI=QONI=QOOI=QOPI=QOQI=QORI=

QOSI=QPNI=QPO

fks^``qfkcl=PSVI=PTMI=PTM
fks^``qql=NOUI=PSV
fks^``qqvmb=PTM
fks^ifa^``qqvmb=ORU
fks_^i=PVNI=QNNI=QNNI=QOU
fks_^khqo^k=PVNI=PVOI=PVOI=QOT
fks_rv=PVSI=PVVI=QOS
fksa^qb=OVQI=OVQ
fksabp`=OVQI=OVQ
fksbumbkpb=QMM
fksj^fion=QONI=QONI=QUQ
fksj^fiop=QOOI=QOOI=QUR
fksj^fipvk`on=VOI=QONI=QOPI=QOP
fksj^fipvk`op=VOI=QONI=QOQI=QOQ
fksj^fiqokon=QOP
fksj^fiqokop=QOQ
fkskl=OVQI=OVQ
fkslf`b=OVPI=OVQI=OVQI=QSO
fksllifpq=PVNI=QOV
fksm^fa^jq=OVQI=OVQ
fksmlp=QMVI=QMVI=QNMI=QOTI=QOU
fksmlpifpq=PSVI=PVNI=QOT
fkspbii=PVSI=QMO
fkspqjqjpdpbq=PTPI=PTPI=PTQI=PTR
fkspqjqjpdpbqsN=PVI=PTOI=PTQI=PTR
fkspqjqjpdponsN=PTQI=QORI=QPN
fkspqjqjpdpopsN=PTRI=QOSI=QPO
fkspqjqon=PUUI=PUVI=PUVI=QORI=QPN
fkspqjqop=PVMI=PVMI=QOSI=QPO
fkspqjqqokon=PUUI=PUUI=QORI=QPN
fkspqjqqokop=PVMI=PVMI=QOSI=QPO
fksqlq^i^jq=OVQI=OVQ
fksqo^k=PVPI=PVPI=PVTI=PVUI=PVVI=QMMI=QMNI=

QMOI=QMPI=QOS

fksqo^kifpq=PVMI=QOSI=QPO

J

gokicrka=QMM
gokipb`=QMN
528



L
i^kdr^db=OMI=QQI=QRI=NNPI=OSPI=OSQI=QVOI=

QVPI=QVSI=QVTI=QVVI=RMM

i^pqk^jb=NOMI=NOOI=NPPI=NPQI=QVV
ibadbo_^i=UPI=NTPI=NTSI=OSR
ifjfqmof`b=QMSI=QOV
ifkbfqbj=OVQI=OVRI=OVR

ifqj^jq=OVRI=OVR
ifqjabp`=OVRI=OVR
il^a=PVOI=PVQI=PVTI=PVUI=QMN
il^kabp`=QNT
il^kfa=PVQI=PVTI=PVUI=QNTI=QPP
il^kfkcl=QNT
il^kfkqbobpq=PVQI=PVTI=QPP
il^kfkqbobpqqla^qb=QNT
il^kj^qrofqva^qb=QNT
il^kkbuqmjqa^qb=QNT
il^kmjq^jq=QNT
il^kmjqcobn=QNT
il^kmjqpfkfqf^i=QNT
il^kmjqpobj^fkfkd=QNT
il^kmofk`fm^i=PVQI=PVTI=QPP
il^ko^qb=QNT
il^kpq^oqa^qb=QNT
il^kqlq^imolgfkqbobpq=QNT
ildl=QQOI=QVQI=QVRI=QVSI=QVU
ilpqpvk`=VMI=VSI=NMQI=NMRI=NPNI=NPRI=NQRI=

OPVI=OQNI=OQPI=OQQI=OQSI=OQUI=ORMI=POPI=

PPQI=PPTI=PPVI=QOQI=QUR

M
j^fi=NQMI=NQMI=NQOI=NQRI=NQSI=NQTI=OPPI=OPQI=

OPSI=OPTI=PNVI=POMI=QONI=QOOI=QUO

j^fion=NQOI=NQOI=NQRI=NRN
j^fiop=NQOI=NQOI=NQQI=NQSI=NQT
j^fiprm=NRN
j^fipvk`on=VOI=NQOI=NQQI=NQQI=NQSI=NRN
j^fipvk`op=VOI=NQOI=NQQI=NQRI=NQS
j^fiqokon=NQOI=NQQI=NQR
j^fiqokop=NQOI=NQRI=NQS
j^odfk_^i^k`b=QNNI=QOU
j^odfkfkqbobpq=QMN
j^ohaltk=PVQI=PVU
j^ohrm=PVRI=PVT
j^q`e=QNPI=QNVI=QOMI=QPS

j^q`e`lkqof_^jq=QNS
j^q`e`lkqof_m`q=QNS
j^q`efkcl=QNRI=QPQ
j^q`em`q=QNRI=QPQ
j^u=QPI=NNQ
j^uj^q`e^jq=QNR
j^uj^q`em`q=QNR
jbjl=SQI=SQI=NRRI=NRSI=NTVI=ONOI=OVNI=PQSI=

PQTI=PQUI=PQVI=PRNI=PROI=PRPI=PRSI=PRTI=

PRUI=PRVI=PSQI=PUPI=PVPI=QMSI=QMVI=QOTI=

QOU

jbjlO=SQ
jbpp^db=PQI=PRI=SMI=SNI=NONI=NPSI=NQO
jc^ppbq`i^pp=PUR
jcfkcl=PUOI=PURI=PUR
jcqvmb=PUR
jfaaibk^jb=NOMI=NOOI=NPPI=NPQI=QVV
jfk=OSI=NNQ
jfk^jqarb=QSO
jfkmjqarb=NUS
jfkrkfqp=QMS
jhqdfkcl=NTPI=NTSI=NUPI=NUSI=PVN
jhqs^i=QMVI=QOU
jlabitka=ORVI=PMUI=PQQ
jlambkafkd=OOMI=OONI=OOTI=OOUI=PNPI=PNQI=

PNRI=PRUI=PRV

jpd_lav=NQMI=NQRI=NQSI=NQT
jpdpbq`lob=PVI=RNI=TRI=TTI=NMUI=NNOI=NNPI=

NNPI=NNQI=NNRI=NPSI=NRNI=ORUI=OSMI=OSNI=

OSOI=PQQI=PTPI=PTSI=QVM

jpdpbqifpq=RNI=NNNI=NNRI=NPSI=NRN

N
k=QTOI=QTO

k^jb=RVI=NTUI=NTVI=NUVI=NVMI=ONOI=OUOI=OVOI=
OVSI=PMOI=PNPI=PQSI=PQTI=PQUI=PQVI=PRMI=

PRNI=PROI=PRPI=PSNI=PSOI=PSQI=QOTI=QOUI=

QQMI=QQNI=QQVI=QVPI=QVQI=QVRI=QVT

k^jb^``qebia=QRMI=RMNI=RMO
kbtrkfqp=PVRI=QMP
kbtrpbom^pp=QUI=ROI=UMI=UO
kfkpqp=NRQI=NRRI=NRSI=PNPI=PRSI=PRTI=PRUI=

PRV

klk`b=RMI=RM
klqfcvabpfoba=QSOI=QTSI=RMQI=RMRI=RMT
klqfcvtfiifkd=QRUI=QTSI=RMPI=RMSI=RMV
OFX 1.6 Specification 5296/30/00



krjbo^qlo=QMP

O
lcu=NVI=OMI=POI=PQI=PRI=PRI=PTI=NMTI=NQRI=NQVI=

OSPI=OSQI=OSRI=OSSI=OSTI=OSUI=OTMI=OTNI=

OTRI=OTSI=PQSI=PQTI=PQUI=PQVI=PRMI=PRNI=

PROI=PRPI=PRQI=PRRI=PRSI=PRTI=PRUI=PRVI=

PSMI=PSNI=PSOI=PSPI=QORI=QOSI=QPNI=QPOI=

QQUI=QVOI=QVPI=QVSI=QVTI=QVVI=RMMI=RMNI=

RMOI=RMPI=RMSI=RMTI=RMVI=RNM

lcupb`=TTI=TTI=NNP
liarkfqp=PVRI=QMP
ll=QMSI=QMSI=QMTI=QOV
ll_rvab_q=QMT
ll_rvjc=QMT
ll_rvlmq=QMT
ll_rvlqebo=QMT
ll_rvpql`h=QMTI=QOV
llakia=PTP
llpbiiab_q=QMT
llpbiijc=QMT
llpbiilmq=QMT
llpbiilqebo=QMT
llpbiipql`h=QMT
lmq^`qflk=PVRI=PVV

lmq_rvqvmb=PVRI=PVVI=QMT
lmqfkcl=PUOI=PUSI=PUSI=QPM
lmqflkibsbi=PTM
lmqpbiiqvmb=PVRI=QMOI=QMT
lmqqvmb=PUSI=QPM
lod=OMI=QTI=QTI=OSPI=QVOI=QVS
lofd`roobk`v=UPI=UQI=UQI=NTVI=NUPI=NUSI=

NVMI=PVTI=PVUI=QMMI=QMNI=QMOI=QMP

lqebobkolii=NPSI=NPS
lqebofkcl=PUOI=PUSI=PUS
lqeboklksbpq=QNPI=QNVI=QOM
lqeboklksbpq^jq=QNS
lqeboklksbpqm`q=QNS
lqebosbpq=QNPI=QNVI=QOMI=QPQ
lqebosbpq^jq=QNS
lqebosbpqm`q=QNSI=QPR

P

m^os^irb=PUQ

m^v^``q=NRRI=NRSI=OVNI=OVUI=PORI=POSI=POTI=
POUI=POVI=PPNI=PQSI=PQTI=PQUI=PQVI=PRMI=

PRNI=PROI=PRPI=PRSI=PRTI=PRUI=PRVI=PSNI=

PSOI=PSQI=RNS

m^v^ka`obafq=NUS
m^vbb=NTUI=OUOI=OUQI=OURI=OVMI=OVOI=OVOI=OVUI=

PMNI=PMOI=PNPI=PORI=POSI=POTI=POUI=POVI=

PQSI=PQTI=PRMI=PRNI=PROI=PRPI=PSNI=PSO

m^vbbO=QUM
m^vbbabion=PSI=PPNI=PPNI=PPO
m^vbbabiop=PPOI=PPO
m^vbbfa=NRRI=NRSI=NTUI=OUQI=OUSI=OUSI=OVMI=

OVSI=OVUI=PMNI=PMOI=PNPI=PORI=POSI=PQTI=

PQUI=PQVI=PRSI=PRTI=PRUI=PRVI=PSOI=PSQ

m^vbbfaO=OUSI=QQUI=QQVI=QSOI=QUM
m^vbbipqfa=OUQI=OURI=OUSI=OUSI=OUTI=OUUI=

OVMI=OVUI=OVVI=PMNI=PMOI=PNNI=PNPI=POSI=

POTI=POUI=POVI=PPNI=PPOI=PQTI=PQVI=PQVI=

PRTI=PRVI=PSOI=PSQ

m^vbbipqfaO=OUSI=QQUI=QQV
m^vbbjlaon=OURI=PMNI=POTI=POTI=POUI=PPN
m^vbbjlaop=OUQI=OURI=PMNI=PMOI=PNPI=POVI=

POV

m^vbbon=OURI=OUTI=PMNI=PORI=PORI=PSN
m^vbbop=OURI=PMOI=PNPI=POSI=POSI=PSO
m^vbbpvk`on=VOI=NPNI=NPNI=NPRI=NPRI=OUUI=

PPPI=PPP

m^vbbpvk`op=VOI=NPNI=NPNI=NPRI=NPRI=OUQI=
PMNI=PPQI=PPQ

m^vbbqokon=PSI=PORI=POTI=PPNI=PPPI=PSN
m^vbbqokop=OUUI=POSI=POVI=PPOI=PPQI=PSO
m^vfkpqor`q=ONNI=ONQ
m^vjbkqfkpqorjbkq=QQRI=QQSI=QQSI=QVPI=

QVQI=QVRI=QVSI=QVU

m^vjbkqfkpqorjbkqp=QQOI=QQRI=QQRI=
QQRI=QQSI=QVPI=QVQI=QVRI=QVU

mbk^iqv=PVU
mbo`bkq=PURI=PUR
mboflaqla^qb=QNU
melkb=NORI=NOSI=ONOI=OVOI=PQSI=PQTI=PRMI=

PRNI=PROI=PRPI=PSNI=PSOI=QQOI=QVPI=QVQI=

QVRI=QVU

mfk`e=NNQI=NNQ
mfk`eon=QUI=QUI=ROI=UMI=UOI=NMMI=NNQI=RNU
mfk`eop=QUI=QVI=QVI=RO
mfk`eqokon=QUI=RO
mfk`eqokop=QUI=RO
mi^kfa=QNQI=QPQ
530



mi^kglfka^qb=QNQI=QPQ
mjq_v^aao=PQQ
mjq_vm^vbbfa=PQR
mjq_vucbo=PQQ
mjq`^k`on=PSI=OUUI=OVTI=PMRI=PMRI=PRQ
mjq`^k`op=NRVI=OUUI=PMRI=PMSI=PMSI=PRQ
mjqfkcl=NRRI=NRSI=OVMI=OVMI=OVUI=OVVI=PMNI=

PMOI=PMPI=PNMI=PNNI=PNPI=PNQI=PNRI=PNVI=

POMI=PQSI=PQTI=PQUI=PQVI=PRMI=PRNI=PROI=

PRPI=PRSI=PRTI=PRUI=PRVI=PSQI=QUM

mjqfknon=PSI=OUTI=OUUI=PMTI=PMTI=PRR
mjqfknop=PMTI=PMTI=PRR
mjqfknqokon=PSI=PMTI=PRR
mjqfknqokop=PMTI=PRR
mjqfkpqorjbkqqvmb=QQSI=QQSI=QQSI=QVQI=

QVRI=QVSI=QVU

mjqj^fion=PNVI=PNV
mjqj^fiop=POMI=POM
mjqj^fipvk`on=VOI=PNVI=POOI=POOI=QUO
mjqj^fipvk`op=VOI=POPI=POP
mjqj^fiqokon=PNVI=POO
mjqj^fiqokop=POMI=POP
mjqjlaon=PSI=OUNI=OUQI=OURI=OUTI=OVTI=

PMOI=PMOI=PMPI=PRMI=PRO

mjqjlaop=OUTI=OUUI=PMOI=PMPI=PMPI=PMRI=
PNPI=PPRI=PRNI=PRP

mjqmo``lab=OVSI=OVUI=PMOI=PQUI=PRMI=PRRI=
PSQ

mjqmo`pqp=OVSI=OVSI=OVUI=OVVI=PMPI=PMRI=
PMTI=PQUI=PQVI=PRRI=PSQ

mjqon=PSI=NMRI=OUQI=OURI=OUTI=OUUI=OVUI=OVUI=
PMNI=PMRI=PORI=POSI=POVI=PQSI=PQU

mjqop=NMQI=NMRI=OUTI=OUUI=OVMI=OVUI=OVUI=OVUI=
OVVI=PMNI=PMOI=PPRI=PQTI=PQVI=PSPI=PSQ

mjqpvk`on=VNI=VOI=NMQI=NMRI=NRVI=OUUI=PPSI=
PPSI=PQMI=PSP

mjqpvk`op=VOI=NMQI=NMRI=NRVI=OUTI=OUUI=
PMRI=PPTI=PPTI=PQMI=PSP

mjqqokon=PSI=NMRI=OVUI=PMPI=PMRI=PPSI=PQSI=
PQUI=PRMI=PROI=PRQ

mjqqokop=NMQI=NMRI=NRVI=OVUI=PMPI=PMSI=PPTI=
PQTI=PQVI=PRNI=PRPI=PRQI=PSQ

mloqflk=PUR
mlpab_q=QNM
mlpakia=PTP
mlpjc=QNM
mlplmq=QNMI=QOU
mlplqebo=PSVI=QNM

mlppql`h=QNMI=QOT
mlpq^i`lab=NNNI=NOMI=NOOI=NPPI=NPQI=ONOI=

OVOI=PQSI=PQTI=PRMI=PRNI=PROI=PRPI=PSNI=

PSOI=QQMI=QQOI=QRMI=QVPI=QVQI=QVRI=QVUI=

QVVI=RMNI=RMO

mlpqmol`tka=PQQ
mlpqvmb=PVRI=QMPI=QMVI=QOTI=QOU
mobcbq`eroi=QSTI=QST
mobp^``qcolj=QQNI=QQUI=QQUI=QQVI=QRMI=

QSOI=QSUI=QTNI=QTTI=QUOI=QUQI=QURI=RMQI=

RMRI=RMTI=RNN

mobp^``qfkcl=QQTI=QQUI=QQUI=QQVI=QRPI=
QRQI=QUMI=RNN

mobp^``qql=QQNI=QQUI=QQUI=QRMI=QRNI=RMNI=
RMO

mobp_fiifkcl=QQVI=QRVI=QSNI=QSNI=QSNI=QSOI=
QSUI=QTMI=QTNI=QTSI=QUMI=RMQI=RMRI=RMT

mobp`lrkqp=QRVI=QSM
mobpabifsbovfa=QTTI=QTTI=QTU
mobpabq^fi=QTN
mobpabq^fion=QRSI=QSNI=QTMI=QTMI=QTMI=QTN
mobpabq^fiop=QTNI=QTN
mobpabq^fiqokon=QTM
mobpabq^fiqokop=QTNI=QTQ
mobpafojpdpbq=QUSI=QUTI=QVM
mobpafojpdpbqsN=PVI=QPUI=QUSI=QUTI=QVM
mobpafojpdponsN=QPUI=QUSI=QVOI=QVT
mobpafojpdpopsN=QPUI=QUTI=QVPI=QVT
mobpafomolc=QVM
mobpaisjpdpbq=QUSI=QUUI=QUVI=QVM
mobpaisjpdpbqsN=PVI=QPUI=QRSI=QUUI=QUVI=

QVM

mobpaisjpdponsN=QRSI=QUUI=RMPI=RMSI=
RMVI=RNM

mobpaisjpdpopsN=QRSI=QUVI=RMPI=RMTI=RNMI=
RNR

mobpaismolc=QVM
mobpdom^``qfkclqokon=QROI=QRPI=QRPI=

QRQI=RNM

mobpdom^``qfkclqokop=QRPI=QRQI=QRQI=
QRRI=RNM

mobpifpq=QSMI=QSNI=QSNI=RMQI=RMT
mobpifpqon=QRSI=QRSI=QRTI=QSMI=QSNI=QSTI=

QSUI=QSVI=QTSI=QUMI=RMPI=RMSI=RMV

mobpifpqop=QRSI=QSMI=QSMI=QSUI=QSVI=RMQI=RMT
mobpifpqqokon=QRSI=QRTI=QSMI=QSUI=QSUI=

QSVI=RMPI=RMSI=RMV
OFX 1.6 Specification 5316/30/00



mobpifpqqokop=QSMI=QSUI=QSVI=QSVI=QTMI=
RMPI=RMT

mobpj^fion=QUOI=QUO
mobpj^fiop=QUOI=QUO
mobpj^fipvk`on=VOI=QUNI=QUQI=QUQ
mobpj^fipvk`op=VOI=QUNI=QURI=QUR
mobpj^fiqokon=QUOI=QUQ
mobpj^fiqokop=QUOI=QUPI=QUR
mobpk^jb^aaobpp=QQVI=QRMI=QRMI=QRNI=

RMNI=RMO

mobpklqfcvon=QTTI=QTTI=QVN
mobpklqfcvop=QTUI=QTU
mobpklqfcvqokon=QTT
mobpklqfcvqokop=QTUI=QUM
mobq^u=QNPI=QNVI=QOMI=QPQI=QPR
mobq^u`lkqof_^jq=QNS
mobq^u`lkqof_m`q=QNSI=QPR
mobs_^i=QSOI=QSP
moflovb^o`lkqof_=PVRI=PVTI=QPP
mol`a^vplcc=ORVI=OSOI=PQQI=QVMI=QVNI=QVN
mol`bkaqj=ORVI=OSOI=PQQI=QVMI=QVN

molcfqpe^ofkd=QNPI=QNVI=QOMI=QPQ
molcfqpe^ofkd`lkqof_^jq=QNS
molcfqpe^ofkd`lkqof_m`q=QNSI=QPR
molcjpdpbq=NNRI=NNR
molcjpdpbqsN=PVI=NMTI=NNR
molcon=QPI=NNM
molcop=NNNI=NNNI=NNNI=QUSI=QVM
molcqokon=NNM
molcqokop=NNN
mro^ka^as=NUS

R
o^qfkd=PUP
ob^plk=QQUI=RNN
ob`fkqbo`^kon=OPMI=OPM
ob`fkqbo`^kop=OPMI=OPM
ob`fkqbojlaon=OOTI=OOT
ob`fkqbojlaop=OOUI=OOU
ob`fkqboon=OORI=OOR
ob`fkqboop=OORI=OOR
ob`fkqbopvk`on=OQTI=OQT
ob`fkqbopvk`op=VOI=OQUI=OQU
ob`fkqboqokon=OORI=OOTI=OPMI=OQT
ob`fkqboqokop=OORI=OOUI=OPMI=OQU
ob`fkqo^`^kon=OOPI=OOPI=OTR

ob`fkqo^`^kop=OOPI=OOPI=OTS
ob`fkqo^jlaon=OOMI=OOMI=ORV
ob`fkqo^jlaop=OONI=OON
ob`fkqo^on=ONUI=ONUI=OTM
ob`fkqo^op=ONUI=ONUI=OTN
ob`fkqo^pvk`on=VOI=OQRI=OQRI=OTR
ob`fkqo^pvk`op=VOI=OQSI=OQSI=OTR
ob`fkqo^qokon=ONUI=OOMI=OOPI=OQRI=OTMI=

OTR

ob`fkqo^qokop=ONUI=OONI=OOPI=OQSI=OTNI=
OTS

ob`mjq`^k`on=NRUI=PNTI=PNTI=PSM
ob`mjq`^k`op=NRUI=PNUI=PNUI=PSM
ob`mjqjlaon=OUQI=OURI=PNPI=PNPI=PNQI=

PNQI=PRU

ob`mjqjlaop=OURI=PNPI=PNRI=PNRI=POUI=PRV
ob`mjqon=NRRI=OUQI=OURI=PNMI=PNMI=PRS
ob`mjqop=SOI=NRSI=OVMI=PNNI=PNNI=PNPI=PRT
ob`mjqpvk`on=VOI=PPUI=PPUI=PQM
ob`mjqpvk`op=VOI=PPVI=PPVI=PQM
ob`mjqqokon=PNMI=PNQI=PNTI=PPUI=PRSI=

PRUI=PSM

ob`mjqqokop=PNNI=PNRI=PNUI=PPVI=PRTI=PRVI=
PSM

ob`posoqfa=SOI=NRSI=NRSI=NRUI=NRUI=NVQI=
OMPI=ONUI=OOMI=OONI=OOPI=OORI=OOTI=OOUI=

OPMI=OTNI=OTRI=OTSI=OUMI=OURI=OVVI=PNNI=

PNQI=PNRI=PNTI=PNUI=PRTI=PRUI=PRVI=PSM

ob`roofkpq=NRQI=NRQI=NRRI=NRSI=ONUI=OOMI=
OONI=OORI=OOTI=OOUI=OTMI=OTNI=PNMI=PNNI=

PNPI=PNQI=PNRI=PRSI=PRTI=PRUI=PRV

obckrj=NTUI=OMP

obcobpe=VQI=VRI=VRI=NMOI=NNPI=NPNI=NPRI=NQQI=
OPUI=OQMI=OQOI=OQQI=OQRI=OQTI=OQVI=POOI=

PPPI=PPRI=PPSI=PPUI=QOPI=QUQI=RNR

obcobpeprmq=NNPI=NNP
obfks`d=QNM
obfksafs=QNMI=QNM
obfksbpq=QMN
obgb`qfcjfppfkd=VNI=VQI=VRI=NMQI=NMRI=NPNI=

NPRI=NQQI=NQSI=NRVI=OPUI=OQMI=OQOI=OQQI=

OQRI=OQTI=OQVI=OTRI=POOI=PPPI=PPSI=PPUI=

PSPI=QOPI=QUQI=RNR

obicfqfa=SPI=PVRI=PVVI=QMO
obiqvmb=PVRI=QMO
obpmcfibbo=NNP
obpqof`q=QQOI=QVR
obpqof`qflk=QMSI=QOV
532



obqlc`^m=QMO
obsbop^icfqfa=SP
oliilsbo=QNPI=QNVI=QOMI=QPQ
oliilsbo`lkqof_^jq=QNS
oliilsbo`lkqof_m`q=QNSI=QPR

S

pb`fa=PTVI=PTVI=PUMI=PUMI=PUOI=PUPI=PUSI=PVTI=
PVUI=PVVI=QMMI=QMNI=QMOI=QMPI=QMSI=QMTI=

QMVI=QOTI=QOUI=QOVI=QPM

pb`fkcl=PUPI=PUPI=PUQI=PURI=PUSI=PUTI=QOVI=
QPM

pb`ifpq=PTUI=PUNI=PUOI=PUOI=QOV
pb`ifpqjpdpbq=PTSI=PTSI=PTTI=PTU
pb`ifpqjpdpbqsN=PVI=PTSI=PTTI=PTU
pb`ifpqjpdponsN=PTI=PTTI=PTUI=PUO
pb`ifpqjpdpopsN=PTI=PTUI=PUOI=QOV
pb`ifpqon=PUMI=PUMI=PUN
pb`ifpqonakia=PTS
pb`ifpqop=PUNI=PUN
pb`ifpqqokon=PUMI=PUMI=PUO
pb`ifpqqokop=PUNI=PUN
pb`k^jb=PUPI=QOVI=QPM
pb`on=PUM
pb`roba=PVRI=QMOI=QNM
pb`rofqvk^jb=NOMI=NOOI=QVV
pbii^ii=QMT
pbiiab_q=QMO
pbiijc=QMO
pbiilmq=QMO
pbiilqebo=PSVI=QMO
pbiiob^plk=PVRI=QMO
pbiipql`h=QMO
pbiiqvmb=PVRI=QMOI=QMT
pbpp`llhfb=QPI=QQI=QR
pbsbofqv=PQI=PRI=PVI=ROI=SMI=SMI=NOOI=NOSI=

NPOI=NQSI=NQTI=NRMI=NRVI=OSQI=OSSI=OSUI=

OTNI=OTSI=OTTI=OTVI=PQTI=PQVI=PRNI=PRPI=

PRQI=PRRI=PRTI=PRVI=PSMI=PSOI=PSQI=QOSI=

QPOI=QVPI=QVTI=RMMI=RMOI=RMPI=RMTI=RNM

peloq_^i^k`b=QNNI=QOU
pembo`qo`q=PUSI=PVRI=PVVI=QMOI=QPM
pf`=NTUI=QQMI=QQOI=QVPI=QVQI=QVRI=QVU
pfdklkfkcl=QPI=NNNI=NNQI=NNQ
pfdklkfkclifpq=NNN
pfdklkjpdpbq=RNI=RNI=NMV

pfdklkjpdpbqsN=PVI=RNI=NMU
pfdklkjpdponsN=OMI=PTI=QOI=OSPI=OSRI=

OSTI=OTMI=OTOI=OTPI=OTRI=OTSI=PQSI=PQUI=

PRMI=PROI=PRQI=PRRI=PRSI=PRUI=PSMI=PSNI=

PSPI=QORI=QPNI=QVOI=QVSI=QVVI=RMNI=RMPI=

RMSI=RMVI=RNM

pfdklkjpdpopsN=QOI=OSQI=OSSI=OSUI=OTNI=
OTRI=OTTI=PQTI=PQVI=PRNI=PRPI=PRQI=PRRI=

PRTI=PRVI=PSMI=PSOI=PSPI=QOSI=QPOI=QVPI=

QVTI=RMMI=RMOI=RMPI=RMTI=RNM

pfdklkob^ij=NNPI=NNQ

pfdkrmjpdpbq=NPS
pfdkrmjpdpbqsN=PVI=NPS
pfdkrmjpdponsN=PTI=NNTI=QVVI=RMN
pfdkrmjpdpopsN=PTI=RMMI=RMO
plkon=OMI=PTI=QOI=QOI=QPI=QQI=QQI=QRI=QUI=TRI=

UMI=UOI=NMNI=NMQI=NMVI=NNVI=NQRI=OSPI=

OSRI=OSTI=OTMI=OTOI=OTPI=OTRI=OTSI=PQSI=

PQUI=PRMI=PROI=PRQI=PRRI=PRSI=PRUI=PSMI=

PSNI=PSOI=PSPI=QORI=QOSI=QPNI=QPOI=QPUI=

QQUI=QRQI=QSUI=QSVI=QVOI=QVSI=QVVI=RMNI=

RMPI=RMSI=RMVI=RNMI=RNU

plkop=QOI=QOI=QPI=QQI=QRI=QRI=NMOI=OSQI=OSSI=
OSUI=OTNI=OTRI=OTTI=PQTI=PQVI=PRNI=PRPI=

PRQI=PRRI=PRTI=PRVI=PSOI=PSPI=QOSI=QPOI=

QVPI=QVTI=RMMI=RMNI=RMOI=RMPI=RMSI=RMTI=

RMVI=RNM

pm^`bp=NNQ
pmb`f^i=NNQ
pmifq=QMP
pmk^jb=QRI=NNPI=OUSI=QQUI=QQV
posoqfa=SOI=SOI=SPI=VMI=VQI=VUI=NRVI=NTUI=NVQI=

NVSI=NVTI=NVVI=OMPI=OMRI=OMSI=OMUI=ONQI=

ONRI=ONSI=ONUI=OORI=OSTI=OTNI=OTTI=OTVI=

OURI=OUTI=OUUI=OVVI=PMPI=PMRI=PMSI=PMTI=

PNVI=POMI=PQMI=PQNI=PQTI=PQVI=PRMI=PRNI=

PROI=PRPI=PRQI=PRRI=PSQI=PVPI=QMS

posoqfaO=SOI=SPI=QSR
pq^oqlcvb^o=QNR
pq^qb=NNNI=NOMI=NOOI=NPPI=NPQI=ONOI=OVOI=PQSI=

PQTI=PRMI=PRNI=PROI=PRPI=PSNI=PSOI=QQMI=

QQOI=QRMI=QVPI=QVQI=QVRI=QVTI=QVUI=QVVI=

RMNI=RMO

pq^qbtfqeeliafkd=PVRI=PVU
OFX 1.6 Specification 5336/30/00



pq^qrp=PQI=PVI=QMI=QNI=QRI=QSI=RNI=ROI=SMI=SMI=
NMQI=NNNI=NONI=NOOI=NOSI=NPOI=NQSI=NQTI=

NQVI=NRVI=NVPI=OMPI=OSQI=OSSI=OSUI=OTNI=

OTSI=OTTI=OTVI=OVUI=PQTI=PQVI=PRNI=PRPI=

PRQI=PRRI=PRTI=PRVI=PSMI=PSOI=PSQI=PUNI=

PVMI=QOSI=QPOI=QQQI=QRRI=QSMI=QSVI=QVPI=

QVTI=RMMI=RMOI=RMPI=RMTI=RNM

pq^qrpjla_v=QSQI=QSS
pqjkqfj^db=QSPI=QSTI=QSTI=QSTI=QSTI=RMQI=

RMRI=RMT

pqjqbkaon=PSI=NUNI=NUNI=NUNI=NUQ
pqjqbkaop=NUNI=NUOI=NUOI=NUQ
pqjqbkaqokon=PSI=NUN
pqjqbkaqokop=NUO
pqjqon=OMI=OQI=PRI=NTOI=NTOI=NTOI=NTQI=NUPI=

OSPI=PSU

pqjqop=OQI=PRI=UPI=NTOI=NTPI=NTPI=NTSI=OSQI=
PSU

pqjqqok=NTPI=NTSI=NTTI=NTTI=NTUI=OSQI=OSRI=
PVOI=QOTI=QTP

pqjqqokon=OMI=PUI=NTOI=OSP
pqjqqokop=NTPI=OSQ
pql`hfkcl=PUOI=PUTI=PUTI=QOV
pql`hqvmb=PUT
pqlmmof`b=QMS
pqm`ehcbb=ORV
pqm`ehkrj=NUVI=NVMI=NVMI=OSUI=OSV

pqm`ehmolc=ORUI=ORVI=ORV
pqm`ehon=NUUI=NUUI=OSTI=RNS
pqm`ehop=NUVI=NUVI=OSU
pqm`ehpvk`on=VOI=OPUI=OPU
pqm`ehpvk`op=VOI=OPVI=OPV
pqm`ehqokon=NUUI=OPUI=OST
pqm`ehqokop=NUVI=OPVI=OSU
pqofhbmof`b=PUSI=QPM
pqpsf^jlap=PQQ
pr_^``q=QMSI=QOV
pr_^``qcolj=PVRI=QMMI=QMN

pr_^``qcrka=PVOI=PVRI=PVTI=PVUI=QMMI=QMNI=
QMOI=QMPI=QOT

pr_^``qpb`=PVRI=PVTI=PVUI=PVVI=QMMI=QMNI=
QMOI=QMPI=QOT

pr_^``qql=PVRI=QMMI=QMN
pr_gb`q=NQMI=NQRI=NQSI=NQT
prmquai=NOSI=NSTI=NSU
ps`=NOTI=NOVI=NPOI=QRPI=RNT
ps`O=QRMI=QROI=RMNI=RMO

ps`^aa=NOTI=NOUI=NOUI=NOUI=NOVI=NPOI=QQUI=
QRMI=QRMI=QRMI=QROI=RMNI=RMO

ps``^aa=NOT
ps``ed=NOTI=NOUI=NOVI=QQUI=QRN
ps`abi=NOTI=NOUI=NOV
ps`pq^qrp=NOPI=NORI=NOSI=NOVI=NPOI=NSTI=

NSUI=OUVI=PTMI=RNN

ps`pq^qrpO=QQUI=QRO
ptfq`e^ii=QMT
ptfq`ejc=QMT
pvk`boolo=RNR
pvk`jlab=NNPI=NNP

T
q^_ibk^jb=QTNI=QTNI=RMQI=RMU
q^_ibqvmb=QTNI=QTR
q^k=QMI=QNI=PUMI=PUMI=PUUI=QRQI=QSV
q^ubp=PVOI=PVRI=PVTI=PVUI=QMN
q^ububjmq=PVRI=PVUI=QMMI=QMN
q^ufa=NOMI=NOOI=QVV
qbjmm^pp=NONI=NONI=NOOI=RMM
qcbo^`qflk=PVSI=QMP
qf`hbo=PUMI=PUMI=PUPI=QOVI=QPM
ql=NQMI=NQRI=NQSI=NQT
qlhbk=SNI=SQI=SQI=UUI=UVI=VMI=VNI=VQI=VRI=VSI=

NMOI=NMQI=NMRI=NPMI=NPNI=NPQI=NPRI=NQPI=

NQQI=NQRI=NQSI=NQSI=NQSI=NRVI=NVNI=NVRI=

NVUI=OMMI=OMQI=OMTI=OMVI=ONRI=ONSI=ONVI=

OOOI=OOQI=OOSI=OOVI=OPNI=OPQI=OPRI=OPUI=

OPVI=OQMI=OQNI=OQOI=OQPI=OQQI=OQRI=OQSI=

OQTI=OQUI=OQVI=ORMI=OTRI=PMMI=PMQI=PMSI=

PMUI=PNOI=PNSI=PNUI=PONI=POOI=POPI=POTI=

PPMI=PPOI=PPPI=PPQI=PPSI=PPTI=PPUI=PPVI=

PQNI=PSPI=QOOI=QOPI=QOQI=RNR

qlhbkO=SQI=NPNI=QUQI=QUR
qlhbklkiv=VRI=VRI=NPNI=NPRI=NQQI=OPUI=OQMI=

OQOI=OQQI=OQRI=OQTI=OQVI=POOI=PPPI=PPSI=

PPUI=QOPI=QUQI=RNR

qlq^i=PVRI=PVTI=PVUI=PVVI=QMMI=QMNI=QMOI=QOT
qlq^icbbp=NUP
qlq^ifkq=NUP
qo^kakia=PTP
qo^kpcbo=QMP
qo^kpmpb`=TRI=TRI=NNPI=NNP
534



qok^jq=SQI=SQI=NRRI=NRSI=NSVI=NTUI=NUVI=NVMI=
ONNI=ONQI=OPSI=OPTI=OSRI=OSSI=OSTI=OTMI=

OTOI=OTUI=OTVI=OUMI=OVMI=PNPI=PQSI=PQTI=

PQUI=PQVI=PRMI=PRNI=PROI=PRPI=PRSI=PRTI=

PRUI=PRVI=PSQI=QOT

qokqvmb=NTUI=NUMI=OSQI=OSRI=QOT
qokrfa=OMI=QMI=QNI=ROI=SNI=SNI=SOI=VMI=VQI=VSI=

VUI=NMMI=NMQI=NMRI=NOOI=NOSI=NPOI=NPVI=

NQOI=NQRI=NQSI=NQTI=NQVI=OSPI=OSQI=OSSI=

OSTI=OSUI=OTMI=OTNI=OTRI=OTSI=OTTI=OTUI=

OURI=PQMI=PQNI=PQSI=PQTI=PQUI=PQVI=PRMI=

PRNI=PROI=PRPI=PRQI=PRRI=PRSI=PRTI=PRUI=

PRVI=PSMI=PSNI=PSOI=PSPI=PSQI=PUMI=PUNI=

PUUI=PVMI=QORI=QOSI=QPNI=QPOI=QRQI=QRRI=

QSVI=QVOI=QVPI=QVTI=QVVI=RMMI=RMNI=RMOI=

RMPI=RMSI=RMTI=RMVI=RNMI=RNQ

qphbvbumfob=QR
qpmelkb=NNO
qvmbabp`=PUS

U
rkfnrbfa=PTVI=QOTI=QOUI=QOVI=QPM
rkfnrbfaqvmb=PTVI=QOTI=QOUI=QOVI=QPM
rkfqmof`b=PSVI=PUPI=PVSI=PVTI=PVUI=QMNI=QMPI=

QMVI=QOTI=QOU

rkfqp=PSVI=PVSI=PVTI=PVUI=PVVI=QMNI=QMPI=QMSI=
QMVI=QOTI=QOUI=QOV

rkfqppqobbq=QNMI=QNM
rkfqprpbo=QNMI=QNM
rkfqqvmb=PVSI=QMT
roi=ROI=NMUI=NNOI=NNPI=NNQI=NPSI=NQUI=NQVI=

NRM

rpbeqji=NQMI=NQNI=NQNI=NQOI=NQQI=NQRI=NQSI=
NQTI=OQVI=POOI=QOPI=QUQ

rpbofa=OMI=QPI=QQI=QQI=QUI=QVI=RMI=ROI=NMVI=
NNUI=NOMI=NONI=NOOI=NQMI=NQRI=NQSI=NQTI=

OSPI=OUSI=QQUI=QQVI=QRPI=QRQI=QSMI=QSUI=

QSVI=QVOI=QVOI=QVSI=QVSI=QVVI=RMMI=RMNI=

RMOI=RMQI=RMSI=RMTI=RMVI=RNNI=RNU

rpbohbv=QPI=QQI=QQI=QR
rpbom^pp=OMI=QPI=QQI=QQI=UMI=UOI=NMVI=NNUI=

OSPI=QVOI=QVOI=QVSI=QVSI=QVVI=RNU

rpmolar`qqvmb=URI=PTMI=PTNI=PTN

V
s^ifa^qb=QQNI=QQOI=QQQI=QVS
s^irb=RVI=QOU
sbo=NNPI=NNPI=NNPI=NNQ
sbpqa^qb=QNS
sbpqfkcl=QNS
sbpqm`q=QNS

W

tb_bkolii=NPSI=NPS
tfob_bkbcf`f^ov=ONNI=ONOI=ONOI=ONQ
tfob`^kon=ONRI=ONR
tfob`^kop=ONSI=ONS
tfobabpq_^kh=ONNI=ONNI=ONQ
tfobon=ONNI=ONN
tfobop=ONPI=ONQ
tfobpvk`on=VOI=OQQI=OQQ
tfobpvk`op=VOI=OQQI=OQQ
tfobqokon=ONNI=ONRI=OQQ
tfobqokop=ONQI=ONSI=OQQ
tfobucbojpdpbq=ORTI=ORTI=OSO
tfobucbojpdpbqsN=PVI=ORNI=ORTI=OSO
tfobucbojpdponsN=ORT
tfobucbojpdpopsN=ORT
tfqeao^t^ip=QNUI=QOM
tfqeeliafkd=PVSI=PVUI=QMM

X

ucboa^vptfqe=PQQ
ucboabpq=NOSI=NSTI=NSU
ucboaciqa^vpqlm^v=PQQ
ucbofkcl=NSUI=NSUI=NSVI=NVPI=NVQI=NVSI=NVTI=

OMNI=OMOI=OMPI=OMRI=OMSI=OSSI=OSTI=OTMI=

OTNI=OTTI=OTV

ucbomo``lab=NTMI=NTMI=NTMI=NVQI=OMPI=OTUI=
OTV

ucbomo`pqp=NTMI=NTMI=NVQI=NVTI=OMPI=OMSI=
OTUI=OTV

ucbomolc=ORUI=ORVI=ORVI=OSN
ucbopo`=NOSI=NSTI=NSU
OFX 1.6 Specification 5356/30/00



Y
vb^oqla^qb=QNTI=QPR
vfbia=PURI=PUTI=QOVI=QPM
vfbiaql`^ii=PUQ
vfbiaqlj^q=PUQ
536



OFX 1.6 Specification 5376/30/00


	Table of Contents
	Chapter�1 Overview
	1.1� Introduction
	1.1.1� Design Principles

	1.2� Open Financial Exchange at a Glance
	1.2.1� Data Transport
	1.2.2� Request and Response Model

	1.3� Definitions
	1.3.1� User
	1.3.2� Financial Institution
	1.3.3� Service Provider
	1.3.4� Client
	1.3.5� Server
	1.3.6� Service
	1.3.7� Tag
	1.3.8� Element
	1.3.9� Aggregate
	1.3.10� Request
	1.3.11� Response
	1.3.12� Message
	1.3.13� Transaction
	1.3.14� Synchronization
	1.3.15� Message Set

	1.4� OFX Versions
	1.5� Conventions

	Chapter�2 Structure
	2.1� HTTP Headers
	2.2� Open Financial Exchange File Format
	2.2.1� OFXHEADER
	2.2.2� VERSION
	2.2.3� SECURITY
	2.2.4� OLDFILEUID and NEWFILEUID

	2.3� XML Details
	2.3.1� Compliance

	2.4� Open Financial Exchange XML Structure
	2.4.1� Overview
	2.4.2� Case Sensitivity
	2.4.3� Top Level
	2.4.4� Messages
	2.4.5� Message Sets and Version Control
	2.4.6� Transactions
	2.4.7� Synchronization Wrapper
	2.4.8� Message Set Wrapper

	2.5� The Signon Message Set
	2.5.1� Signon <SONRQ> and <SONRS>
	2.5.2� USERPASS Change <PINCHRQ> <PINCHRS>
	2.5.3� <CHALLENGERQ> <CHALLENGERS>
	2.5.4� Signon Message Set Profile Information
	2.5.5� Examples

	2.6� External Data Support
	2.7� Extensions to Open Financial Exchange
	2.8� Backward Compatibility with Pre-OFX 2.0 Systems
	2.8.1� End Tag Usage
	2.8.2� XML Compliant Header
	2.8.3� International Support
	2.8.4� Message Set Versioning


	Chapter�3 Common Aggregates, Elements, and Data Types
	3.1� Common Aggregates
	3.1.1� Identification of Financial Institutions and Accounts
	3.1.2� Punctuation in Certain User-Supplied Values
	3.1.3� Echoing in Responses
	3.1.4� Balance Records <BAL>
	3.1.5� Error Reporting <STATUS>

	3.2� Common Elements
	3.2.1� Client-Assigned Transaction UID <TRNUID>
	3.2.2� Server-Assigned ID <SRVRTID>
	3.2.3� Financial Institution Transaction ID <FITID>
	3.2.4� Token <TOKEN>
	3.2.5� Transaction Amount <TRNAMT>
	3.2.6� Memo <MEMO>
	3.2.7� Date Start and Date End <DTSTART> <DTEND>
	3.2.8� Common Data Types
	3.2.9� Amounts, Prices, and Quantities
	3.2.10� Language
	3.2.11� Other Basic Data Types


	Chapter�4 OFX Security
	4.1� Security Concepts in OFX
	4.1.1� Architecture
	4.1.2� Security Goals
	4.1.3� Security Standards
	4.1.4� FI Responsibilities
	4.1.5� Security Levels: Channel vs. Application

	4.2� Security Implementation in OFX
	4.2.1� Channel-Level Security
	4.2.2� Application-Level Security


	Chapter�5 International Support
	5.1� Language and Encoding
	5.2� Currency <CURDEF> <CURRENCY> <ORIGCURRENCY>
	5.3� Country-Specific Element Values

	Chapter�6 Data Synchronization
	6.1� Overview
	6.2� Background
	6.3� Data Synchronization Approach
	6.4� Data Synchronization Specifics
	6.4.1� Tokens
	6.4.2� The Synchronization Process
	6.4.3� Synchronizable Objects
	6.4.4� Token and Full Syncronization Summary

	6.5� Conflict Detection and Resolution
	6.6� Synchronization Options
	6.6.1� Synchronization Errors

	6.7� Typical Server Architecture for Synchronization
	6.8� Typical Client Processing of Synchronization Results
	6.9� Simultaneous Connections
	6.10� Synchronization Alternatives
	6.10.1� File-Based Error Recovery
	6.10.2� Lite Synchronization
	6.10.3� Relating Synchronization and Error Recovery

	6.11� Examples

	Chapter�7 FI Profile
	7.1� Overview
	7.1.1� Message Sets
	7.1.2� Version Control
	7.1.3� Batching and Routing
	7.1.4� Client Signon for Profile Requests
	7.1.5� Profile Request <PROFRQ>

	7.2� Profile Response <PROFRS>
	7.2.1� Message Set
	7.2.2� Signon Realms
	7.2.3� Status Codes

	7.3� Profile Message Set Profile Information

	Chapter�8 Activation & Account Information
	8.1� Overview
	8.2� Approaches to User Sign-Up with OFX
	8.3� Users and Accounts
	8.4� Enrollment and Password Acquisition
	8.4.1� User IDs
	8.4.2� Enrollment Request <ENROLLRQ>
	8.4.3� Enrollment Response <ENROLLRS>
	8.4.4� Enrollment Status Codes
	8.4.5� Examples

	8.5� Account Information
	8.5.1� Request <ACCTINFORQ>
	8.5.2� Response <ACCTINFORS>
	8.5.3� Account Information Aggregate <ACCTINFO>
	8.5.4� Status Codes
	8.5.5� Examples

	8.6� Service Activation
	8.6.1� Activation Request <ACCTRQ>
	8.6.2� Activation Response <ACCTRS>
	8.6.3� Status Codes
	8.6.4� Service Activation Synchronization
	8.6.5� Examples

	8.7� Name and Address Changes
	8.7.1� Change User Information Request <CHGUSERINFORQ>
	8.7.2� Change User Information Response <CHGUSERINFORS>
	8.7.3� Status Codes
	8.7.4� Change User Information Synchronization

	8.8� Signup Message Set Profile Information

	Chapter�9 Customer to FI Communication
	9.1� The E-Mail Message Set
	9.2� E-Mail Messages
	9.2.1� Regular vs. Specialized E-Mail
	9.2.2� Basic <MAIL> Aggregate
	9.2.3� E-Mail <MAILRQ> <MAILRS>
	9.2.4� E-Mail Synchronization <MAILSYNCRQ> <MAILSYNCRS>
	9.2.5� E-Mail Example

	9.3� Get HTML Page
	9.3.1� MIME Get Request and Response <GETMIMERQ> <GETMIMERS>
	9.3.2� MIME Example

	9.4� E-Mail Message Set Profile Information

	Chapter�10 Recurring Transactions
	10.1� Creating a Recurring Model
	10.2� Recurring Instructions <RECURRINST>
	10.2.1� Values for <FREQ>
	10.2.2� Examples

	10.3� Retrieving Transactions Generated by a Recurring Model
	10.4� Modifying and Canceling Individual Transactions
	10.5� Modifying and Canceling Recurring Models
	10.5.1� Examples

	10.6� Expired Models

	Chapter�11 Banking
	11.1� Consumer and Business Banking
	11.2� Credit Card Data
	11.3� Common Banking Aggregates
	11.3.1� Banking Account <BANKACCTFROM> and <BANKACCTTO>
	11.3.2� Credit Card Account <CCACCTFROM> and <CCACCTTO>
	11.3.3� Bank Account Information <BANKACCTINFO>
	11.3.4� Credit Card Account Information <CCACCTINFO>
	11.3.5� Transfer Information <XFERINFO>
	11.3.6� Transfer Processing Status <XFERPRCSTS>

	11.4� Downloading Transactions and Balances
	11.4.1� Bank Statement Download
	11.4.2� Credit Card Statement Download
	11.4.3� Statement Transaction <STMTTRN>

	11.5� Statement Closing Information
	11.5.1� Statement Closing Download
	11.5.2� Non-Credit Card Statement <CLOSING>
	11.5.3� Credit Card Statement Closing Request <CCSTMTENDRQ>
	11.5.4� Credit Card Statement Closing Response <CCSTMTENDRS>

	11.6� Stop Check
	11.6.1� Stop Check Add
	11.6.2� Status Codes

	11.7� Intrabank Funds Transfer
	11.7.1� Intrabank Funds Transfer Addition
	11.7.2� Intrabank Funds Transfer Modification
	11.7.3� Intrabank Funds Transfer Cancellation

	11.8� Interbank Funds Transfer
	11.8.1� Interbank Funds Transfer – US
	11.8.2� Interbank Funds Transfer – International Usage
	11.8.3� Interbank Funds Transfer Modification
	11.8.4� Interbank Funds Transfer Cancellation

	11.9� Wire Funds Transfer
	11.9.1� Wire Funds Transfer Addition
	11.9.2� Wire Funds Transfer Cancellation

	11.10� Recurring Funds Transfer
	11.10.1� Recurring Intrabank Funds Transfer Addition
	11.10.2� Recurring Intrabank Funds Transfer Modification
	11.10.3� Recurring Intrabank Funds Transfer Cancellation
	11.10.4� Recurring Interbank Funds Transfer Addition
	11.10.5� Recurring Interbank Funds Transfer Modification
	11.10.6� Recurring Interbank Funds Transfer Cancellation

	11.11� E-Mail and Customer Notification
	11.11.1� Banking E-Mail
	11.11.2� Notifications
	11.11.3� Returned Check and Deposit Notification

	11.12� Data Synchronization for Banking
	11.12.1� Data Synchronization for Stop Check
	11.12.2� Data Synchronization for Intrabank Funds Transfers
	11.12.3� Data Synchronization for Interbank Funds Transfers
	11.12.4� Data Synchronization for Wire Funds Transfers
	11.12.5� Data Synchronization for Recurring Intrabank Funds Transfers
	11.12.6� Data Synchronization for Recurring Interbank Funds Transfers
	11.12.7� Data Synchronization for Bank Mail

	11.13� Message Sets and Profile
	11.13.1� Message Sets and Messages
	11.13.2� Bank Message Set Profile
	11.13.3� Credit Card Message Set Profile
	11.13.4� Interbank Funds Transfer Message Set Profile
	11.13.5� Wire Transfer Message Set Profile

	11.14� Examples
	11.14.1� Statement Download
	11.14.2� Intrabank Funds Transfer
	11.14.3� Stop Check
	11.14.4� Recurring Transfers


	Chapter�12 Payments
	12.1� Consumer and Business Payments
	12.2� The Payee Model
	12.2.1� Payee Identifiers
	12.2.2� Payee Lists
	12.2.3� Standard Payee Lists
	12.2.4� Identifying Payees
	12.2.5� Side Effects of Payee Adds and Modifications

	12.3� Identifiers Used in Payment Transactions
	12.4� The Payment Life Cycle
	12.4.1� Payment Creation
	12.4.2� Payment Modification
	12.4.3� Payment Status Inquiry
	12.4.4� Payment Cancellation
	12.4.5� Delayed Payee Matching

	12.5� Common Payments Aggregates
	12.5.1� Payments Account Information <BPACCTINFO>
	12.5.2� Payment Information <PMTINFO>

	12.6� Payments Functions
	12.6.1� Payment Creation
	12.6.2� Payment Modification
	12.6.3� Payment Cancellation
	12.6.4� Payment Status Inquiry

	12.7� Recurring Payments
	12.7.1� Creating a Recurring Payment
	12.7.2� Recurring Payment Modification
	12.7.3� Recurring Payment Cancellation

	12.8� Payment Mail
	12.8.1� Payment Mail Request and Response
	12.8.2� Payment Mail Synchronization

	12.9� Payee Lists
	12.9.1� Adding a Payee to the Payee List
	12.9.2� Payee Modification
	12.9.3� Payee Deletion
	12.9.4� Payee List Synchronization

	12.10� Data Synchronization for Payments
	12.10.1� Payment Synchronization
	12.10.2� Recurring Payment Synchronization
	12.10.3� Discussion

	12.11� Message Sets and Profile
	12.11.1� Bill Pay Message Sets and Messages
	12.11.2� Bill Pay Message Set Profile <BILLPAYMSGSET>

	12.12� Examples
	12.12.1� Scheduling a Payment
	12.12.2� Modifying a Payment
	12.12.3� Canceling a Payment
	12.12.4� Updating Payment Status
	12.12.5� Scheduling a Recurring Payment
	12.12.6� Modifying a Recurring Payment
	12.12.7� Canceling a Recurring Payment
	12.12.8� Adding a Payee to the Payee List
	12.12.9� Synchronizing Scheduled Payments


	Chapter�13 Investments
	13.1� Types of Response Information
	13.2� Sub-Accounts
	13.3� Units, Precision, and Signs
	13.3.1� Units
	13.3.2� Precision
	13.3.3� Signs

	13.4� Bank and Investment Transactions
	13.5� Money Market Funds
	13.5.1� Separate Account at the Financial Institution
	13.5.2� Sweep Account Within an Investment Account
	13.5.3� Position Within an Investment Account

	13.6� Investment Accounts
	13.6.1� Specifying the Investment Account <INVACCTFROM>
	13.6.2� Investment Account Information <INVACCTINFO>
	13.6.3� Brokerage, Mutual Fund, and 401K Accounts

	13.7� Investment Message Sets and Profile
	13.7.1� Investment Statement Download
	13.7.2� Security Information

	13.8� Investment Securities
	13.8.1� Security Identification <SECID>
	13.8.2� Security List Request
	13.8.3� Security List Response
	13.8.4� Security List <SECLIST>
	13.8.5� Securities Information

	13.9� Investment Statement Download
	13.9.1� Investment Statement Request
	13.9.2� Investment Statement Response
	13.9.3� 401(k) Account Information

	13.10� Investment E-Mail
	13.10.1� Investment E-Mail Request and Response
	13.10.2� Investment E-Mail Synchronization

	13.11� Complete Example
	13.12� Complete 401(k) Example

	Chapter�14 Bill Presentment
	14.1� Overview
	14.1.1� Bill Presentment Model
	14.1.2� Servers and Message Sets

	14.2� Biller Directory
	14.2.1� Client Signon to the Biller Directory Server
	14.2.2� Search Arguments
	14.2.3� Identification of Bill Publishers
	14.2.4� Find Biller Request <FINDBILLERRQ>
	14.2.5� Find Biller Response <FINDBILLERRS>
	14.2.6� Status Codes <FINDBILLERRS>
	14.2.7� Account Number Validation
	14.2.8� Biller Payment Restrictions

	14.3� Customer Signup
	14.3.1� Enrollment
	14.3.2� Account Inquiry
	14.3.3� Service Activation
	14.3.4� Service Status Update for Groups of Customers

	14.4� Bill Delivery
	14.4.1� Bill Delivery Process
	14.4.2� Bill List Retrieval
	14.4.3� Bill Detail Retrieval
	14.4.4� Table Structure Definition
	14.4.5� Delivery Notification
	14.4.6� Bill Status Modification

	14.5� Bill Payment
	14.5.1� Remittance Information
	14.5.2� Payee Identification

	14.6� Bill Presentment E-Mail
	14.6.1� Bill Presentment Mail Request <PRESMAILRQ>
	14.6.2� Bill Presentment Mail Response <PRESMAILRS>
	14.6.3� Status Codes <PRESMAILRS>
	14.6.4� Request <PRESMAILSYNCRQ>
	14.6.5� Response <PRESMAILSYNCRS>.

	14.7� Message Sets and Profile
	14.7.1� Message Sets and Messages
	14.7.2� Biller Directory Message Set Profile
	14.7.3� Bill Delivery Message Set Profile

	14.8� Bill Presentment Examples
	14.8.1� Find Biller Examples
	14.8.2� Enrollment Examples
	14.8.3� Activation Example
	14.8.4� Bill Delivery Examples


	Appendix�A Status Codes
	Appendix�B Differences Between OFX 1.6 and OFX 2.0
	B.1� OFX 1.6 to 2.0
	B.1.1� Specification Changes by Chapter


	Tag Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

