
XML Metadata Interchange (XMI)

Version 1.1

Joint Submission

Supported by:

OMG Document ad/99-10-02
October 25, 1999

Unisys Corporation Fujitsu

International Business Machines
Corporation

Softeam

Cooperative Research Centre for
Distributed Systems Technology
(DSTC)

Recerca Informatica

Oracle Corporation Daimler-Benz

Platinum Technology, Inc.

Cayenne Software Ardent

Genesis Development Aviatis

Inline Software ICONIX

Rational Software Corporation Integrated Systems

Select Software Verilog

Sprint Communications Company Telefonica I+D

Sybase, Inc. Universitat Politecnica de Catalunya

Xerox NCR

EDS Nihon Unisys

Boeing NTT

Copyright 1998, 1999 Unisys Corporation

Copyright 1998, 1999 IBM Corporation

Copyright 1998, 1999 Cooperative Research Centre for Distributed Systems Technology (DSTC)

Copyright 1998, 1999 Oracle Corporation

Copyright 1998, 1999 Platinum Technology, Inc.

Copyright 1998, 1999 Fujitsu

Copyright 1998, 1999 Softeam

Copyright 1998, 1999 Recerca Informatica

Copyright 1998, 1999 Daimler-Benz

The companies listed above hereby grant a royalty-free license to the Object Management Group,
Inc. (OMG) for worldwide distribution of this document or any derivative works thereof, so long as
the OMG reproduces the copyright notices and the below paragraphs on all distributed copies.

The material in this document is submitted to the OMG for evaluation. Submission of this document
does not represent a commitment to implement any portion of this specification in the products of
the submitters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO
THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The companies listed
above shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance or use of this material. The information contained in
this document is subject to change without notice.

This document contains information which is protected by copyright. All Rights Reserved. Except
as otherwise provided herein, no part of this work may be reproduced or used in any form or by any
meansógraphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systemsó without the permission of one of the copyright owners.
All copies of this document must include the copyright and other information contained on this
page.

The copyright owners grant member companies of the OMG permission to make a limited number
of copies of this document (up to fifty copies) for their internal use as part of the OMG evaluation
process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer
Software Clause at DFARS 252.227.7013.

CORBA, OMG, and Object Request Broker are trademarks of Object Management Group.

 ad/99-10-02: XML Metadata Interchange iii

1. Preface . 1-9

1.1 Cosubmitting Companies and Supporters 1-9

1.2 Introduction . 1-10

1.3 Submission contact points . 1-12

1.4 Status of this Document . 1-16

1.5 Guide to the Submission . 1-16

1.6 Conventions . 1-17

2. Proof of Concept . 2-19

2.1 Copyright Waiver . 2-19

2.2 Proof of Concept . 2-19

3. Response to RFP Requirements . 3-21

3.1 Mandatory Requirements . 3-21
3.1.1 Required Meta-metamodel 3-21
3.1.2 Syntax and Encoding 3-21
3.1.3 Referenced Concepts 3-22
3.1.4 UML Support . 3-22
3.1.5 International Codesets 3-22

3.2 Optional Requirements. 3-23
3.2.1 Compact Data Representation 3-23
3.2.2 Compatibility with other Metamodels and Interchange

Formats. 3-23

3.3 Issues for discussion. 3-24

3.4 Scope of Revision Task Force . 3-26

Table of Contents

iv ad/99-10-02: XML Metadata Interchange 10/25/99

4. Design Rationale . 4-27

4.1 Design Overview . 4-27

4.2 XMI and the MOF . 4-28
4.2.1 An Overview of the MOF. 4-28
4.2.2 The relationship between XMI and MOF . . . 4-31
4.2.3 The relationship between XMI, MOF and UML 4-32

4.3 XMI and XML . 4-32
4.3.1 The roots of XML. 4-32
4.3.2 Benefits of using XML 4-33
4.3.3 XML and the Computer Industry 4-34
4.3.4 How XML works . 4-34
4.3.5 XML and the OMG 4-36
4.3.6 New XML Technologies. 4-37

4.4 Major Design Goals and Rationale. 4-38
4.4.1 Universally Applicable Solution. 4-38
4.4.2 Automatic Generation of Transfer Syntax . . 4-39
4.4.3 Conformance with XML paradigms 4-39
4.4.4 Knowledge of Metamodels 4-40
4.4.5 Complete Encoding of Metadata 4-40
4.4.6 Correctness of MOF MetaModels 4-41
4.4.7 Model Fragments . 4-41
4.4.8 Ill-Formed Models . 4-41
4.4.9 Model Versions. 4-42
4.4.10 Model Extensibility 4-42
4.4.11 MOF as an Information Model 4-43
4.4.12 Status of MOF and UML DTDs 4-43

5. Usage Scenarios . 5-45

5.1 Purpose. 5-45

5.2 Combining tools in a heterogeneous environment 5-45

5.3 Co-operating with common metamodel definitions 5-46

5.4 Working in a distributed and intermittently connected environment
5-47

5.5 Promoting design patterns and reuse 5-47

6. XMI DTD Design Principles . 6-49

6.1 Purpose. 6-49

6.2 Use of XML DTDs. 6-49
6.2.1 XML Validation of XMI documents 6-50

10/25/99 ad/99-10-02: XML Metadata Interchange v

6.2.2 Requirements for XMI DTDs 6-50

6.3 Basic Principles . 6-51
6.3.1 Required XML Declarations. 6-51
6.3.2 Metamodel Class Representation 6-51
6.3.3 Metamodel Extension Mechanism 6-52

6.4 XMI DTD and Document Structure 6-52

6.5 Necessary XMI DTD Declarations. 6-53
6.5.1 Necessary XMI Attributes 6-53
6.5.2 Common XMI Elements 6-55
6.5.3 XMI . 6-56
6.5.4 XMI.header . 6-57
6.5.5 XMI.content . 6-57
6.5.6 XMI.extensions . 6-57
6.5.7 XMI.extension . 6-58
6.5.8 XMI.documentation 6-58
6.5.9 XMI.model . 6-59
6.5.10 XMI.metamodel . 6-59
6.5.11 XMI.metametamodel 6-59
6.5.12 XMI.import . 6-60
6.5.13 XMI.difference . 6-60
6.5.14 XMI.delete . 6-61
6.5.15 XMI.add . 6-61
6.5.16 XMI.replace . 6-61
6.5.17 XMI.reference . 6-61
6.5.18 XMI Datatype Elements 6-62

6.6 Metamodel Class Specification 6-66
6.6.1 Namespace Qualified XML Element Names 6-66
6.6.2 Metamodel Multiplicities 6-68
6.6.3 Class specification . 6-68
6.6.4 Inheritance Specification 6-69
6.6.5 Attribute Specification 6-70
6.6.6 Association Specification 6-71
6.6.7 Containment Specification 6-72

6.7 Transmitting Incomplete Metadata. 6-72
6.7.1 Interchange of model fragments 6-72
6.7.2 XMI encoding. 6-73
6.7.3 Example . 6-73

6.8 Linking. 6-73
6.8.1 Design principles: . 6-73
6.8.2 Linking . 6-74

vi ad/99-10-02: XML Metadata Interchange 10/25/99

6.8.3 Example from UML 6-75
6.8.4 XMI.reference . 6-76

6.9 Transmitting Metadata Differences 6-76
6.9.1 Definitions:. 6-77
6.9.2 Differences . 6-77
6.9.3 XMI encoding. 6-78
6.9.4 Example . 6-78

6.10 Document exchange with multiple tools 6-79
6.10.1 Definitions:. 6-80
6.10.2 Procedures: . 6-80
6.10.3 Example . 6-81

6.11 UML DTD . 6-82

6.12 General datatype mechanism . 6-82

7. XML DTD Production . 7-85

7.1 Purpose. 7-85

7.2 Rule Set 1: Simple DTD. 7-87
7.2.1 EBNF . 7-87
7.2.2 Pseudo-code . 7-94
7.2.3 Auxiliary functions . 7-102

7.3 Rule Set 2: Grouped entities. 7-116
7.3.1 EBNF . 7-116
7.3.2 Pseudo-code . 7-127
7.3.3 Rules. 7-128
7.3.4 Auxiliary functions . 7-137

7.4 Rule Set 3: Hierarchical Grouped entities 7-145
7.4.1 EBNF . 7-145
7.4.2 Pseudo-code . 7-157
7.4.3 Rules. 7-157
7.4.4 Auxiliary functions . 7-167

7.5 Fixed DTD elements . 7-177

8. XML Generation Principles . 8-185

8.1 Purpose. 8-185

8.2 Introduction . 8-185

8.3 Two Model Sources . 8-185
8.3.1 Production by Object Containment. 8-186
8.3.2 MOF’s Role in XML Production 8-192
8.3.3 Production by Package Extent 8-192

10/25/99 ad/99-10-02: XML Metadata Interchange vii

8.4 Distinctions between Approaches in Certain Situations . 8-196
8.4.1 External Links . 8-196
8.4.2 Links not Represented by References. 8-197
8.4.3 Classifier-level Attributes. 8-197
8.4.4 Standard Elements . 8-197

9. XML Document Production . 9-199

9.1 Purpose. 9-199

9.2 Introduction . 9-199

9.3 ENBF Rules Representation. 9-199

9.4 OCL Rules Representation. 9-207
9.4.1 EBNF Productions . 9-207
9.4.2 OCL Rules . 9-207

9.5 Production Rules . 9-209
9.5.1 Production by Object Containment. 9-209
9.5.2 Production by Package Extent 9-211
9.5.3 Object Productions . 9-213
9.5.4 Attribute Production 9-215
9.5.5 Reference Productions 9-218
9.5.6 Composition Production 9-220
9.5.7 DataValue Productions 9-220
9.5.8 CORBA-Specific Types 9-228
9.5.9 Helpers . 9-238
9.5.10 CORBA-Specific Helpers. 9-245

10. Compatibility with Other Standards 10-247

10.1 Introduction . 10-247

10.2 XMI and W3C DCD . 10-248

10.3 XMI and CDIF . 10-248

11. Conformance Issues . 11-251

11.1 Introduction . 11-251

11.2 Required Compliance . 11-251
11.2.1 XMI DTD Compliance 11-251
11.2.2 XMI Document Compliance. 11-252
11.2.3 Usage Compliance . 11-252

11.3 Optional Compliance Points. 11-252
11.3.1 XMI MOF Subset . 11-252
11.3.2 XMI DTD Compliance 11-253

viii ad/99-10-02: XML Metadata Interchange 10/25/99

11.3.3 XMI Document Compliance. 11-253
11.3.4 Usage Compliance . 11-253

References References-255

Glossary Glossary-257

10/20/1998 ad/99-10-02: XML Metadata Interchange 1-9

Preface 1

1.1 Cosubmitting Companies and Supporters

The following companies are pleased to revise the XML Metadata Interchange
specification (hereafter referred to as XMI) in response to the Object Analysis &
Design Task Force RFP3 - Stream based Model Interchange Format (SMIF) and XMI
RTF 1.1:

• Unisys Corporation

• International Business Machines Corporation

• Cooperative Research Centre for Distributed Systems Technology (DSTC)

• Oracle Corporation

• Platinum Technologies, Inc.

• Fujitsu

• Softeam

• Recerca Informatica

• Daimler-Benz

The following companies are pleased to support the XMI specification:

• Cayenne Software

• Genesis Development

• Inline Software

• Rational Software Corporation

• Select Software

• Sprint Communications Company

• Sybase, Inc.

1-10 ad/99-10-02: XML Metadata Interchange 10/25/1999

1

• Xerox

• EDS

• Boeing

• Ardent

• Aviatis

• ICONIX

• Integrated Systems

• Verilog

• Telefonica I+D

• Universitat Politecnica de Catalunya

• NCR

• Nihon Unisys

• NTT

1.2 Introduction

The main purpose of XMI is to enable easy interchange of metadata between modeling
tools(based on the OMG UML) and metadata repositories (OMG MOF based) in
distributed heterogeneous environments. XMI integrates three key industry standards:

• XML - eXtensible Markup Language, a W3C standard

• UML - Unified Modeling Language, an OMG modeling standard

• MOF - Meta Object Facility, an OMG metamodeling and metadata repository
standard

The integration of these three standards into XMI marries the best of OMG and W3C
metadata and modeling technologies, allowing developers of distributed systems to
share object models and other metadata over the Internet.

XMI, together with MOF and UML form the core of the OMG metadata repository
architecture as illustrated in Figure 1-1. The UML standard defines a rich, object
oriented modeling language that is supported by a range of graphical design tools. The
MOF standard defines an extensible framework for defining models for metadata, and
providing tools with programmatic interfaces to store and access metadata in a
repository. XMI allows metadata to be interchanged as streams or files with a standard
format based on XML. The complete architecture offers a wide range of
implementation choices to developers of tools, repositories and object frameworks.
XMI in particular lowers the barrier to entry for the use of OMG metadata standards.

Key aspects of the architecture include:

• A four layered metamodeling architecture for general purpose manipulation of
metadata in distributed object repositories. See the MOF and UML specifications
for more details

10/25/1999 ad/99-10-02: XML Metadata Interchange 1-11

1

• The use of MOF to define and manipulate metamodels programmatically using fine
grained CORBA interfaces. This approach leverages the strength of CORBA
distributed object infrastructure.

• The use of UML notation for representing models and metamodels

• The use of standard information models (UML) to describe the semantics of object
analysis and design models

• The use of SMIF (the current XMI proposal) for stream based interchange of
metadata

The OMG ADTF and other task forces have already begun extending this architecture
to include data warehouse metadata (Common Warehouse Metadata Interchange RFP)
and other metadata by defining MOF compliant metamodels.

This submission mainly consists of:

• A set of XML Document Type Definition (DTD) production rules for transforming
MOF based metamodels into XML DTDs

• A set of XML Document production rules for encoding and decoding MOF based
metadata

• Design principles for XMI based DTDs and XML Streams

• Concrete DTDs for UML and MOF

Figure 1-1 The OMG Repository Architecture and the SMIF

SMIF (XMI) and OMG Repository Architecture

Tools & Repositories
Obj t

Repository Common Facility

APIs APIs

Object Services

Object Request Broker (ORB)

MOF SMIF UML…

1-12 ad/99-10-02: XML Metadata Interchange 10/25/1999

1

This submission defines these standards and provides proof of concept that covers key
aspects of the XMI. The submission represents the integration of work currently
underway by the co-submitters and supporters in the areas of object repositories, object
modeling tools, web authoring technology and business object management in
distributed object environments. The co-submitters intend to commercialize the XMI
technology within the guidelines of the OMG.

Adoption of this submission would enhance metadata management and metadata
interoperability in distributed object environments in general and in distributed
development environments in particular. While this response addresses stream based
metadata interoperability in the object analysis and design domain, XMI (in part
because it is MOF based) is equally applicable to metadata in many other domains.
Examples include metamodels that cover the application development life cycle as well
as additional domains such as data warehouse management, distributed objects and
business object management. OMG is expected to issue new RFPs to cover these
additional domains. The submitters expect this version of the XMI to evolve in the
future to address new requirements.

The adoption of the UML and MOF specifications in 1997 was a key step forward for
the OMG and the industry in terms of achieving consensus on modeling technology
and repositories after years of failed attempts to unify both areas. The adoption of XMI
is expected to reduce the plethora of proprietary metadata interchange formats and
minimally successful attempts of the Meta Data Coalition (Meta Data Interchange
Specification) and Case Data Interchange Format (EIA CDIF) because of widespread
adoption of W3C (XML) and OMG (UML, MOF) standards. XMI is also expected to
ease the integration of CORBA, XML, Java, and COM based development
environments which are evolving towards similar extensible repository architectures
based on standard information models, repository interfaces and interchange formats.

1.3 Submission contact points

Please send comments on this submission to xmi-feedback@omg.org.

All questions about this submission should be directed to:

Sridhar Iyengar
Unisys Corporation
25725 Jeronimo Rd.
Mission Viejo, CA 92691
Phone: +1 949 380 5692
E-mail: sridhar.iyengar2@unisys.com

Stephen A. Brodsky, Ph.D.
International Business Machines Corporation
555 Bailey Ave., J8RA/F320
San Jose, CA 95141
Phone: +1 408 463 5659
E-mail: SBrodsky@us.ibm.com

Contact information for members of the co-submitting companies is:

10/25/1999 ad/99-10-02: XML Metadata Interchange 1-13

1

Dr. Kerry Raymond
CRC for Distributed Systems Technology
University of Queensland 4072 Australia
Phone: +61 7 3365 4310
E-mail: kerry@dstc.edu.au

Dr. Stephen Crawley
CRC for Distributed Systems Technology
Phone: +61 7 3365 4310
E-mail: crawley@dstc.edu.au

Simon McBride
CRC for Distributed Systems Technology
Phone: +61 7 3365 4310
E-mail: sjm@dstc.edu.au

Tim Grose
International Business Machines Corporation
E-mail: TGrose@us.ibm.com

Dr. Gene Mutschler
Unisys Corporation
E-mail: Gene.Mutschler@unisys.com

GK Khalsa
Unisys Corporation
E-mail: khalsa@objectrad.com

Ashit Sawhney
Unisys Corporation
E-mail: Ashit.Sawhney@unisys.com

Peter Thomas
Oracle Corporation
Oracle Parkway
Thames Valley Park
Reading, Berkshire
RG6 1RA
Phone: +44 118 924 5132
E-mail: pthomas@uk.oracle.com

John Cramer
Platinum Technology, Inc.
8045 Leesburg Pike, Suite 300
Vienna, VA 22182
Phone: +1 703 848 3288
E-mail: cramer@platinum.com

1-14 ad/99-10-02: XML Metadata Interchange 10/25/1999

1

John Clark
Platinum Technology Inc.
E-mail: clark@platinum.com

Jun Ginbayashi
Fujitsu
E-mail: gin@tokyo.se.fujitsu.co.jp

Philippe Desfray
Softeam
E-mail: phd@softeam.fr

Joan M. Moral
Recerca Informatica
E-mail: uol@arrakis.es

Mario Jeckle
Daimler-Benz Research & Technology
E-mail: mario.jeckle@dbag.ulm.daimlerbenz.com

Contact information for the supporting companies is:

Naresh Bhatia
Cayenne Software [Now acquired by Sterling Software]
E-mail: Bhatian@cayennesoft.com

David Frankel
Genesis Development
E-mail: DFrankel@gendev.com

Bill Dudney
Inline Software
E-mail: BDudney@inline-software.com

Jack Greenfield
Inline Software
E-mail: Jack@inline-software.com

Magnus Christerson
Rational Software Corporation
E-mail: Christerson@rational.com

Lydia Patterson
Select Software
E-mail: Lydiap@selectst.com

Abdul Akram
Sprint Communications Company
E-mail: Abdul.Akram@mail.sprint.com

10/25/1999 ad/99-10-02: XML Metadata Interchange 1-15

1

Andrew Eisenberg
Sybase, Inc.
E-mail: Andrewe@sybase.com

Cris Kobryn
EDS
E-mail: ckobryn@acm.org

Woody Pidcock
Boeing
E-mail: Woody.Pidcock@pss.boeing.com

Charlie (CQ) Rehberg
Ardent
E-mail:cq.rehberg@ardentsoftware.com

Johannes Ernst
Aviatis
E-mail:jernst@aviatis.com

Doug Rosenberg
ICONIX
E-mail: doug@iconixsw.com

Chandra Prasad
Integrated Systems
E-mail: cprasad@isi.com

Rodolphe Arthaud
Verilog
E-mail: arthaud@tlse.verilog.fr

J. Hierro
Telefonica I+D
E-mail: jhierro@tid.es

Allen Peralta
Universitat Politecnica de Catalunya
E-mail: peralta@lsi.upc.es

Bruce Mclean
NCR
E-mail: bruce.mclean@sandiegoca.ncr.com

Tsuyoshi Hoshina
Nihon Unisys, Ltd.
E-mail: Tsuyoshi.Hoshina@unisys.co.jp

1-16 ad/99-10-02: XML Metadata Interchange 10/25/1999

1

Wataru Takita
NTT Mutlimedia Networks Labs.
E-mail: takita.wataru@na.tnl.ntt.co.jp

The co-submitters and supporters of the XMI submission appreciate the contributions
of the following individuals during the SMIF submission process:

Don Baisley, Aditya Bansod, Robert Blum, Dan Chang, Dilhar DeSilva, Keith
Duddy, Alexander Glebov, Craig Hayman, Gary Karasiuk, Kurt Kirkey, Suresh
Kumar, Bruce Mclean, Jim Rhyne, Dave Stringer and Shu Wang.

1.4 Status of this Document

This document is the final joint submission to the SMIF RFP. Refer to the OMG web
site, http://www.omg.org for additional information and the status of the adoption
process.

1.5 Guide to the Submission

This proposal is presented in the following chapters:

Chapter 1 Preface

Introduces the submission and provides the context for the XMI technology within
the OMG architecture

Chapter 2 Proof of Concept

Describes proof of concept efforts and results, in demonstration of the proposal’s
technical viability.

Chapter 3 Response to RFP Requirements

Identifies the specific RFP requirements and this proposal’s response to each
requirement.

Chapter 4 Design Rationale

Describes the design goals and rationale of this proposal, giving an overview of the
proposed solution and insight into the motivation and design forces.

Chapter 5 Usage Scenarios

Describes how the XMI is expected to be used by customers and tool vendors

Chapter 6 XMI DTD Design Principles

Provides a discussion of Document Type Definition (DTD) usage, generation and
standard parts.

Chapter 7 XML DTD Production

Specifies the production rules for DTDs, as part of the encoding of MOF based
metamodels into the proposed format.

http://www.omg.org

10/25/1999 ad/99-10-02: XML Metadata Interchange 1-17

1

Chapter 8 XML Generation Principles

Discusses the manner in which a model is represented as an XML document.

Chapter 9 XML Document Production

Specifies the production rules for encoding any model, with a MOF- defined meta-
model, in the proposed format.

Chapter 10 Compatibility with other standards

Discusses how the XMI specification is related to other industry standards

Chapter 11 Conformance Issues

Discusses conformance - mandatory and optional; compliance points in the XMI
specification.

References

Lists the references used in this specification

Glossary

Describes a glossary of terms relevant to the XMI specification.

Index

Index to the submission.

Appendix A

The UML 1.1 DTD

Appendix B

The MOF 1.1 DTD

Appendix C

Example encodings of models

1.6 Conventions
IDL appears using this font.

XML appears using this font.

Object Constraint Language (OCL) appears using this font.

Caution – Cautionary information appears with this prefix, framing, and in this font.

Note – Items of note appear with this prefix, framing, and in this font

1-18 ad/99-10-02: XML Metadata Interchange 10/25/1999

1

Please note that any change bars have no semantic meaning. They show the places that
errata were discovered since the last submission. They are present for the convenience
of readers and submitters so that the final edits can be identified.

10/25/1999 ad/99-10-02: XML Metadata Interchange 2-19

Proof of Concept 2

2.1 Copyright Waiver

In the event that this specification is adopted by OMG, the XMI cosubmitters grant to
the OMG, a non-exclusive, royalty-free, paid-up, worldwide license to copy and
distribute this specification document and to modify the document and distribute
copies of the modified version. For more detailed information, see the disclaimer on
the inside of the cover page of this submission.

2.2 Proof of Concept

XMI cosubmitters and supporters have extensive experience in the areas of metadata
repositories, modeling tools, CORBA and the related problems of interchange of
metadata across tools in distributed heterogeneous environments. Representative
portions of their experience are highlighted below:

• Unisys, IBM, Oracle and Platinum are experienced in the implementation of
commercial metadata repositories that have enabled metadata interchange using
APIs (proprietary, OMG MOF based, COM based etc.) and file based interchange
formats (proprietary, CDIF, MDIS etc.). These metadata repository vendors have
already begun prototyping the integration of XMI with their respective products.

• Oracle, Platinum and Select are among the leading modeling and design tool
vendors implementing UML and are committing to using XMI as the interchange
format for object and data modeling tools and repositories.

• IBM and Unisys have already prototyped round trip engineering of UML models
using the XMI UML DTD for the Rational Rose and Select Enterprise products.
These prototypes include the exporting of UML models from Select Enterprise and
importing it into Rational Rose and then exporting the same model into Unisys
UREP repository demonstrating model interoperability between tools produced by
different vendors. IBM has shipped products including this function.

2-20 ad/99-10-02: XML Metadata Interchange 10/25/1999

2

• Unisys has prototyped and is implementing IDL generation from a MOF based
repository and has extended this work to generate both XML DTDs and XML based
streams from a MOF repository server.

• IBM has shipped products with XMI support, including WebSphere,
TeamConnection, and VisualAge for Java, with more on the way. IBM is also
shipping the San Francisco Project, an enterprise business framework, in XMI
format. IBM is working with partners using XMI as the primary basis for
information interchange between tools, reposiories, and databases. IBM has
shipped several thousand copies of the XMI Toolkit on AlphaWorks and VisualAge
Developer Domain.

• DSTC has developed prototypes for a MOF repository, along with meta-model
compilers, IDL generators and server generators. These are currently being used to
prototype generators for XMI interchange software that can emit an XML stream
for a model held in a MOF-based repository, and can populate a MOF-based
repository from an XML stream. The interchange software is being prototyped with
a wide range of realistic meta-models and test cases.

• Oracle has prototyped and is implementing XMI in its design tool and repository
products.

• Platinum is working on XMI based interoperability between MOF based
repositories and non-MOF repositories.

• The XMI work is based on two key available metadata standards - OMG MOF and
W3C XML - that are being implemented by several vendors. The first major use of
XMI will be for the interchange of UML models based on the OMG standard UML
metamodel

• IBM and Microsoft have implemented XML parsers which were used in our proof
of concepts.

• UML 1.3, MOF 1.3, the Corba Components Model (CCM) and the Common
Warehouse Metadata Interchange submission use XMI.

The submitters expect to demonstrate some of these proof of concepts in upcoming
OMG meetings.

10/25/1999 ad/99-10-02: XML Metadata Interchange 3-21

Response to RFP Requirements 3

3.1 Mandatory Requirements

3.1.1 Required Meta-metamodel

Proposals shall use the MOF as its meta-metamodel.

The XMI proposal uses the MOF model as its meta-metamodel.

Any model or model fragment that has a MOF compliant metamodel can be exchanged
using XMI, as can the metamodels themselves. The XMI proposal specifies how any
MOF compliant meta-model maps to XML DTDs, and how a corresponding model or
model fragment maps to XML.

3.1.2 Syntax and Encoding

Proposals shall provide a complete specification of the syntax and encoding
needed to export/import models and meta-model extensions included in-line as
part of the transfer stream. This syntax and encoding shall have an unambiguous
identification to support evolution of this technology.

The XMI specification provides a complete specification for syntax and encoding
needed to export and import meta-models and models including extensions. Evolution
of the XMI technology is also specified. Please refer to Chapter 6, XMI DTD Design
Principles and Chapter 8, XML Generation Principles for details on syntax and
encoding. Example DTDs for XMI encoding of UML models and MOF metamodels
are provided in the Appendices.

Evolution of technology is supported using the following specific mechanisms:

1. The XML header element identifies the XML version - currently 1.0 as adopted by
W3C.

3-22 ad/99-10-02: XML Metadata Interchange 10/25/1999

3

2. The XMI.header element identifies the XMI specification version number -
currently 1.0.

3. The XMI.header element identifies the MOF metamodel(s) for the model
information encoded in an XMI transfer stream, giving metamodel names, versions
and links to their definitions.

4. The XMI.extensions element allows XMI to handle extensions to a metamodel; for
example to represent the layout of a model’s diagram. Extension meta-data can be
transmitted inline as part of the transfer stream.

3.1.3 Referenced Concepts

Proposals shall provide a means for unambiguous identification of any concept
specified in a MOF-compliant metamodel that is referenced (but the specification
is not included) in a transfer stream.

The XMI.references element is used to refer to concepts used but not included in the
document. Please refer to Chapter 6 XMI DTD Design Principles for details. This
submission supports unambiguous identification of all MOF based meta objects using
the UUID mechanism.

3.1.4 UML Support

Proposals shall demonstrate support for import/export of UML models and the
UML metamodel. This demonstration shall include demonstration of a round-trip
model exchange without information loss. Submissions will be evaluated
regarding the extent of the UML metamodel subset (including any MOF-
compliant extensions) covered by the submitter’s choice of examples.

XMI has been used extensively by the co-submitters as described in Chapter 2, Proof
of Concept. This prototyping includes:

1. Round-trip transfer of UML models from a tool (e.g.: Rational Rose) to an XML
file and back without loss of information.

2. Transfer of UML models from between tools (e.g.: Select Enterprise to XML file to
Rational Rose)

3. Transfer of UML models between a repository and tools (e.g.: Unisys UREP to
XML file to Select Enterprise and IBM TeamConnection to Rational Rose.)

4. Transfer of the complete UML metamodel between tools.

3.1.5 International Codesets

Proposals shall support use of international standard codesets.

The XMI uses the optional encoding declaration of XML to specify the character set.
This follows the ISO-10646 (also called the extended Unicode) standard.

10/25/1999 ad/99-10-02: XML Metadata Interchange 3-23

3

3.2 Optional Requirements

3.2.1 Compact Data Representation

The interchange of metamodels may require a compact data representation in
addition to the text-based representation as an alternative to the interface-based
representation defined in the MOF.

Not addressed in this proposal.

3.2.2 Compatibility with other Metamodels and Interchange Formats

In order to preserve the investments of OMG members, proposals may be
upward-compatible with the EIA/CDIF 1994 (CDIF94) Transfer Format
standards. This does not imply downward-compatibility. The SMIF specification
may contain constructs unsupported by CDIF94.

Not addressed in this proposal. Integration of CDIF and XMI is discussed in Chapter
10, Compatibility With Other Standards.

Proposals may contain an unambiguous, complete mapping of the concepts in the
CDIF94 meta-meta-model to the concepts in the MOF.

Not addressed in this proposal. Integration of CDIF and XMI is discussed in Chapter
10, Compatibility with other standards.

Proposals may identify the impact of the proposed SMIF specification on transfer
files produced using the CDIF94 Transfer Format standards. This includes
identification of any changes to CDIF transfer files required to produce valid
syntax and encoding per the proposed SMIF specification. This requirement may
be met by providing a specification for a conversion utility for transfer files
created using the CDIF94 Transfer Format standards to make them compliant
with the proposed SMIF specification.

Not addressed in this proposal. Integration of CDIF and XMI is discussed in Chapter
10, Compatibility with other standards.

Proposals may provide transfer stream examples that use concepts from other
industry standard metamodels.

Not addressed in this proposal.

Proposals may identify specific modeling language differences between EXPRESS
and the MOF/UML and discuss ways to map between these languages. A direct
mapping of all the concepts in either language to the other may not be possible.

Not addressed in this proposal.

Proposals may identify the impact of the proposed SMIF specification on existing
schema definitions and transfer files produced using STEP EXPRESS. This may
include identification of any changes to STEP EXPRESS files required to produce
valid syntax and encoding per the proposed SMIF specification. Submissions may

3-24 ad/99-10-02: XML Metadata Interchange 10/25/1999

3

include a specification for converting STEP schemas and/or transfer files created
using STEP EXPRESS standards to make them compliant with the proposed
SMIF specification.

Not addressed in this proposal.

3.3 Issues for discussion

Proposals in response to this RFP may discuss the usage and relevance of related
technologies such as Meta-Object Definition Language (MODL), Object
Constraint Language (OCL) and Universal Object Language (UOL) to the SMIF
RFP.

MODL (non-normatively referenced in the OMG MOF standard) is a text-based
language that is expressly designed for expressing MOF metamodels. Naturally, it has
a direct correspondence with the MOF meta-metamodel. MODL was initially
developed by the DSTC to support the MOF submission.

UOL is a text-based object modeling language for expressing UML and OML models.
UOL is being developed jointly by Recerca Informàtica, Universitat Politècnica de
Catalunya and Daimler-Benz Research and Technology.

Since both MODL and UOL can both express MOF compliant meta-models, they can
both be used as human-readable interchange formats for MOF meta-models. In the
same way, UOL is a human-readable interchange format for UML models. However,
neither MODL nor UOL is suitable as an interchange format for models in general.
The issue of a Human Readable Textual Notation for object models is currently being
investigated by the OMG Business Object Domain Task Force.

OCL, which is an optional part of the UML standard, is a language for expressing
constraints over a collection of objects. OCL has been used to define semantic aspects
of the MOF and UML standards, and is used in this proposal to define the XMI stream
production rules. OCL can also be used to define semantic constraints in MOF
metamodels and UML models. However, since OCL has no capability of modeling
data structures, it is not directly applicable to model or metamodel interchange.

Note: the separation of information from presentation issues is a key feature of both
XML and XMI. While this proposal does not address this issue, it will be feasible to
use W3C Extensible Style Language (XSL) to define “style sheets” for XMI. For
example, XSL style sheets can be defined to map XMI encodings of MOF compliant
metamodels onto either MODL or UOL.

Proposals in response to this RFP should discuss how to support semantic
interoperability between tools that share and manipulate STEP schemas and
STEP schema instances in addition to tools that support sharing and
manipulation of OAD models. The proposal may provide or reference different
specifications for transferring schemas and transferring schema instances as long
as there is a way to reference the schemas when transferring schema instances.

This proposal does not address STEP schema interoperability. However, the MOF and
its precursors have been used in a number of domains which entail model and schema

10/25/1999 ad/99-10-02: XML Metadata Interchange 3-25

3

transformations. Assuming that MOF metamodels for STEP schemas are defined, XMI
could therefore be used to interchange STEP schemas and instances.

Proposals should include information on how to perform conformance tests (for
checking syntax and transfer stream specific validation rules for schemas and
schema instances) on transfer streams prior to import into other applications.

The XML Recommendation defines XML document validation, based on both the
syntax of XML and the specific DTD of the document. This validation can be
performed by any validating XML parser. An XML application can choose to validate
the entire document before beginning the decoding process.

In XMI, the specific DTD for a document is produced from the model’s MOF based
metamodel according to mapping rules in this specification. The DTD expresses the
structural aspects of the meta-model. This means that any validating XML parser can
check that an XMI document containing a model is structurally conformant to the
model’s meta-model.

The XML DTD language is not rich enough to represent all aspects of a MOF meta-
model. In particular, it cannot express multiplicity constraints (i.e. cardinality and
uniqueness) or arbitrary semantic constraints. Hence validation of an XMI stream by a
standard XML parser does not guarantee full conformance.

Sharing of metamodels is the anticipated basis for full validation. An XMI stream
header includes an unambiguous reference to the model’s metamodel. Thus, an XMI
enhanced XML parser can ensure total model conformance by validating an XMI
stream against a local copy of its metamodel. Similarly, a MOF compliant model
repository for a given metamodel can validate any model that is loaded into it. Note
however, that exchange of incomplete models is also supported.

This may include recommendations for adding additional functionality to the
MOF to satisfy transfer file conformance test requirements identified by the
STEP community.

Proposals should discuss an approach to address this difference in problem scope.
For example, proposals may describe how to use the MOF to describe STEP
schemas at the same level as the UML meta-model.

The submitters believe that MOF is rich enough to be used to define STEP schemas at
the same level as the UML metamodel. A possible approach is to define a mapping
between the STEP metamodel and the MOF meta-metamodel so that STEP schemas
can be treated as MOF metamodels. Alternately, a MOF metamodel for STEP that
allows STEP schemas to be expressed as MOF based models.

The MOF does not need extensions to handle conformance rules. The MOF already
provides meta-metamodel elements (e.g. Model::Constraint) for attaching well-
formedness rules (e.g. expressed in OCL or any other language) to a MOF metamodel.
The MOF standard also addresses conformance and well-formedness rules for models.
If we assume that STEP is incorporated into the MOF metadata framework using the
second alternative above, STEP conformance requirements can be handled as part of
the MOF metamodel for STEP.

3-26 ad/99-10-02: XML Metadata Interchange 10/25/1999

3

The focus of the XMI proposal is on current and emerging OMG metadata standards.
The submitters believe that integration of XMI and STEP EXPRESS to address EDI
and related requirements is an important next step.

Proposals should discuss the connection, if any, between the proposed transfer
format syntax and encoding and the Objects-by-Value syntax and encoding.

There is no direct connection between the XMI proposal and the new OMG Object-by-
Value specification.

The MOF supports the use of the complete range of CORBA data types in metamodels
using CORBA TypeCodes. This allows the MOF to evolve with extensions to the
CORBA data types as appropriate. As new CORBA data types are defined, XMI will
be extended to support their transmission in models. The new Object-by-Value “value”
types are no exception.

3.4 Scope of Revision Task Force

The following items are specifically in scope of the XMI revision task force:

• Changes to support revisions to OMG standards and metamodels (MOF, UML,
CWM in the future)

• Modifications to take advantage of upcoming XML standards and technology

• Modifications for comprehensive support of data types.

10/25/1999 ad/99-10-02: XML Metadata Interchange 4-27

Design Rationale 4

4.1 Design Overview

This submission proposes that the OMG’s Stream-based Model Interchange Format for
exchanging metadata be based on the W3C’s Extensible Markup Language (XML).
The XML-based Metadata Interchange (XMI) proposal has two major components:

• The XML DTD Production Rules for producing XML Document Type Definitions
(DTDs) for XMI encoded metadata are specified in Chapters 6 and 7. XMI DTDs
serve as syntax specifications for XMI documents, and allow generic XML tools to
be used to compose and validate XMI documents.

• The XML Document Production Rules for encoding metadata into an XML
compatible format are specified in Chapters 8 and 9. The production rules can be
applied in reverse to decode XMI documents and reconstruct the metadata.

The XMI proposal supports the interchange of any kind of metadata that can be
expressed using the MOF specification, including both model and metamodel
information. The proposal supports the encoding of metadata consisting of both
complete models and model fragments, as well as tool-specific extension metadata.
XMI has optional support for interchange of metadata in differential form, and for
metadata interchange with tools that have incomplete understanding of the metadata.

XML is gaining widespread acceptance as the de facto standard for representing
structured information in the context of the world-wide web and beyond. Basing the
proposed OMG SMIF on XML means that XMI can be used for metadata interchange
with and between non-CORBA based metadata repositories and tools.

The XML language is defined by the W3C’s “Extensible Markup Language (XML)
Recommendation 1.0” document [REC-xml-19980210]. This definition includes a
specification of XML in Extended Backus-Naur Form (EBNF) notation. XML is
LL(1) parsable.

4-28 ad/99-10-02: XML Metadata Interchange 10/25/1999

4

4.2 XMI and the MOF

XMI is an interchange format for metadata that is defined in terms of the Meta Object
Facility (MOF) standard. This section provides an overview of the MOF and gives a
rationale for basing XMI on the MOF rather than some other modelling technology.

4.2.1 An Overview of the MOF

The MOF is the OMG’s adopted technology for defining metadata and representing it
as CORBA objects. In this proposal, metadata is a general term for data that in some
sense describes information. The information so described may be information
represented in a computer system; e.g. in the form of files, databases, running program
instances and so on. Alternatively, the information may be embodied in some system,
with the metadata being a description of some aspect of the system such as a part of its
design.

The MOF supports any kind of metadata that can be described using Object Modelling
techniques. This metadata may describe any aspect of a system and the information it
contains, and may describe it to any level of detail and rigour depending on the
metadata requirements.

The designers envisaged that the MOF-based metadata will be used in a wide range of
CORBA related applications. For example:

• metadata repositories and tools will support the process of analysis, design and
development of CORBA-based software,

• metadata repositories will support infrastructure services such as COS Trading,
COS Events and ultimately the CORBA Interface Repository itself,

• metadata repositories will support data warehousing, data mining and database
interoperability, and

• metadata will be used to describe free-text data sources such as on-line document
collections and the world-wide web.

The term model is generally usually used to denote a description of something,
typically something in the real world. The concept of a model is highly fluid, and
depends on one’s point of view. To someone who is concerned with building or
understanding an entire system, a model would include all of the metadata for the
system. On the other hand, most people are only concerned with certain components
(e.g. programs A and B) or certain kinds of detail (e.g. wiring diagrams) of the system.

In the MOF context, the term model has a broader meaning. Here, a model is any
collection of metadata that is related in the following ways:

• The metadata describes information that is itself related in some way.

• The metadata all conforms to rules governing its structure and consistency; i.e. it
has a common abstract syntax.

• The metadata has meaning in a common (often implied) semantic framework.

10/25/1999 ad/99-10-02: XML Metadata Interchange 4-29

4

(Note that a MOF model is not necessarily a model in the usual sense of the word. It
does not necessarily describe something in the real world, and it does not necessarily
describe things in a way that is interesting to modellers.)

Metadata is itself a kind of information, and can accordingly be described by other
metadata. In MOF terminology, metadata that describes metadata is called meta-
metadata, and a model that consists of a meta-metadata is called a metamodel.

One kind of metamodel plays a central role in the MOF. A MOF metamodel defines
the abstract syntax of the metadata in the MOF representation of a model. Since there
are many possible kinds of metadata in a typical system, the MOF framework needs to
support many different MOF metamodels. The MOF integrates these metamodels by
defining a common abstract syntax for defining metamodels. This abstract syntax is
called the MOF Model and is model for metamodels; i.e. a meta-metamodel. The MOF
metadata framework is typically depicted as a four layer architecture as shown in
Table 1 below.

A couple points on the OMG / MOF metadata terminology:

• To make things easier to understand, we often describe things in terms of their level
in the meta-stack; e.g. the MOF Model is an M3-level model in a 4 level stack.

• The “meta-” prefix should be viewed in a relative rather than absolute sense.
Similarly, the numbering of meta-levels is not absolute.

• While there are typically 4 layers in a MOF based metadata stack, the number of
layers can more or less than this.

The MOF specification has three core parts; i.e. the specification of MOF Model, the
MOF IDL Mapping and the MOF’s interfaces.

Meta-level MOF terms Examples

M3 meta-metamodel The “MOF Model”

M2 meta-metadata
metamodel

UML Metamodel,
CWMI Metamodel(s),

etcetera

M1 metadata
model

UML Models,
Warehouse Schemas,

etcetera

M0 data Modelled systems,
Warehouse databases,

etcetera

Table 1: A Typical OMG Metadata Architecture

4-30 ad/99-10-02: XML Metadata Interchange 10/25/1999

4

The MOF Model

The “MOF Model” is the MOF’s built-in meta-metamodel. One can think of it as the
“abstract language” for defining MOF metamodels. This is analogous to the way that
the UML metamodel is an abstract language for defining UML models. While the
MOF and UML are designed for two different kinds of modelling (i.e. metadata versus
object modelling), the MOF Model and the core of the UML metamodel are closely
aligned in their modelling concepts. (The alignment of the two models is close enough
to allow UML notation to be used to express MOF-based metamodels!)

The three main metadata modelling constructs provided by the MOF are the Class,
Association and Package. These are similar to their counterparts in UML, with some
simplifications:

• Classes can have Attributes and Operations at both “object” and “class” level.
Attributes have the obvious usage; i.e. representation of metadata. Operations are
provided to support metamodel specific functions on the metadata. Both Attributes
and Operation Parameters may be defined as “ordered”, or as having structural
constraints on their cardinality and uniqueness. Classes may multiply inherit from
other Classes.

• Associations support binary links between Class “instances”. Each Association has
two AssociationEnds that may specify “ordering” or “aggregation” semantics, and
structural constraints on cardinality or uniqueness. When an Class is the type of an
AssociationEnd, the Class may contain a Reference that allows navigability of the
Association’s links from a Class “instance”.

• Packages are collections of related Classes and Associations. Packages can be
composed by importing other Packages or by inheriting from them. Packages can
also be nested, though this provides a form of information hiding rather than reuse.

The other significant MOF Model constructs are DataTypes and Constraints.
DataTypes allow the use non-object types for Parameters or Attributes. In the OMG
MOF specification, these must be data types or interface types expressible in CORBA
IDL.

Constraints are used to associate semantic restrictions with other elements in a MOF
metamodel. This defines the well-formedness rules for the metadata described by a
metamodel. Any language may be used to express Constraints, though there are
obvious advantages in using a formal language like OCL.

The MOF IDL Mapping

The MOF’s “IDL Mapping” is a standard set of templates that map a MOF metamodel
onto a corresponding set of CORBA IDL interfaces. If the input to the mapping is the
metamodel for a given kind of metadata, then the resulting IDL interfaces are for
CORBA objects that can represent that metadata. The mapped IDL are typically used
in a repository for storing the metadata.

The IDL mapping is too large to describe here, and indeed it is largely irrelevant to the
problem of model interchange. Instead, we will simply note the main correspondences

10/25/1999 ad/99-10-02: XML Metadata Interchange 4-31

4

between elements in a MOF metamodel (M2-level entities) and the CORBA objects
that represent metadata (M1-level entities).

• A Class in the metamodel maps onto an IDL interface for metadata objects and a
metadata class proxy. These interfaces support the Operations, Attributes and
References defined in the metamodel, and in the case of class proxy, provide a
factory operation for metadata objects.

• An Association maps onto an interface for a metadata association proxy that
supports association queries and updates.

• A Package maps onto an interface for a metadata package proxy. A package proxy
acts as a holder for the proxies for the Classes and Associations contained by the
Package, and therefore serves to define a logical extent for metadata associations,
classifier level attributes and the like.

The IDL that is produced by the mapping is defined in precise detail so that different
vendor implementations of the MOF can generate compatible repository interfaces
from a given MOF metamodel. Similarly, the semantic specification of the mapped
interfaces allows metadata objects be interoperable.

In addition to the metamodel specific interfaces for the metadata (defined by the IDL
mapping), MOF metadata objects share a common set of Reflective base interfaces.
These interfaces allow a ‘generic’ client program to access and update metadata
without either being compiled against the metamodel’s generated IDL or having to use
the CORBA DII.

The MOF Interfaces

The final component of the MOF specification is the set of IDL interfaces for the
CORBA objects that represent a MOF metamodel. These are not of interest to the
meta-modeller who will typically use vendor supplied graphical editors, compilers and
generator tools to access a MOF Model repository. However, they are of interest to
MOF-based tool vendors, and to programmers who need to access metadata using the
Reflective interfaces.

In fact, there is not a lot to say about these interface, except to explain how they were
derived. In the MOF specification, the MOF Model is defined using the MOF Model as
its own modelling language; i.e. it is the “fixed point” of the metadata stack
Conceptually, the MOF Model is M3 level metadata conforming to an M4 level
metamodel that is isomorphic to the MOF Model. The IDL mapping is then applied to
this metamodel (or strictly speaking meta-metamodel) to produce the MOF Model’s
IDL interfaces. Likewise, the MOF Model IDL’s operational semantics are largely
defined by the mapping and the OCL constraints in the MOF Model specification.

4.2.2 The relationship between XMI and MOF

The purpose of SMIF is to allow the interchange of models in a serialised form. Since
the MOF is the OMG’s adopted technology for representing metadata, it is natural that
the XMI proposal should focus on the interchange of MOF metadata; i.e. metadata that
conforms to a MOF metamodel. In fact, XMI is really a pair of parallel mappings

4-32 ad/99-10-02: XML Metadata Interchange 10/25/1999

4

between MOF metamodels and XML DTDs, and between MOF metadata and XML
documents.

From the viewpoint users of MOF-based metadata repositories, XMI represents a new
way of transferring metadata from one repository to another. Since XMI is a transfer
format rather than a CORBA interface, there is no need for ORB to ORB connectivity
to effect the transfer: indeed any mechanism capable of transferring ASCII text will
do. Thus XMI enables a new form of metadata interchange that significantly enhances
the usefulness of the MOF.

In the wider context, XMI can be viewed as a common metadata interchange format
that is independent of middleware technology. Any metadata repository or tool that
can encode and decode XMI streams can exchange metadata with other repositories or
tools with the same capability. There is no need for to implement the MOF defined
CORBA interfaces, or even to “speak” CORBA at all.

XMI provides a possible route for interchange of metadata with repositories whose
metamodels are not MOF based. This interchange can be realised by ad hoc mappings
between an XMI document and the repository’s native metamodel. Alternatively it can
be based on mapping at the meta-metamodel level. For example, interoperability with
CDIF-based repositories can be based on a mapping between the MOF Model and the
CDIF meta-metamodel.

4.2.3 The relationship between XMI, MOF and UML

There are two points to make under this heading. First, as mentioned above, there is a
close relationship (alignment) between the meta-modelling concepts of MOF and the
modelling concepts of UML. This allows the UML graphical notation to be used to
express MOF meta-models. The increasing popularity of UML modelling should make
an SMIF based on the MOF more accessible than an SMIF based on other meta-
modelling concepts.

The second point is that the adopted OMG UML specification defines the UML meta-
model as a MOF meta-model. This means that the XMI proposal will lead directly to
a model interchange format for UML.

4.3 XMI and XML

4.3.1 The roots of XML

The Web is the visual interface to the Internet's vast collection of resources. Today,
HTML (HyperText Markup Language) is the predominant language for expressing web
pages. An HTML document consists of the textual content of the document embedded
in matched display tags which specify the visual presentation of the content. A well
designed HTML document is visually interesting to a human viewer when displayed in
a web browser. However, the automatic extraction of information from HTML
documents is difficult since HTML tags are designed to express presentation rather
than semantic information. This makes HTML a less than ideal medium for general
electronic interchange in the Internet.

10/25/1999 ad/99-10-02: XML Metadata Interchange 4-33

4

HTML is a specific tailoring of the more powerful SGML (Standard Generalized
Markup Language), a sophisticated tag language which separates view from content
and data from metadata. Due to SGML’s complexity, and the complexity of the tools
required, it has not achieved widespread uptake.

XML, the Extensible Markup Language, is a new format designed to bring structured
information to the Web. It is in effect a Web based language for electronic data
interchange. XML is an open technology standard of the World Wide Web Consortium
(W3C), the standards group responsible for maintaining and advancing HTML and
other Web related standards.

XML is a subset of SGML that maintains the important architectural aspects of
contextual separation while removing nonessential features. The XML document
format embeds the content within tags that express the structure. XML also provides
the ability to express rules for the structure (i.e. grammar) of a document. These two
features allow automatic separation of data and metadata, and allow generic tools to
validate an XML document against its grammar.

Unlike HTML, an XML document does not include presentation information. Instead,
an XML document may be rendered for visual presentation by applying layout style
information with technologies such as XSL (Extensible Style Language). Web sites and
browsers are rapidly adding XML and XSL to their functionality.

4.3.2 Benefits of using XML

There are many advantages in basing an OMG metadata interchange format on XML.
These include the following:

• XML is already an open, platform independent and vendor independent standard.

• XML supports the international character set standards of extended ISO Unicode.

• XML is metamodel neutral and can represent metamodels compliant with OMG’s
meta-metamodel, the MOF.

• The XML standard itself is programming language-neutral and API-neutral. A
range of XML APIs are available, giving the programmer a choice of access
methods to create, view, and integrate XML information. Leading XML APIs
include DOM, SAX, and Web-DAV.

• The cost of entry for XML information providers is low. XML documents can
currently be created by hand using any text editor. In the future, XML-based
WYSYWIG editors with support for XSL rendering will allow creation of XML
documents. XML’s tag structure and textual syntax make it as easy to read as
HTML, and is clearly superior for conveying structured information.

• The cost of entry for automatic XML document producers and consumers is low. A
growing set of tools is available for XML development. This includes a complete,
free, commercially unrestricted XML parser written in Java available from one of
the submitting companies (IBM). A variety of other XML support tools including
implementations of the XML APIs are available on the Internet.

4-34 ad/99-10-02: XML Metadata Interchange 10/25/1999

4

The XML approach to structured data interchange has been validated through the wide
experience with XML itself and with other the members of the XML family: SGML,
used in high-end document processing, and HTML, the predominant language of the
web.

4.3.3 XML and the Computer Industry

XML is widely believed to be the next step in the evolution of the Web. This is
demonstrated by announcements by Netscape and Microsoft that upcoming versions of
the leading web browsers Netscape Navigator and Internet Explorer will incorporate
XML support. This kind of high profile uptake will enhance the ability of XMI
documents based on XML to be integrated into the information Web of the Internet.

While XML is still in its infancy, there are many well documented applications of
XML. Example application domains include web commerce, publishing, repositories,
modelling, databases and data warehouses, services, financial, health care,
semiconductors, inventory access, and more. Companies involved in standardizing
XML include: Adobe, ArborText, DSTC, HP, IBM, Microsoft, Netscape, Oracle,
Platinum, Select, Sun, and Xerox.

Widespread public interest in XML has lead to a substantial number of books being
written. Amazon.com lists 28 books on XML as published in the last year, including
two books in the “XML for Dummies” series. The cover article of Byte Magazine’s
March 1998 issue was on XML, with a multi-page article by Bill Gates.

4.3.4 How XML works

This section provides a simple overview of XML technology. More advanced XML
features are described in sections of the submission which use them.

XML Structure elements

XML documents are tree-based structures of matched tag pairs containing nested tags
and data. In combination with its advanced linking capabilities, XML can encode a
wide variety of information structures. The rules which specify how the tags are
structured are called a Document Type Declaration or DTD.

In the simple case, an XML tag consists of a tag name enclosed by less-than (‘<‘) and
greater-than (‘>’) characters. Tags in an XML document always come in pairs
consisting of an opening tag and a closing tag. The closing tag in a pair has the name
of the opening tag preceded by a slash symbol. Formally, a balanced tag pair is called
an element, and the material between the opening and closing tags is called the
element’s content. The following example shows a simple element:

<Dog>a description of my dog</Dog>

The content of an element may include other elements which may contain other
elements in turn. However, at all levels of nesting, the closing tag for each element
must be closed before its surrounding element may be closed. This requirement to

10/25/1999 ad/99-10-02: XML Metadata Interchange 4-35

4

balance the tags is what provides XML with its tree data structure and is a key
architectural feature missing from HTML.

XML Example

This is a simple example document describing a Car. (New lines and indentation have
no semantic significance in XML. They are included here simply to highlight the
structure of the example document.)

<Car>
<Make> Ford </Make>
<Model> Mustang </Model>
<Year> 1998 </Year>
<Color> red </Color>
<Price> 25000 </Price>

</Car>

The Car element contains five nested elements which describe it more detail: Make,
Model, Year, Color, and Price. The content of each of the nested elements encodes a
value in some agreed format.

XML Attributes

In addition to contents, an XML element may contain attributes. Element attributes
are expressed in the opening tag of the element as a list of name value pairs following
the tag name. For example:

<Class xmi.label=”c1”> </Class>

XML defines a special attribute, the ID, which can be used to attach a unique identifier
to an element in the context of a document. These IDs can be used to cross-link the
elements to express meaning that cannot be expressed in the confines of XML’s strict
tree structure. The ID attribute is discussed in detail in the section on XMI Linking,
6.5.1.

Document Type Definitions

A Document Type Definition or DTD is XML’s way of defining the syntax of an XML
document. An XML DTD defines the different kinds of elements that can appear in a
valid document, and the patterns of element nesting that are allowed.

A DTD for the Car example above could contain the following declaration:

<!Element Car (Make, Model, Year, Color, Price)>

This indicates that for a Car must contain each of the Make, Model, Year, Color, and
Price elements. The declaration for an element can have a more complex grammar,
including multiplicities (zero to one ‘?’, one ‘ ‘, zero or more ‘*’, and one or more ‘+’)
and logical-or ‘|’.

4-36 ad/99-10-02: XML Metadata Interchange 10/25/1999

4

DTDs also define the attributes that can be included in an element using an ATTLIST.
For example, the following DTD component specifies that every Class element has an
optional xmi.label XML attribute and that the xmi.label consists of a character data
string: (The #IMPLIED directive indicates that the attribute is optional.)

<!ATTLIST Class xmi.label CDATA #IMPLIED >

While a DTD can be embedded in the document whose syntax it defines, DTDs are
typically stored in external files and referenced by the XML document using a
Universal Resource Identifier (URI) such as

“http://www.xmi.org/car.dtd”

or

“file:car.dtd”

XML Document Correctness

There are three levels of correctness associated with XML document; well-formedness,
validity and semantic correctness:

• A “well-formed” XML document is one where the elements are properly structured
as a tree with the opening and closing tags correctly nested. Well-formed
documents are essential for information exchange.

• A “valid” XML document is one which is well-formed and that conforms to the
structure defined by a DTD. A valid document will only contain elements and
attributes defined in the DTD. Similarly, the element contents and attribute values
will conform to the DTD. While the DTD need not be specified in an XML
document, and an consumer need not to use the DTD when decoding the document,
the DTD is essential for checking validity.

• The highest level of document correctness (“semantic correctness”) is beyond the
scope of XML and DTDs as they are currently defined. Only a XML document
consumer with deep domain knowledge can check that the information in an XML
document makes sense. In the Car example, this might include a check that a
particular Color was available for a given combination of Make, Model, and Year.

4.3.5 XML and the OMG

There is strong synergy between the OMG technologies and XML in a number of
areas. OMG defines CORBA as the medium for interchange of data between objects
which have (inter-)network connectivity. XML represents a potential alternative
interchange medium for cases where ORB to ORB connectivity is not possible.
Furthermore, XML presents a possible medium for interchange of data between
CORBA based systems and other systems.

The OMG’s MOF specification defines a common framework for representing
metadata. At the moment, the MOF is restricted is providing metadata for CORBA
based systems since the only defined way to interchange MOF metadata is to use the

10/25/1999 ad/99-10-02: XML Metadata Interchange 4-37

4

CORBA interfaces produced by the MOF’s IDL mapping. XML (in the form of XMI)
provides a way to lift this restriction.

OMG can use the MOF and XMI to expand the significance of the current OMG
activities which are producing Domain Service specifications. If a Domain Service
specification includes a normative MOF-based metamodel, XMI can then be used to
generate a XML DTDs for these metamodels. These DTDs would allow interchange
of metadata between and beyond CORBA-based systems, increasing relevance for the
Domain Service specifications. There is considerable scope for duplicating this pattern
for data interchange.

The XMI submitters believe that this approach would enhance the OMG’s position as
providing leadership in the data and metadata interchange standards of the future.

4.3.6 New XML Technologies

The XML family of standards is currently undergoing rapid development. This section
gives capsule summaries of important new XML technologies which are in the process
of being standardized by the W3C and other organizations. While the XMI submission
is designed to be upwards compatible with these technologies, it is rather difficult to
use them in this submission. In the future when the technology has stabilized and been
standardized it may well be feasible to revise XMI make use of them. XMI has been
designed to be upwards compatible with these upcoming XML technologies and
provide facilities for their use where possible.

Namespaces - The namespace draft by the W3C is work in progress with the goal of
providing support for multiple DTDs in the same document. Each DTD is given a
local namespace within a document (no global registration necessary) which prevents
any conflicts by differing definitions of similarly named constructs.

Links - There are two linking technology drafts in progress at the W3C which provide
advanced linking facilities which are integrated with web technology. XLink is for
cross document links and XPointer is for links within a document. They are used
together and are discussed in more detail in the discussion in the XMI Linking section
6.8.

There are three proposals for enhancing the base capabilities of XML at the W3C.
RDF (Resource Description Framework) is a working draft specification for
infrastructure to support web information based on the entity-relationship model.
RDF-Schema is a working draft to provide types for XML. XML-Data is a note to the
W3C for public comment on providing schemas and types for XML. The latter is
particularly significant to XMI, and future incorporation would be of great benefit.
XML-Data has been superseded by DCD (Document Content Definition) - a proposal
to provide data type support and a new syntax for DTDs.

XSL - Extensible Style Language is a working draft of the W3C which specifies user-
definable declarative transforms of XML documents with the goal of providing
formatting style information. XSL is used in conjunction with XML to create the
visual layout of the underlying XML data and metadata.

4-38 ad/99-10-02: XML Metadata Interchange 10/25/1999

4

There are three major APIs to XML. DOM, the Document Object Model, is a
language-neutral interface to XML documents for creation and reading data and
metadata information. DOM also works with style processing and scripts. SAX is an
event-driven API for XML parsing. Web-DAV is an API for Web based Distributed
Authoring and Versioning and is currently a working draft of the IETF (Internet
Engineering Task Force) standards body. It uses the HTTP protocol to provide on-
line, distributed XML access and modification.

4.4 Major Design Goals and Rationale

This section describes the major design goals that the XMI developers are aiming to
meet, and explains some of the more significant design choices that we have made.

4.4.1 Universally Applicable Solution

Design Goal: The XMI submission shall provide the means of
interchanging metadata for any MOF metamodel.

The XMI proposal defines DTD generation and stream production rules that can be
used to transfer any models described by a MOF metamodel; i.e. any metamodel that is
defined in the “abstract language” of the MOF Model. Since the MOF Model is itself
described as a MOF metamodel, the proposal also allows interchange of metamodels
and even the MOF Model itself.

Table 2 below shows how XMI artifacts fit into the OMG’s four layer metadata
architecture. An (M1 level) XMI document is used to transfer an (M1 level) model.
This is described by an (M2 level) XML DTD that corresponds to the (M2 level) MOF
metamodel for the metadata. For example, a UML model would be encoded against a
UML DTD which corresponds to the UML metamodel.

MOF compliant metamodels can be interchanged at the next meta-level in the metadata
architecture. Thus, an (M2 level) metamodel such as the UML metamodel can be
encoded against the (M3 level) XML DTD for the (M3 level) MOF Model.

Meta-Level Metadata XMI DTDs XMI Documents

M3 The MOF Model MOF DTD

M2 UML MetaModel
(and others)

UML DTD
(and others)

MOF MetaModel
Documents

M1 UML Models
(and others)

UML Model Documents
(and others)

M0 Instances

Table 2: XMI and the OMG Metadata Architecture

10/25/1999 ad/99-10-02: XML Metadata Interchange 4-39

4

4.4.2 Automatic Generation of Transfer Syntax

Design Goal: The XMI proposal shall define the generation of a
standard transfer syntax for a model, based solely on the model’s
metamodel.

The classical way of defining a data interchange format is to create a specification
document which describes the syntax in BNF or a similar notation, and includes a
natural language description of non-syntactic aspects. The problem with this approach
is that errors and omissions inevitably creep into the specification. The result is that the
person responsible for coding import and export modules needs to “interpret” the
specification. Divergence in people’s interpretations of a specification often leads to
cases where data cannot be exchanged successfully.

The XMI specification is designed to allow the automated generation of XML DTDs
based on the original MOF specification of a metamodel. Such DTDs are pretty much
guaranteed to be a faithful reflection of the original metamodel. The XMI specification
also contains rules for stream production based on the MOF metamodel. These rules
can be used to automatically generate XML import and export tools for instances of a
metamodel, removing a source of errors and reducing the cost of developing the
software needed to support a new metamodel.

4.4.3 Conformance with XML paradigms

Design Goal: As far as is possible, the XMI proposal shall follow
XML’s established principles for document design.

For example, XML deems it to be “good practice” to produce a DTD that defines the
syntax of a document. This allows generic XML tools to validate documents without
any hard-wired knowledge of the validity rules for the document. The XMI proposal
therefore specifies how XML DTDs which allow validation can be produced.

Similarly, XML’s tree-based element structure emphasizes nesting over linkage. The
XMI proposal follow’s XML’s lead by rendering the instances of “contained”
Attributes and References in a MOF metamodel as nested XML elements. (The
alternative of rendering all Class instances independently and using links to represent
all relationships is not the XML pattern of doing things.)

Design Decision: The XMI proposal does not map all MOF
DataTypes onto distinct elements in the XMI DTD.

Encoding of MOF DataTypes (i.e. CORBA data types) in XMI presents us with a
tricky problem. It is arguable that XMI should map data types so that the XMI DTDs
allow full validation. However, if XMI were to do this, there is a substantial risk that
future integrate with the XML proposals being developed by W3C would be
problematical. XMI therefore optionally encodes most CORBA data types using
“boilerplate” DTDs. It is anticipated that this decision will be revisited in the future.

4-40 ad/99-10-02: XML Metadata Interchange 10/25/1999

4

4.4.4 Knowledge of Metamodels

Design Decision: An XMI document consumer or producer needs
“knowledge” of the MOF metamodel for the metadata.

An XMI DTD for defines the grammar rules for an XMI document. Unfortunately,
XMLs DTD language can only express a subset of the structure and consistency rules
contained in a MOF metamodel. For example:

• XML DTDs cannot express the full richness of multiplicities on MOF Attributes
and Associations.

• XML DTDs cannot express arbitrary consistency rules as expressed in MOF
Constraints.

• The XMI DTD generation rules do not fully render data types.

One consequence of this is that a consumer of an XMI document may need knowledge
of the metamodel that is not conveyed in the DTD. This knowledge is needed,

• to check semantic correctness of the document, and

• to reconstruct the metadata in its original form; e.g. with the correct CORBA data
types.

Similarly, an XMI document producer needs to be aware to the correct way to encode
metadata in areas not covered by the DTD, and needs knowledge of the additional
semantic constraints.

For a consumer or producer implemented in the context of a fully functioned MOF
framework, this “knowledge” can be obtained by exchanging the MOF metamodel for
the metadata and data types.

4.4.5 Complete Encoding of Metadata

Design Goal: Assuming that a consumer has full knowledge of the
metamodel, it shall be possible for it to recover all of the source
metadata from the XMI document alone.

Since XMI allows interchange of MOF metamodels, this means that it will be feasible
to implement tools that can consume and produce fully valid XMI model documents
with no prior knowledge of the metamodel. (This assumes that all of the Constraints
in the metamodel are expressed in a constraint language that the tools can interpret.)

Full functioned MOF-compliant repositories will be able to use XMI as their sole
means of interchange of metadata and meta-metadata. If a MOF repository sends the
XMI files for both a model and its metamodel, a receiving MOF repository has
sufficient information to fully reconstruct the model, even if it had no prior knowledge
of the metamodel. In theory, no other shared infrastructure is necessary.

10/25/1999 ad/99-10-02: XML Metadata Interchange 4-41

4

4.4.6 Correctness of MOF MetaModels

Design Decision: The XMI proposal assumes semantic correctness of
the MOF metamodels for the metadata that is to be transmitted.

MOF metamodels expressed in UML notation have a tendency to be under-specified in
certain respects that impact on XMI DTD and document production. For example, the
names of Associations and AssociationEnds which are mandatory in a MOF
metamodel are often omitted from UML class diagrams. Rather than trying to address
these issues in the XMI proposal, we make the assumption that any metamodel that is
a source or target for XMI interchange is fully compliant to the MOF Model.

4.4.7 Model Fragments

Design Goal: The XMI proposal shall support the interchange of
model fragments as well as complete models.

The closure of an entire model often consists of many more model elements than are
required by a stream consumer. A consumer may already have many or most of the
elements, or alternatively may have no interest in them. In these circumstances, the
production, transmission and consumption of redundant or unwanted metadata can be a
substantial burden to all parties.

The flexible generation of XMI DTDs, and XMI’s use of XML linking makes it
possible to use XMI to exchange arbitrary model fragments. XMI’s differential
metadata interchange (an optional compliance point) is another way to reduce the
volume of transmitted metadata. However, it should be noted that any schemes for
partial model interchange implicitly relies on the producer and consumer agreeing on
what needs to be transmitted. This typically entails some form of user input.

4.4.8 Ill-Formed Models

Design Goal: The XMI proposal shall not require a model to be fully
validated as a precondition for metadata interchange.

It would be too restrictive to require a modeller to make a model fully well-formed
before it can be transmitted using XMI. Ideas often need to be shared before all the
details of a model can filled in. However, a minimum level of correctness is necessary
to allow metadata interchange. A model needs all metadata that is necessary to allow a
compliant MOF implementation to (re-)construct metaobjects from the XMI document.
In particular:

• values of all mandatory attributes must be present,

• implicit constraints on the types of attributes and links must be satisfied,

• maximum cardinality and uniqueness constraints on multi-valued attributes and
associations must be satisfied, and

• all “immediate” Constraints in the metamodel must be satisfied.

4-42 ad/99-10-02: XML Metadata Interchange 10/25/1999

4

The above rules are sufficient to ensure that the resulting XMI document (if correctly
encoded according to this specification) will be valid according to the XMI DTD for
the metamodel. However, the reverse is not true.

This proposal also includes an optional compliance point which supports interchange
of incomplete metadata. This is done by relaxing the “multiplicity” specifications in
the XMI DTDs to make mandatory elements optional. This feature is provided to make
it easier to support models under development and non-MOF tools that do not fully
implement a metamodel; e.g. UML tools that implement UML version 0.9 rather than
UML 1.1. However, since incomplete models are might create problems in MOF-based
repositories and their associated tools, both production and consumption of incomplete
metadata documents is an optional XMI compliance point.

4.4.9 Model Versions

Design Goal: The XMI proposal shall support versions of models.

The XMI proposal allows model and metamodel version information to be included in
the XMI header. However, it is up to the producers and consumers of XMI streams to
manage the allocation of version numbers, and issues associated with compatibility
between versions and model lifecycles. It is our recommendation that these issues
should be addressed in a future MOF-related RFP.

4.4.10 Model Extensibility

Design Goal: The XMI proposal shall allow metadata conforming to
a standard metamodel and one or more non-standard extensions to
be transmitted simultaneously.

The XMI proposal takes advantage of a key attribute of XML; i.e. an XML document
is self describing. An XMI document consists of two parts. The first part contains
metadata that conforms to a particular MOF metamodel. The second part contains
additional metadata that is not described by the base metamodel. This part may have
multiple sections, each corresponding to the model extensions made by a particular
tool.

For example, many UML tool vendors add extra attributes to various UML classes to
support “value added” features of their tools. While UML provides Tagged Values and
Stereotypes to support these extensions, this approach is clumsy and can result in
name conflicts when metadata is exchanged between different vendors’ tools. Using
XMI, tool vendors can define new classes to extend the standard UML classes. The
resulting metadata is encoded in separate, self-contained sections of the XMI
document, simplifying its management.

Note however that XMI places no requirement on an XMI document consumer to do
anything sensible with metadata corresponding to metadata extensions. A compliant
implementation is free to totally discard such metadata if it so desires. However, to
support round-trip exchange between heterogeneous tools, (Section 6.10) these
sections should be preserved if the document is intended to be shared.

10/25/1999 ad/99-10-02: XML Metadata Interchange 4-43

4

4.4.11 MOF as an Information Model

Design Goal: The XMI proposal shall be capable of being used to
transmit operational data as well as metadata.

As was explained earlier, while the typical use of the MOF involves a four layer
metadata architecture, there are situations in which only three layers are required. In
such cases, the meta-layers are shifted and MOF Model effectively becomes the
metamodel for operational data. XMI can then be used as an data interchange medium.
Note that this is only appropriate when the MOF Model is suitable for modelling
operational data.

4.4.12 Status of MOF and UML DTDs

Design Decision: The MOF and UML DTDs in the appendices of this
document are normative for the adopted versions of MOF and UML
only.

The SMIF RFP called for proposals to include examples showing how MOF
metamodels and UML models can be interchanged. Accordingly, this proposal includes
sample XMI DTDs for MOF metamodels and for UML models. The DTDs in this
(final) submission have been automatically generated from the MOF Model and the
UML metamodel respectively using the normative processes for doing this.

Both the MOF and UML revision task forces are currently active, with final reports
due by April 1st 1999. Both task forces have revision issues before them that involve
non-trivial changes to their respective metamodels. In the UML case, these include the
formal adoption of proposed fixes that make the published UML metamodel a fully
MOF compliant metamodel.

In the long term, we propose that the responsibility for producing definitive metamodel
and the corresponding DTDs should rest with the groups who propose and maintain the
specifications that need them. In the meantime, there is a pressing short term need for
MOF and UML metadata interchange. The XMI proposal therefore defines the MOF
and UML DTDs provided as appendices as the interim normative XMI DTDs for MOF
version 1.1 and UML version 1.1 respectively.

4-44 ad/99-10-02: XML Metadata Interchange 10/25/1999

4

10/25/1999 ad/99-10-02: XML Metadata Interchange 5-45

Usage Scenarios 5

5.1 Purpose

This section describes some of the problems that IT users and vendors face today and
illustrates how XMI helps to address these problems.

5.2 Combining tools in a heterogeneous environment

Implementing an effective and efficient IT solution for an enterprise requires a detailed
understanding of processes, rules and data used by the business and how each map to
supporting applications. Without this information, it is difficult to assess the
effectiveness of the application components in use, to identify opportunities for
improvement and to evaluate candidate solutions. A further complication is that the
applications in use will probably originate from a variety of sources and consequently
be a mix of custom solutions and packaged applications implemented in a variety of
technologies.

The reality is that no single tool exists for both modeling the enterprise and
documenting the applications that implement the business solution. A combination of
tools from different vendors is necessary but difficult to achieve because the tools
often cannot easily interchange the information they use with each other. This leads to
translation or manual re-entry of information, both of which are sources of loss and
error.

XMI eases the problem of tool interoperability by providing a flexible and easily
parsed information interchange format. In principle, a tool needs only to be able save
and load the data it uses in XMI format in order to inter-operate with other XMI
capable tools. There is no need to implement a separate export and import utility for
every combination of tools that exchange data.

The makeup of an XMI stream is important too. It contains both the definitions of the
information being transferred as well as the information itself. Including the semantics
of the information in the stream enables a tool reading the stream to better interpret the

5-46 ad/99-10-02: XML Metadata Interchange 10/25/1999

5

information content. A second advantage of including the definitions in the stream is
that the scope of information that can be transferred is not fixed; it can be extended
with new definitions as more tools are integrated to exchange information.

5.3 Co-operating with common metamodel definitions

The extent of the information that can be exchanged between two tools is limited by
how much of the information can be understood by both tools. If they both share the
same metamodel (the definition of the structure and meaning of the information being
used), all of the information transferred can be understood and used. However, gaining
consensus on a totally shared meta model is a difficult task even within a single
company. It is more likely that a subset of the meta model can be shared with each tool
adding its own extensions. The need to agree the structure and syntax for encoding as
a stream adds further complexity.

XMI builds on the OMG Meta Object Facility that already provides a standard way to
define metamodels within the OMG. UML is one example of a metamodel that can be
defined in the MOF and which has already adopted as a standard by the OMG. The
model definitions required for the transfer of UML models using XMI are included
with this submission as a set of concrete XML DTD’s. Any tool vendor can use these
definitions to save and load UML models in XMI format without the need for an
implementation of the MOF. This is a practical step to encourage as many tool vendors
as possible to adopt the standard by keeping their initial investment low.

However, manually writing the XML DTD’s for a metamodel is tedious, error prone
and subject to variations in how model concepts are implemented in XML. Using XMI,
the XML DTD’s for a metamodel are obtained by defining the metamodel in MOF and
then applying the XMI generation rules. The generation approach ensures that a given
metamodel will always map to the same set of XML DTD’s regardless of which
vendor implemented the MOF and the XMI stream protocol.

The fact that the MOF meta-metamodel, (the description of the MOF itself), can be
defined in the MOF itself means that XMI can also be used to transfer metamodel
definitions from one MOF to another. Being able to share metamodel definitions is an
important step to promoting the use of common metamodels by different tool vendors.
The combination of the MOF and XMI provides an effective way for vendors to co-
operate on the definition and use of common models.

As mentioned earlier, having a shared model is not enough on its own. Each vendor
must be able to extend the information content of the model to include items of
information that have not been included in the shared model. XMI allows a vendor to
attach additional information to shared definitions in a way that allows the information
to be preserved and passed though a tool that does not understand the information.
Loss-less transfer of information through tools is necessary to prevent errors that may
be introduced by the filtering effect of a tool passing on only that information it can
understand itself. Using this extension mechanism, XMI stream can be passed from
tool to tool without suffering information loss.

10/25/1999 ad/99-10-02: XML Metadata Interchange 5-47

5

5.4 Working in a distributed and intermittently connected environment

Another aspect of sharing metadata is encountered when trying to provide effective
consultancy services. This requires the ability to exploit and share best practices
between the consultants of the group. However, consultants on site typically have
restricted connectivity to the network and limited bandwidth for exchanging models
and design information with their colleagues.

The use of XMI for a metadata interchange facilitates the exchange of model and
design data over the Internet and by phone. Appearing as set of hyper-linked Internet
documents, the data to be transferred can be transported easily through firewalls and
downloaded using a modem. The documents in a related set are accessed on-demand
and cached locally to eliminate the retransmission of frequently used sub-documents.

The remote consultant would be equipped with a notebook installed with a set of tools
that can import and export metadata in XMI format. Connecting to the home site via
the Internet or dialup networking, the consultant can download metadata resources
published as links from pages on a standard WEB server. The same mechanism can be
used to upload modification that the consultant wants to publish for his colleagues.

Typically, the type definitions that defines the semantics of a transfer do not change
frequently and can be stored in a separate document from the actual data to be
transferred. The type definitions are versioned to allow consistency checking. On the
first use of the type definitions, the document containing the type definitions would be
downloaded and cached on the consultant’s machine. Subsequent transfers are be faster
because only the metadata content is transferred while the cached type definitions are
reused.

5.5 Promoting design patterns and reuse

Consultants will often need to integrate their work with the development tools being
used at customer site. This often results in the consultants actually using the same tool
set as the customer. Of course, the tools used will differ from customer to customer.

The problem in this scenario is that it is difficult to develop and exploit best practices
across the consulting group without being able to exchange model and design data
between different tool sets.

XMI addresses this problem by defining a standard format for interchange of model
and design data between different tool sets. It does not require the tool vendors to
invest in the same technology stack. It only requires them to agree on the Meta models
for the data to be shared, plus a standard mechanism for extending that Meta model
with their own types of metadata.

The XMI format allows Meta models to be standardised and revised over time, the set
of Meta models being extensible. For example, this initial submission covers just the
UML Meta model but other Meta models can be agreed and added without affecting
the current set of Meta models.

5-48 ad/99-10-02: XML Metadata Interchange 10/25/1999

5

Vendor extensions to a standard meta model are designed to enable other vendors tools
to process and use the standardised information while being able easily retain and pass
through vendor specific extensions.

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-49

XMI DTD Design Principles 6

6.1 Purpose

This chapter contains a description of the XML Document Type Definitions (DTDs)
that may be used with the XMI specification to allow some metamodel information to
be verified through XML validation. The use of DTDs in XMI is described first,
followed by a brief description of some basic principles, which includes a short
description of each XML attribute and XML element defined by XMI. Those
descriptions are followed by more complete descriptions that provide examples
illustrating the motivation for the XMI DTD design in the areas of metamodel class
specification, transmitting incomplete metadata, linking, transmitting metadata
differences, and exchanging documents between tools. This chapter concludes by
describing the UML DTD included in Appendix A, with examples in Appendix C.

It is possible to define how to automatically generate a DTD from the MOF metamodel
to represent any MOF-compliant metamodel. That definition is presented in chapter 7.

6.2 Use of XML DTDs

An XML DTD provides a means by which an XML processor can validate the syntax
and some of the semantics of an XML document. This specification provides rules by
which a DTD can be generated for any valid XMI-transmissible MOF-based
metamodel. However, the use of DTDs is optional; an XML document need not
reference a DTD, even if one exists. The resulting document can be processed more
quickly, at the cost of some loss of confidence in the quality of the document.

It can be advantageous to perform XML validation on the XML document containing
MOF metamodel data. If XML validation is performed, any XML processor can
perform some verification, relieving import/export programs of the burden of
performing these checks. It is expected that the software program that performs
verification will not be able to rely solely on XML validation for all of the verification,
however, since XML validation does not perform all of the verification that could be
done.

6-50 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

Each XML document that contains metamodel data conforming to this specification
contains: XML elements that are required by this specification, XML elements that
contain data that conform to a metamodel, and, optionally, XML elements that contain
metadata that represent extensions of the metamodel. Metamodels are explicitly
identified in XML elements required by this specification. Some metamodel
information can also be encoded in an XML DTD. Performing XML validation
provides useful checking of the XML elements which contain metadata about the
information transferred, the transfer information itself, and any extensions to the
metamodel.

It is possible to use an internal DTD to provide all of the declarations of XML
elements described in this chapter. However, it is advantageous to use an external
DTD, because the DTD need not be transmitted along with each XML document that
contains the metadata. An internal DTD may be used in addition to an external DTD,
for example to specify extensions to the metamodel.

The XML Namespace specification has been adopted by the W3C, allowing XMI to
use multiple metamodels at the same time. The local namespace name acts as a prefix
to all the elements declared in a DTD and avoids any name collisions so that it will not
be necessary to use fully qualified names for XMI elements.

6.2.1 XML Validation of XMI documents

XML validation can determine whether the XML elements required by this
specification are present in the XML document containing metamodel data, whether
XML attributes that are required in these XML elements have values for them, and
whether some of the values are correct.

XML validation can also perform some verification that the metamodel data conforms
to a metamodel. Although some checking can be done, it is impossible to rely solely
on XML validation to verify that the information transferred satisfies all of a
metamodel’s semantic constraints. Complete verification cannot be done through
XML validation because it is not currently possible to specify all of the semantic
constraints for a metamodel in an XML DTD, and the rules for automatic generation of
a DTD preclude the use of semantic constraints that could be encoded in a DTD
manually, but cannot be automatically encoded.

Finally, XML validation can be used to validate extensions to the metamodel, because
extensions must be represented as elements declared in either the external DTD or the
internal DTD.

6.2.2 Requirements for XMI DTDs

Each DTD used by XMI must satisfy the following requirements:

• All XML elements defined by the XMI specification must be declared in the DTD.

• Each metamodel construct (class, attribute, and association) must have a
corresponding element declaration, and may have an XML attribute declaration, as
described below. The element declaration may be defined in terms of entity
declarations, also, as described below.

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-51

6

• Any XML elements that represent extensions to the metamodel must be declared in
the external DTD or internal DTD.

It is permissible for users of XMI to generate a DTD which relaxes the multiplicities
described in Section 6.6, “Metamodel Class Specification” to enable incomplete
models to be transmitted according to this specification. See Section 6.7,
“Transmitting Incomplete Metadata” below for further details.

6.3 Basic Principles

This section discusses the basic organization of an XML DTD for XMI. Detailed
information about each of these topics is included later in this chapter.

6.3.1 Required XML Declarations

This specification requires that a number of XML element declarations be included in
DTDs that enable XML validation of metadata that conforms to this specification.
These declarations must be included in the DTD because there is no mechanism
currently available in XML to validate a document against more than one external
DTD. Some of these XML elements contain metadata about the metadata to be
transferred, for example, the identity of the metamodel associated with the metadata,
the time the metadata was generated, the tool that generated the metadata, whether the
metadata has been verified, etc.

All XML elements defined by this specification have the prefix “XMI.”. They have
this prefix to avoid name conflicts with XML elements that would be a part of a
metamodel. After XML Schemas become a W3C recommendation rather than a
working draft, it may be possible to place all of the required XML elements in a single
Schema and use the XML namespace mechanism to avoid name conflicts.

In addition to required XML element declarations, there are some attributes that must
be defined according to this specification. Every XML element that corresponds to a
metamodel class must have attributes that enable the XML element to act as a proxy
for a local or remote XML element. These attributes are used to associate an XML
element with another XML element.

Most of the XML attributes defined by this specification have the prefix "xmi.";
however, the XML attributes of XMI elements defined by this specification do not, in
general, have that prefix.

6.3.2 Metamodel Class Representation

Every metamodel class is represented in the DTD by an XML element whose name is
the class name. The element definition lists the attributes of the class; references to
association ends relating to the class; and the classes that this class contains, either
explicitly or through composition associations. In XMI 1.1, the content models of
XML elements corresponding to metamodel classes no longer impose an order on the
attributes and references.

6-52 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

Every attribute of a metamodel class is represented in the DTD by an XML element
whose name is the attribute name. In addition, attributes that have primitive or
enumeration data types are represented in the DTD by an XML attribute declaration, as
described below. The attributes are included in the content model of the XML element
corresponding to the metamodel class, in any order, as described below.

Each association (both with and without containment) between metamodel classes is
represented by two XML elements that represent the roles of the association ends. The
multiplicities of the association ends are not included in the DTD. The content model
of the XML element that represents the container class has an XML element with the
name of the role at the association end. The XML element representing the role has a
content model that allows XML elements representing the associated class and any of
its subclasses to be included.

6.3.3 Metamodel Extension Mechanism

Every XMI DTD contains a mechanism for extending a metamodel class. Any number
of XMI.extension elements are included in the content model of any class. These
extension elements have a content model of ANY, allowing considerable freedom in
the nature of the extensions. In addition, the top level XMI element may contain zero
or more XMI.extensions elements, which provides for the inclusion of any new
information. One use of the extension mechanism might be to associate display
information for a particular tool with the metamodel class represented by the XML
element. Another use might be to transmit data that represents extensions to a
metamodel.

Tools that rely on XMI are expected to store the extension information and export it
again to enable round trip engineering, even though it is unlikely they will be able to
process it further. Also, any XML elements that are put in either the XMI.extension or
XMI.extensions elements must be declared in either the internal DTD or external
DTD.

6.4 XMI DTD and Document Structure

Every XMI DTD consists of the following declarations:

• An XML version processing instruction. Example: <? XML version=”1.0” ?>

• An optional encoding declaration which specifies the character set, which follows
the ISO-10646 (also called extended Unicode) standard. Example: <? XML
version="1.0" ENCODING=”UCS-2” ?>.

• Any other valid XML processing instructions.

• The required XMI declarations specified in Section 6.5.

• Declarations for a specific metamodel.

• Declarations for differences.

• Declarations for extensions.

Every XMI document consists of the following declarations:

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-53

6

• An XML version processing instruction.

• An optional encoding declaration that specifies the character set.

• Any other valid XML processing instructions.

• An optional external DTD declaration with an optional internal DTD declaration.
Example: <! DOCTYPE XMI SYSTEM “http://www.xmi.org/xmi.dtd“ >

XMI imposes no ordering requirements beyond those defined by XML. XML
Namespaces may also be declared in the XMI element as described below.

The top element of the XMI information structure is the XMI element. An XML
document containing only XMI information will have XMI as the root element of the
document. It is possible for future XML exchange formats to be developed which
extend XMI and embed XMI elements within their XML elements.

6.5 Necessary XMI DTD Declarations

This section declares the elements and element attributes whose definitions must
appear in valid XMI DTDs.

6.5.1 Necessary XMI Attributes

Element Identification Attributes

Three XML attributes are defined by this specification to identify XML elements so
that XML elements can be associated with each other. The purpose of these attributes
is to allow XML elements to reference other XML elements using XML IDREFs,
XLinks, and XPointers.

These attributes are declared in an XML entity called XMI.element.att. Placing these
attributes in an XML entity prevents errors in the declarations of these attributes in
DTDs. Its declaration is as follows:

<!ENTITY % XMI.element.att
 ’xmi.id ID #IMPLIED
 xmi.label CDATA #IMPLIED
 xmi.uuid CDATA #IMPLIED ’ >

xmi.id

XML semantics require the values of this attribute to be unique within an XML
document; however, the value is not required to be globally unique. This attribute may
be used as the value of the xmi.idref attribute defined in the next section. It may also
be included as part of the value of the href attribute in XLinks. An example of the use
of this attribute and the other attributes in this section can be found in Section 6.8.3,
“Example from UML”.

6-54 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

xmi.label

This attribute may be used to provide a string label identifying a particular XML
element. Users may put any value in this attribute.

xmi.uuid

The purpose of this attribute is to provide a globally unique identifier for an XML
element. The values of this attribute should be globally unique strings prefixed by the
type of identifier. If you have access to the UUID assigned in MOF, you may put the
MOF UUID in the xmi.uuid XML attribute when encoding the MOF data in XMI. For
example, to include a DCE UUID as defined by The Open Group, the UUID would be
preceded by "DCE:". The values of this attribute may be used in the href attribute in
simple XLinks. XMI does not specify which UUID convention is chosen.

The form of the UUID (Universally Unique Identifier) is taken from a standard defined
by the Open Group (was Open Software Foundation). This standard is widely used,
including by Microsoft for COM (GUIDs) and by many companies for DCE, which is
based on CORBA. The method for generating these 128-bit IDs is published in the
standard and the effectiveness and uniqueness of the IDs is not in practice disputed.

When a UUID is placed in an XMI file, the form is "id namespace:uuid." The id
namespace of UUIDs is typically DCE. An example is "DCE:2fac1234-31f8-11b4-
a222-08002b34c003".

Linking Attributes

XMI requires the use of several XML attributes to enable XML elements to refer to
other XML elements using the values of the attributes defined in the previous section.
The purpose of these attributes is to allow XML elements to act as simple XLinks or to
hold a reference to an XML element in the same document using the XML IDREF
mechanism. See section 6.8 on linking.

The attributes described in this section must be included in a DTD as an XML entity.
The entity must be declared as follows:

<!ENTITY % XMI.link.att
 ’href CDATA #IMPLIED
 xmi.idref IDREF #IMPLIED’ >

The link attributes act as a union of three linking mechanisms, any one of which may
be used at one time. The mechanisms are the XLink href for advanced linking across
or within a document, or the xmi.idref for linking within a document.

Simple XLink Attributes

The href attribute declared in the above entity enable an XML element to act in a
fashion compatible with the simple XLink according to the XLink and XPointer W3C
working drafts. The declaration and use of href is defined in the XLink and XPointer
specifications. XMI enables the use of simple XLinks. XMI does not preclude the use
of extended XLinks. Since the form of extended links is undergoing further
development in the XLink specification, no recommendations for their use in XMI are

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-55

6

given at this time. Since XLink defines many additional XML attributes, some of
which may be useful in rare circumstances, it is permissable to use those additional
attributes provided that they are prefixed by the "xlink:" namespace. This decouples
XMI from a dependency on rarely used attributes in the W3C XLink working draft.

To use simple XLinks, the set href to the URL of the desired location. The href
attribute can be used to reference XML elements whose xmi.id, xmi.label or xmi.uuid
attributes are set to particular values. The xmi.id attribute value can be specified using
a special URI form for XPointers defined in the XLink and XPointer working drafts.

xmi.idref

This attribute allows an XML element to refer to another XML element within the
same document using the XML IDREF mechanism. In XMI documents, the value of
this attribute should be the value of one of the xmi.id attributes.

xmi.uuidref

This attribute is no longer used in XMI 1.1. In XMI 1.0, its use is as described in the
following paragraph.

This attribute provides a mechanism for referring to another XML element within the
same document by using a UUID specified in the xmi.uuid attribute of another XML
element. The value of this attribute should be the value of a UUID, although XML
does not enforce this restriction. [DCE]

6.5.2 Common XMI Elements

Every XMI-compliant DTD must include the declarations of the following XML
elements:

• XMI

• XMI.header

• XMI.content

• XMI.extensions

• XMI.extension

• XMI.documentation

• XMI.owner

• XMI.contact

• XMI.longDescription

• XMI.shortDescription

• XMI.exporter

• XMI.exporterVersion

• XMI.exporterID

6-56 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

• XMI.notice

• XMI.model

• XMI.metamodel

• XMI.metametamodel

• XMI.import

• XMI.difference

• XMI.delete

• XMI.add

• XMI.replace

• XMI.reference

The following declarations are required if used by the particular metamodel:

• XMI.field

• XMI.struct

• XMI.seqItem

• XMI.sequence

• XMI.arrayLen

• XMI.array

• XMI.enum

• XMI.discrim

• XMI.union

• XMI.any

6.5.3 XMI

The top level XML element for each XMI document is the XMI element. Its
declaration is:

<!ELEMENT XMI (XMI.header?,
 XMI.content?,
 XMI.difference*,
 XMI.extensions*) >

<!ATTLIST XMI
 xmi.version CDATA #FIXED "1.1"
 timestamp CDATA #IMPLIED
 verified (true | false) #IMPLIED
>

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-57

6

The xmi.version attribute is required to be set to “1.1”. This indicates that the
metadata conforms to this version of the XMI specification. Revised versions of this
standard will have another number associated with them, but there is no guarantee that
any particular numbering scheme will be used. The timestamp indicates the date and
time that the metadata was written. The verified attribute indicates whether the
metadata has been verified. If it is set to “true”, verification of the model was
performed by the document creator at the full semantic level of the metamodel. In that
case, XML validation should find errors only in encoding or transmission.

The format for timestamps is not defined in this submission.

In addition to the fixed XMI element’s attributes, the namespaces used within XMI
may be declared, either in an internal or external DTD. Each namespace "n" used in
the XMI element is declared as follows:

<!ATTLIST XMI xmlns:n #CDATA IMPLIED>

The generated DTDs following the production rules will provide this attribute for the
generated metamodel. When combining multiple metamodels and also using DTDs,
the DTDs should be concatenated (with the fixed declarations included only once) and
the ATTLIST declarations for all of the DTDs used.

6.5.4 XMI.header

The XMI.header element contains XML elements which identify the model,
metamodel, and metametamodel for the metadata, as well as an optional XML element
which contains various information about the metadata being transferred. This XML
element is now optional in XMI 1.1. The declaration is:

<!ELEMENT XMI.header (XMI.documentation?,
 XMI.model*,
 XMI.metamodel*,
 XMI.metametamodel*,
 XMI.import*) >

6.5.5 XMI.content

The XMI.content XML element contains the actual metadata being transferred. It may
represent model information or metamodel information. Its declaration is:

<!ELEMENT XMI.content ANY >

6.5.6 XMI.extensions

The XMI.extensions element contains XML elements which contain metadata that is
an extension of the metamodel. This information might include presentation
information associated with the metadata, for example. Its declaration is:

<!ELEMENT XMI.extensions ANY >

6-58 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

<!ATTLIST XMI.extensions
 xmi.extender CDATA #REQUIRED
>

The xmi.extender attribute should indicate which tool made the extension. It is
provided so that tools may ignore the extensions made by other tools before the
content of the XMI.extensions element is processed.

6.5.7 XMI.extension

The XMI.extension element contains XML elements which also contain metadata that
is an extension of the metamodel. This element can be directly included in XML
elements in the content section of an XMI document to associate the extension
metadata with a particular XML element. Its declaration is:

<!ELEMENT XMI.extension ANY >
<!ATTLIST XMI.extension
 %XMI.element.att;
 %XMI.link.att;
 xmi.extender CDATA #REQUIRED
 xmi.extenderID CDATA #IMPLIED
>

The xmi.extender attribute should indicate which tool made the extension. It is
provided so that tools may ignore the extensions made by other tools before the
content of the XMI.extensions element is processed. The xmi.extenderID is an
optional internal ID from the extending tool. The other attributes allow individual
extensions to be identified and to act as proxies for local or remote extensions.

6.5.8 XMI.documentation

This XML element contains information about the metadata being transmitted, for
instance the owner of the metadata, a contact person for the metadata, long and short
descriptions of the metadata, the exporter tool which created the metadata, the version
of the tool, and copyright or other legal notices regarding the metadata. In addition,
other information can be included as text within this element, since its content model
is mixed. The declaration is:

<!ELEMENT XMI.documentation (#PCDATA |
 XMI.owner | XMI.contact |
 XMI.longDescription |
 XMI.shortDescription | XMI.exporter |
 XMI.exporterVersion | XMI.notice)* >

<!ELEMENT XMI.owner ANY >
<!ELEMENT XMI.contact ANY >
<!ELEMENT XMI.longDescription ANY >
<!ELEMENT XMI.shortDescription ANY >
<!ELEMENT XMI.exporter ANY >
<!ELEMENT XMI.exporterVersion ANY >

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-59

6

<!ELEMENT XMI.exporterID ANY >
<!ELEMENT XMI.notice ANY >

6.5.9 XMI.model

This XML element identifies the model to which the instance data being transferred
conforms. There may be multiple models, if the model to which the instance data
being transferred conforms to more than one model. This element is expected to
become a simple XLink when it becomes a recommendation of the W3C. Its
declaration is:

<!ELEMENT XMI.model ANY>
<!ATTLIST XMI.model
 %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #REQUIRED
>

The xmi.name and xmi.version attributes are the name and version of the model
described in the enclosed XMI.content, respectively. The href attribute may contain a
physical URI that contains model data. Since the content is ANY, additional
documentation is possible.

6.5.10 XMI.metamodel

This XML element identifies the metamodel to which the model data that is transferred
conforms. There may be multiple metamodels, if the model data that is transferred
conforms to more than one metamodel. Including this element enables tools to
perform more verification of the metadata to the metamodel than is possible to perform
by XML validation. This element is expected to become a simple XLink when it
becomes a recommendation of the W3C. Its declaration is:

<!ELEMENT XMI.metamodel ANY>
<!ATTLIST XMI.metamodel
 %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #REQUIRED
>

The xmi.name and xmi.version attributes are the name and version of the metamodel,
respectively. The href attribute may contain a physical URI that contains metamodel
data. Since the content is ANY, additional documentation is possible.

6.5.11 XMI.metametamodel

This XML element identifies the metametamodel to which the metadata that is
transferred conforms. This element will often refer to the MOF version that was used.
Including this element enables tools to perform more verification of the metadata to the
metamodel than is possible to perform by XML validation. This element is expected

6-60 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

to become a simple XLink when it becomes a recommendation of the W3C. Its
declaration is:

<!ELEMENT XMI.metametamodel ANY>
<!ATTLIST XMI.metametamodel
 %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #REQUIRED
>

The xmi.name and xmi.version attributes are the name and version of the
metametamodel, respectively. The href attribute may contain a physical URI that
contains metamodel data. Since the content is ANY, additional documentation is
possible.

6.5.12 XMI.import

This XML element identifies additional documents that are needed to process the
current document; it points to other documents that define metadata that defines the
metadata in the document in which it appears. Its declaration is:

<!ELEMENT XMI.import ANY>
<!ATTLIST XMI.import
 %XMI.link.att;
 xmi.name CDATA #REQUIRED
 xmi.version CDATA #REQUIRED
>

The xmi.name and xmi.version attributes are the name and version of the imported
model, respectively. The href attribute may contain a physical URI that contains
model data. Since the content is ANY, additional documentation is possible.

6.5.13 XMI.difference

This XML element holds XML elements representing differences to base data. Users
may use it within the content part of an XMI file or in a separate XMI.difference
section. The attributes in this element allow references to be made to other elements
using XLinks, XPointers, or IDREFs. Its declaration is:

<!ELEMENT XMI.difference (XMI.difference | XMI.add | XMI.delete |
 XMI.replace)* >
<!ATTLIST XMI.difference
 %XMI.element.att;
 %XMI.link.att;
>

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-61

6

6.5.14 XMI.delete

This XML element represents a deletion to base metadata. It must be within an
XMI.difference XML element. The attributes in this element allow references to be
made to other elements using XLinks, XPointers, or XML IDREFs. Its declaration is:

<!ELEMENT XMI.delete EMPTY >
<!ATTLIST XMI.delete
 %XMI.element.att;
 %XMI.link.att;
>

6.5.15 XMI.add

This XML element represents an addition to base metadata. It must be within an
XMI.difference XML element. The attributes in this element allow references to be
made to other elements using XLinks, XPointers, or XML IDREFs. Its declaration is:

<!ELEMENT XMI.add ANY >
<!ATTLIST XMI.add
 %XMI.element.att;
 %XMI.link.att;
 xmi.position CDATA "-1"
>

The xmi.position attribute indicates where to place the addition relative to other XML
elements.

6.5.16 XMI.replace

This XML element represents a replacement of base metadata with other metadata. It
must be within an XMI.difference XML element. The attributes in this element allow
references to be made to other elements using XLinks, XPointers, or XML IDREFs.
Its declaration is:

<!ELEMENT XMI.replace ANY >
<!ATTLIST XMI.replace
 %XMI.element.att;
 %XMI.link.att;
 xmi.position CDATA "-1"
>

The xmi.position attribute indicates where to place the contents of the replacement
element relative to other XML elements.

6.5.17 XMI.reference

This XML element allows references to other XML elements within an attribute of
type string or an XMI.any element, which represents a data type that is not defined in

6-62 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

the metamodel. It should be used within an XMI.any element or in attributes to
specify a remote value. Its declaration is:

<!ELEMENT XMI.reference ANY >
<!ATTLIST XMI.reference %XMI.link.att; >

For information on how to use the link attributes, see the ‘‘Linking’’ section below.

6.5.18 XMI Datatype Elements

In XMI 1.1, the use of fixed data type elements in DTDs is only required when used by
the particular metamodel. There are two options: Use fixed IDL datatypes (the "fixed"
approach), or to have the data type elements generated from a user metamodel or a
standard IDL metamodel and treated like any other metamodel classes (the "complete"
approach).

These are the guidelines for which approach (fixed or complete) to use for your
metamodel. Note that these guidelines are for metamodel designers on how to shape
their metamodel for maximum benefit in XMI. XMI will take any compliant
metamodel as input and generate the appropriate DTD.

Fixed:

• Users specify their metamodels directly in terms of IDL datatypes and use the fixed
XMI data type elements.

• Most useful for specifying metamodels and metametamodels (levels M2 and M3).

• Best approach when using advanced IDL types such as typecodes and Anys.

Complete:

• Users include all the datatypes used to describe their metamodel in their metamodel.
These datatypes should be instances and/or subclases of MOF datatype as
appropriate.

• Most useful for specifying models and instances (levels M1 and M0).

• As an example, in UML (level M2), the datatypes in the metamodel include String,
Integer, and Boolean. These datatypes are used to specify UML models (level M1).
Instances of the UML models (level M0), often programs written in Java and C++,
have their own datatypes which are not specified in the UML metamodel.

• To use most IDL types, the Corba Components Metamodel Base IDL package is
suggested.

• The conversion between user datatypes and strings in XMI files requires an
additional level of understanding those datatypes outside XMI.

Metamodelers should pay close attention to the evolution of MOF and UML physical
metamodeling and datatype independence planned by the UML RTF and MOF RTF

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-63

6

and in the mean time follow the simplest approach that they feel comfortable with.
The XMI RTF will track changes made by these groups.

The declarations of the fixed XMI DTD datatype elements are as follows:

<!ELEMENT XMI.TypeDefinitions ANY >

<!ELEMENT XMI.field ANY >

<!ELEMENT XMI.seqItem ANY >

<!ELEMENT XMI.octetStream (#PCDATA) >

<!ELEMENT XMI.unionDiscrim ANY >

<!ELEMENT XMI.enum EMPTY >
<!ATTLIST XMI.enum
 xmi.value CDATA #REQUIRED
>

<!ELEMENT XMI.any ANY >
<!ATTLIST XMI.any
 %XMI.link.att;
 xmi.type CDATA #IMPLIED
 xmi.name CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTypeCode (XMI.CorbaTcAlias | XMI.CorbaTcStruct |
 XMI.CorbaTcSequence | XMI.CorbaTcArray |
 XMI.CorbaTcEnum | XMI.CorbaTcUnion |
 XMI.CorbaTcExcept | XMI.CorbaTcString |
 XMI.CorbaTcWstring | XMI.CorbaTcShort |
 XMI.CorbaTcLong | XMI.CorbaTcUshort |
 XMI.CorbaTcUlong | XMI.CorbaTcFloat |
 XMI.CorbaTcDouble | XMI.CorbaTcBoolean |
 XMI.CorbaTcChar | XMI.CorbaTcWchar |
 XMI.CorbaTcOctet | XMI.CorbaTcAny |
 XMI.CorbaTcTypeCode | XMI.CorbaTcPrincipal |
 XMI.CorbaTcNull | XMI.CorbaTcVoid |
 XMI.CorbaTcLongLong |
 XMI.CorbaTcLongDouble) >
<!ATTLIST XMI.CorbaTypeCode
 %XMI.element.att;
>

<!ELEMENT XMI.CorbaTcAlias (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcAlias
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED

6-64 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

>

<!ELEMENT XMI.CorbaTcStruct (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcStruct
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcField (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcField
 xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcSequence (XMI.CorbaTypeCode |
 XMI.CorbaRecursiveType) >
<!ATTLIST XMI.CorbaTcSequence
 xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaRecursiveType EMPTY >
<!ATTLIST XMI.CorbaRecursiveType
 xmi.offset CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcArray (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcArray
 xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcObjRef EMPTY >
<!ATTLIST XMI.CorbaTcObjRef
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcEnum (XMI.CorbaTcEnumLabel) >
<!ATTLIST XMI.CorbaTcEnum
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcEnumLabel EMPTY >
<!ATTLIST XMI.CorbaTcEnumLabel
 xmi.tcName CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcUnionMbr (XMI.CorbaTypeCode, XMI.any) >
<!ATTLIST XMI.CorbaTcUnionMbr
 xmi.tcName CDATA #REQUIRED

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-65

6

>

<!ELEMENT XMI.CorbaTcUnion (XMI.CorbaTypeCode, XMI.CorbaTcUnionMbr*)
>
<!ATTLIST XMI.CorbaTcUnion
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcExcept (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcExcept
 xmi.tcName CDATA #REQUIRED
 xmi.tcId CDATA #IMPLIED
>

<!ELEMENT XMI.CorbaTcString EMPTY >
<!ATTLIST XMI.CorbaTcString
 xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcWstring EMPTY >
<!ATTLIST XMI.CorbaTcWstring
 xmi.tcLength CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcFixed EMPTY >
<!ATTLIST XMI.CorbaTcFixed
 xmi.tcDigits CDATA #REQUIRED
 xmi.tcScale CDATA #REQUIRED
>

<!ELEMENT XMI.CorbaTcShort EMPTY >

<!ELEMENT XMI.CorbaTcLong EMPTY >

<!ELEMENT XMI.CorbaTcUshort EMPTY >

<!ELEMENT XMI.CorbaTcUlong EMPTY >

<!ELEMENT XMI.CorbaTcFloat EMPTY >

<!ELEMENT XMI.CorbaTcDouble EMPTY >

<!ELEMENT XMI.CorbaTcBoolean EMPTY >

<!ELEMENT XMI.CorbaTcChar EMPTY >

<!ELEMENT XMI.CorbaTcWchar EMPTY >

6-66 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

<!ELEMENT XMI.CorbaTcOctet EMPTY >

<!ELEMENT XMI.CorbaTcAny EMPTY >

<!ELEMENT XMI.CorbaTcTypeCode EMPTY >

<!ELEMENT XMI.CorbaTcPrincipal EMPTY >

<!ELEMENT XMI.CorbaTcNull EMPTY >

<!ELEMENT XMI.CorbaTcVoid EMPTY >

<!ELEMENT XMI.CorbaTcLongLong EMPTY >

<!ELEMENT XMI.CorbaTcLongDouble EMPTY >

For more information about these datatypes, refer to the CORBA specification.

6.6 Metamodel Class Specification

This section describes in detail how to represent information about metamodel classes
in a XMI compliant DTD. It uses the rules for generating a Hierarchical Entity DTD
(Rule Set 3) as described in the “XML DTD Production” chapter to describe the
manner in which attributes, associations, and containment relationships are represented
in an XML DTD, and how inheritance between metamodel classes is handled. It uses
a short example to explain the encoding.

The Hierarchical Entity DTD generation rules use the XML entity substitution
technique extensively. The declaration of entities for commonly used information
reduces the repetition of declarations used in multiple areas. They provide a single
declaration point of frequently used information and allow regular formats for
expressing copy-down inheritance in element declarations. Note that entities have no
effect on the final form of the generated XML since they are always completely
expanded by XML processors.

6.6.1 Namespace Qualified XML Element Names

In XMI 1.0, the use of fully qualified names was mandatory, since the W3C
Namespace recommendation was not finalized by the time XMI 1.0 was written. Now
that Namespaces are an official recommendation, it is no longer necessary to use fully
qualified names; however, there was no provision in the Namespace recommendation
for using XML Namespaces in conjunction with XML validation. To allow XML
validation to occur, if desired, the use of Namespaces with XMI 1.1 documents is
restricted; it is anticipated that these restrictions will be lifted when XML Schemas
become an official recommendation.

When the official DTD for a metamodel is produced, the DTD generator may choose a
namespace name that all documents to be validated with the DTD must use. That

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-67

6

namespace name followed by ":" becomes the prefix for each tag name declared in an
XMI DTD that corresponds to the metamodel.

The XML element name for each metamodel class, package, and association is it’s
short name prefixed by the namespace. The name for tags corresponding to
metamodel attributes and references is the XML element name of the class, followed
by ".", followed by the name of the attribute or reference. The name of XML
attributes corresponding to metamodel references and metamodel attributes is the name
of the reference or attribute, since each tag in XML has its own namespace. An
example of namespaces is given in Appendix C.

The responsibility of ensuring uniqueness of names for DTD generation belongs to the
metamodel owner. In the event of duplicate names, the preferred resolution is to place
the duplcates in a different document and assign a second namespace. Alternatively,
an additional namespace is assigned to the document package containing the
duplicates.

Each namespace is assigned a logical and a physical URI. The logical URI is placed
in the namespace declaration of the XMI element in XML documents that contain
instances of the metamodel and the physical URI is placed in the XMI.metamodel tag.
The XML namespace specification assigns logical names to namespaces which are
expected to remain fixed throughout the life of all uses of the namespace since it
provides a permanent global name for the resource. An example is
"org.omg/standards/UML". There is no requirement or expectation by the XML
Namespace specification that the logical URI be resolved or dereferenced during
processing of XML documents. The physical URI is the mechanism for resolving
where the actual document may be found. The physical URI could be local, as in
"UML13.xml" or remote as in "ftp://server.omg.org/resources/xmi/UML13.xml". The
namespace name links the logical URI declared in the XMI element with the physical
URI in the XMI.metamodel element.

The following is an example of a UML model in an XMI document using namespaces.
<XMI xmi.version="1.1" xmlns:UML="org.omg/standards/UML">

<XMI.header>
<XMI.metamodel name="UML" version="1.3" href="UML.xml"/>
<XMI.model name="example" version="1" href="example.xml"/>

</XMI.header>
<XMI.content>

<UML:Class name="C1">
<UML:Classifier.feature>

<UML:Attribute name="a1" visibility="private"/>
</UML:Classifier.feature>

 </UML:Class>
</XMI.content>

</XMI>

The model has a single class named C1 that contains a single attribute named a1 with
visibility private. The XMI element declares the version of XMI and the namespace
for UML with the logical URI. The XMI.metamodel has the same name "UML" and

6-68 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

an href to the physical location where the UML.xml file is located. The model name
is "example". The XMI.content contains the model, using the new XML attibutes.

6.6.2 Metamodel Multiplicities

In XMI 1.0 a mapping was defined between the multiplicities in a metamodel and
XML multiplicities. To enforce the multiplicities, it was necessary to define an order
to XML elements corresponding to attributes, and association ends in a metamodel,
due to a limitation of XML 1.0. The order that was specified is not necessary for
exchanging data, and makes all XMI document writers conform to the order for the
documents they produce to validate.

The XMI RTF has concluded that it is better to give document producers flexibility in
the order that XML elements appear than to enforce the multiplicity. Therefore, in
XMI 1.1, the multiplicities from the metamodel are ignored when generating a DTD,
except for the declaration of XML attributes corresponding to metamodel associations,
as described below.

6.6.3 Class specification

Every metamodel class is decomposed into three parts: properties, associations, and
compositions. Three entities are declared for every metamodel class, whose prefix is
the name of the class and whose suffix is “Properties”, “Associations”, and
“Compositions”. The properties entity contains a list of the XML elements which
correspond to metamodel attributes. The associations entity contains the XML
elements representing roles of association ends. The compositions entity contains the
XML elements which represent the role of associations that are aggregations.

The representation of a metamodel class named “c” is shown below for the simplest
case where “c” does not have any attributes, associations, or containment relationships:

<!ENTITY % cProperties ‘’>
<!ENTITY % cAssociations ‘’>
<!ENTITY % cCompositions ‘’>

<!ELEMENT c (XMI.extension)* >
<!ATTLIST c

%XMI.element.att;
%XMI.link.att;

>

In the case where “c” has attributes, associations, and containment relationships for a
metamodel class, the declaration is as follows:

<!ENTITY % cProperties ‘propertiesForC’ >
<!ENTITY % cAssociations ‘associationsForC’>
<!ENTITY % cCompositions ‘| XMI.extension | compositionsForC’>

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-69

6

<!ELEMENT c (%cProperties | %cAssociations | %cCompositions)* >
<!ATTLIST c

%XMI.element.att;
%XMI.link.att;

>

Only the entities that are not empty are included in the content model of element “c” to
maintain valid XML syntax.

6.6.4 Inheritance Specification

XML does not currently have a built-in mechanism to represent inheritance. In its
place, XMI specifies that inheritance will be copy-down inheritance. Inheritance is
represented by using the required properties and compositions entities for each class.
For properties and compositions, copy-down inheritance is required. For associations
(AssociationEnds with references), the actual class referenced is used, and subclasses
may be used on the other end of the reference.

For example, if a class “c1” has a direct superclass “c0” in the metamodel, then the
declaration of the required entities for class “c1” is as follows:

<!ENTITY % c1Properties ‘%c0Properties ; properties for c1, if any...’>

<!ENTITY % c1Associations ‘%c0Associations; associations for c1, if any...’ >

<!ENTITY % c1Compositions ‘%c0Compositions; compositions for c1, if any...’ >

Should there be a class, c2, derived from c1, then the entity declarations for c2 would
be:

<!ENTITY % c2Properties ‘%c1Properties; properties for c2, if any...’>

<!ENTITY % c2Associations ‘%c1Associations; associations for c2, if any...’ >

<!ENTITY % c2Compositions ‘%c1Compositions; compositions for c2, if any...’ >

And so on down an inheritance hierarchy.

In this manner, the properties and compositions are copied directly from each
superclass via the substitution capability of entities. Since XML requires entities to be
declared in a DTD before being used, this method of representing inheritance requires
that the entities of superclasses in a metamodel precede the declarations of entities and
elements of their subclasses.

Multiple inheritance is treated in such a way that the properties and compositions of
classes that occur more than once in the inheritance hierarchy are only included once
in their subclasses. For details on how this may be accomplished, please see the DTD
production rules. For associations (AssociationEnds with references), the actual class
referenced is used, and subclasses may be used on the other end of the reference.

6-70 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

6.6.5 Attribute Specification

The representation of attributes of metamodel class “c” uses XML elements and XML
attributes. If the metamodel attribute types are primitives or enumerations, XML
elements are declared for them as well as XML attributes. The reasons for this
encoding choice are several, including: the values to be exchanged may be very large
values and unsuitable for XML attributes, and may have poor control of whitespace
processing with options which apply only to element contents.

The declaration of each attribute named “a” with a non-enumerated type is as follows:

<!ELEMENT c.a (type specification) >

The type specification for an element may come from the metamodel or be defined
outside the metamodel. In the former case the type specification is the name of the
type; in the latter case it is considered to be a string type. If the data is a string type,
then its type is mixed, and the specification must take the form:

<!ELEMENT c.a (#PCDATA| XMI.reference)* >

For attributes whose types are string types, an XML attribute must also be declared in
the attribute list of the XML element corresponding to metamodel class "c"; the
declaration of the XML attribute is as follows:

a CDATA #IMPLIED

An element is also declared to be of XML type string if the class contains a Tag
XMIDataType with Value "string".

When “a” is an attribute with enumerated values or Boolean values, a modified
declaration is used to allow an XML processor to validate that the value of the attribute
is one of the legal values of the enumeration. Attributes of this type are declared as
follows:

<!ELEMENT a EMPTY >
<!ATTLIST c.a xmi.value (enum1 | enum2 | …) #REQUIRED >

where enum1, enum2, … are replaced with an entry for each member of the
enumeration set. An attribute whose type is boolean or an enumeration must also have
an XML attribute declared in the XML element corresponding to metamodel class "c",
as follows:

a (enum1 | enum2 | ...) #IMPLIED

For example, if a class is named “c” with attributes “a1” and “a2”, where “a1” is a
string type and “a2” is Boolean, the attributes are represented as follows:

<!ELEMENT a1 (#PCDATA | XMI.reference) *>

<!ELEMENT a2 EMPTY >
<!ATTLIST a2 xmi.value (true | false) #REQUIRED >

<!ENTITY % cProperties ‘a1 | a2’ >

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-71

6

An element is also declared to be of XML type enumeration if the class contains a Tag
XMIDataType with Value "enum". The set of allowed enumerated values are given in
the Tag XMIEnumSet where the Values are delimited by spaces.

In some MOF models, enumerations have a prefix substring that should be removed
before placing the enumeration literals in the DTD. The Tag
"org.omg.xmi.enumerationUnprefix" indicates the substring that should be stripped
from the beginning of the enumeration literal when the literal begins with that prefix.

Default values for property and enumeration attributes may be specified in DTDs using
the Tag "org.omg.xmi.defaultValue" attached to the attribute. The default value should
be the XML string representation to be placed in the DTD. Default values for
attributes should be specified in DTDs with care since XML allows the processor
reading the document the option of not processing a DTD as an optional optimization.
When tools skip processing the DTD, they do not obtain the default value of XML
attributes. Instead, they would have to know the defulat value from understanding the
metamodel. The form for specifying defaults, where "d" is the default, is:

For property model attributes as XML attributes:

a CDATA #IMPLIED d

For enumerated model attributes as XML attributes:

a (enum1 | enum2 | ...) #IMPLIED d

For enumerated model attributes as XML elements:

<!ELEMENT a EMPTY >
<!ATTLIST c.a xmi.value (enum1 | enum2 | …) #REQUIRED d >

Note: When reading documents with XML elements specifying model attribute values,
be sure to use the value in the XML element rather than the default value from the
unused XML attribute.

The multiplicities of metamodel attributes are not used in XMI 1.1 DTDs, so that the
ordering of XML elements in XMI documents is not fixed.

6.6.6 Association Specification

Each association role is represented in an XML entity, an XML element, and an XML
attribute. The multiplicity of the role is not used to create the declarations in XMI 1.1.
The representation of an association role named “r” for a metamodel class “c” is:

<!ENTITY % cAssociations ‘r’ >
<!ELEMENT r (content)* >

An XML attribute would be declared in the attribute list for the XML element
corresponding to class c; the attribute declaration appears as follows:

r IDREFS #IMPLIED

6-72 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

The content is defined so that XML elements representing the classifier attached to the
referenced associationEnd and any of its concrete subclasses may be included in XML
element “r”. For example, if class c1 is the classifier attached to the association end r,
and it has three subclasses, c2, c3, and c4, and c3 is abstract, the XML element r would
be declared as follows:

<!ELEMENT r (c1 | c2 | c3 | c4)* >

The XML attribute r would be declared as follows:

r IDREFS #IMPLIED

The multiplicity in the XML element declaration is always "*" in XMI 1.1, rather than
a mapping from the metamodel multiplicity to XML, as in XMI 1.0.

6.6.7 Containment Specification

Each association end that represents containment is also represented by an XML entity
and an XML element. The content model of the XML element representing the
association end is the XML element corresponding to the class, and the XML elements
corresponding to each of the subclasses of the class. If a class “c” is at the container
end of an association link representing composition, and the other association end has
role “r” for a class “c1” with concrete subclass “c2”, the representation in an XML
DTD is as follows:

<!ELEMENT r (c1 | c2)* >

<!ENTITY % cCompositions ‘XMI.extension | r’ >

Note that the multiplicity is no longer used in the declarations in XMI 1.1.

6.7 Transmitting Incomplete Metadata

In XMI 1.1, multiplicities specified in the metamodel are no longer used when creating
DTDs, so all DTDs support the interchange of model fragments. A DTD generator
does not need to decide whether the DTD will support model fragments.Interchange of
model fragments

6.7.1 Interchange of model fragments

In practice, most information is related. The ability to transfer a subset of known
information is essential for practical information interchange. In addition, as
information models are developed, they will frequently need to be interchanged before
they are complete.

The following guidelines apply for interchanging incomplete models via XMI:

• Information may be missing from a model. The transmission format should not
require the addition or invention of new information.

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-73

6

• Model fragments may be disjoint sets. Each set may be transmitted in the same
XMI file at the XMI.content level or in different XMI files.

• "Incomplete" indicates a quantity of information less than or equal to "complete."
Additional information beyond that which the metamodel prescribes may be
transmitted only via the extension mechanism.

• Semantic verification is performed on the metadata that is actually present just as if
it was included in complete metadata.

6.7.2 XMI encoding

If you follow the rules for producing XMI 1.1 DTDs as described in the previous
sections, you do not need to do anything else to enable the interchange of model
fragments.

6.7.3 Example

The following is an example of a UML model:

<UML:Model name="model1" xmi.id="id1">
<UML:ModelElement.ownedElement>

<UML:Class name="class1" xmi.id="id2">
<UML:Classifier.feature>

<UML:Attribute name="attribute1" type="idInteger"/>
</UML:Classifier.feature>

</UML:Class>
</UML:ModelElement.ownedElement>

</UML:Model>

6.8 Linking

The goal is to provide a mechanism for specifying references within and across
documents. Although based on the upcoming XLinks standard, it is downwards
compatible and does not require XLinks as a prerequisite.

6.8.1 Design principles:

• Links are based on XLinks to navigate to the document (which may be the current
document) and XPointers to navigate to the element within the document.

• Links take the same form if the target is within the current or an external document.

• Link definitions are encapsulated in the entity XMI.link.att defined in Section 6.5.1.

• Elements act as a union, where they are either a definition or a proxy. Proxies use
the XMI.link.att to define the link, and contain no nested elements.

• XMI.link.att supports external links through the XLink attributes, and internal links
through the xmi.id and xmi.uuid attributes.

6-74 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

• Links are always to elements of the same type or subclasses of that type.
Restricting proxies to reference the same element type reduces complexity,
enhances reliability and type safety, and promotes caching. In XMI 1.1, subclasses
are also allowed, to permit more flexibility in combining models and metamodels.

• When acting as a proxy, XML attributes may be defined, but not contents. The
XML attributes act as a cache which gives an indication if the link should be
followed.

• Proxies may be chained.

• When following the link from a proxy, the definition of the proxy is replaced by the
referenced element.

• It is efficient practice for maximizing caching and encapsulation to use local
proxies of the same element within a document to link to a single proxy that holds
an external reference.

• Association role elements typically contain proxies which link to the definitions of
the classes that participate in the association.

6.8.2 Linking

XLinks

When specifying a XLink, the “href” attribute may be used to specify an optional URI
and XPointer that identify an XML element in another XML document. The href
attribute must contain a locator for the model construct referred to. This model
construct should be of the form URI "|" NAME, where URI locates the file that
contains the model construct, and NAME is the value of the ID attribute of the
referenced model construct. If the URI is not given, then NAME must be the value of
an ID attribute in the current file. NAME is a shorthand for XPointer id(NAME). In
elementary use, href could refer to another element id in the same XML file using
href="|id".

When navigating into an XML document using an XPointer, the
href="XLink|XPointer" form for locating an element by xmi.id is: XLink + "|" + id.
For example, href="mydoc.xml|xxxx-yyyy..." The form for locating an element by
xml.label is: XLink + "|descendent(1,type,attribute,value)" where type is the expected
element type or "#element" for any type, attribute is the name of the attribute, and
value is the name of the attribute. For example,
href="|descendent(1,#element,xmi.label,class1)" . XLink specifies the document to
search and is the empty string when using the current document.

IDrefs

The xmi.idref attribute may be used to specify the XML ID of an XML document
within the current XML document. Every construct that can be referred to has a local
XML ID, a string that is locally unique within a single XML file. The XPointer part
of a Reference uses the ID to find the construct. The XPointer specification also has
relative addressing capabilities within a document that may be used. The choice of

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-75

6

absolute ID-based addressing or relative addressing is made by the document creator
on a per-reference basis.

UUIDrefs

As indicated previously, UUIDrefs are no longer used in XMI 1.1. The following
description is how UUIDrefs were used in XMI 1.0:

The xmi.uuidref attribute is used for linking using absolute object identity. The UUID
specified should correspond to the value of a xmi.uuid within the same document.
Although there is no built-in support for UUIDs in XML at this time, it is envisioned
that this support will be added in the near future. Linking by uuid results in the same
action as the XPointer "|descendant(1,#element,xmi.uuid,DCE:abcd-efgh)".

In XML there is currently no mechanism to enforce that the actual type of the XML
element referred to is the desired one. Some tools might issue a warning if the type
does not match the type of model construct actually referred to. This caching of
expected information could be extended with other expected information attributes.

6.8.3 Example from UML

There is an association between ModelElements and Constraints in UML. Operations
are a subclass of ModelElements. This example shows an association between
Operations and four Constraints with roles constraint and constrainedElement.
Qualified names have been suppressed for clarity. Each of the methods of linking is
shown. The Constraints are shown in both definition and proxy form.

Document 1:
<Operation xmi.id="idO1" xmi.label="op1" xmi.uuid="DCE:1234">

<constraint>
<Constraint xmi.id="idC1" xmi.label="co1" xmi.uuid="DCE:abcd">

<body>First Constraint definition</body>
<constrainedElement>

<Operation xmi.idref="idO1" />
</constrainedElement>

</Constraint>
<Constraint xmi.idref="idC2" />
<Constraint xmi.idref="idC3" />
<Constraint href="doc2.xml|idC4" />

</constraint>
</Operation>
<Constraint xmi.id="idC2" xmi.label="co2" xmi.uuid="DCE:efgh">

<body>Second Constraint definition</body>
<constrainedElement>

<Operation xmi.idref="idO1" />
</constrainedElement>

</Constraint>
<Constraint xmi.id="idC3" xmi.label="co3" xmi.uuid="DCE:ijkl">

<body>Third Constraint definition</body>

6-76 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

<constrainedElement>
<Operation href="|descendent(1,Operation,xmi.label,op1)"/>

</constrainedElement>
</Constraint>

Document 2:
<Constraint xmi.id="idC4" xmi.label="co4" xmi.uuid="DCE:mnop">

<body>Fourth Constraint definition</body>
<constrainedElement>

<Operation href="doc1.xml|idO1"/>
</constrainedElement>

</Constraint>

The first constraint is a definition. The <constrainedElement> role contains an
Operation proxy which has a local reference to the initial Operation definition using
xmi.idref. The second constraint is a proxy referencing a constraint definition using
the xmi.idref of "idC2." The third constraint is a proxy reference to the definition
using xmi.idref to the constraint "idC3". The fourth constraint is an XLink and
XPointer reference proxy to the definition of the constraint using the href to the file
doc2.xml with id "idC4".

Following the definition of the operation and its 3 constraint proxies are the definitions
of two of the constraints. The second document contains the third constraint
definition.

The use and placement of references is freely determined by the document creator. It
is likely that most documents will make internal and external references for a number
of reasons: to minimize the amount of duplicate declarations, to compartmentalize the
size of the document streams, or to refer to useful information outside the scope of
transmission. For example, the href of an XLink could contain a query to a repository
which will recall additional related information. Or there may be a set of XMI
documents created, one file per package to be transferred, where there are relationships
between the packages.

6.8.4 XMI.reference

Any type of content can be allowed for the Reference XML element. This allows the
receiver of the XML document to add additional processing to the content. For
example, the content could be empty, contain an SQL query into a repository, a phone
number, or a human readable version of the target’s name (useful in web browsers or
any other convention desired.

XMI.reference can be used for values by pointing to large resources such as bitmaps
outside of XML.

6.9 Transmitting Metadata Differences

The goal is to provide a mechanism for specifying the differences between documents
so that an entire document does not need to be transmitted each time. This design does

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-77

6

not specify an algorithm for computing the differences, just a form for transmitting
them.

Up to now we have seen how to transmit a complete or full model. This way of
working may not be adequate for all environments. More precisely, we could mention
environments where there are many model changes that must be transmitted very
quickly to other users. For these environments the full model transmission can be very
resource consuming (time, network traffic, ...) making it very difficult or even not
viable for finding solutions for cooperative work.

The most viable way to solve this problem is to transmit only the model changes that
occur. In this way different instances of a model can be maintained and synchronized
more easily and economically. Concurrent work of a group of users becomes possible
with a simple mechanism to synchronize models. Transmitting less information allows
synchronizing models more efficiently.

6.9.1 Definitions:

The idea is to transmit only the changes made to the model (differences between new
and old model) together with the necessary information to be able to apply the changes
to the old model.

A. New - Old = Difference

Model differencing is the comparison of two models and identifying the differences
between them in a reversible fashion. The difference is expressed in terms of changes
made to the old document to arrive at the new document.

B. New = Old + Difference

Model merging is the ability to combine difference information plus a common
reference model to construct the appropriate new model.

6.9.2 Differences

Differences must be applied in the order defined. A later difference may refer to
information added by a previous difference by linking to its contents. Model integrity
requires that all the differences transmitted are applied. The following are the types of
differences recognized, the information transmitted, and the changes they represent:

• Delete (reference to deleted element): The delete operation refers to a particular
element of the old model and specifies a deep removal of the referenced element
and all of its contents.

• Add (reference to containing element, new element, optional position): The add
operation refers to a particular element of the old model and specifies a deep
addition. The element and its contents are added. The contents of the new element
are added at the optional position specified, the default being as the last element of

6-78 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

the contents. The optional position form is based on XPointer’s position form. 1
means the first position, -1 means the last position, and higher numbers count
across the contents in the specified direction.

• Replace (reference to replaced element, replacement element, optional position):
This operation deletes the old element but not its contents. The new element and
its contents are added at the position of the old element. The original contents of the
old element are then added to the contents of the new element at the optional
position specified, the default being at the end.

6.9.3 XMI encoding

The following are the elements used to encode the differences:

XMI.difference

The XMI.difference element is contained by the XMI.content section of the XMI
document. There may be 0 or more XMI.difference elements and each XMI.difference
element may contain 0 or more particular differences. The difference element
optionally links to the original document to which the differences are applied.

XMI.delete

The XMI.delete element is contained by XMI.difference. Its link attributes contains a
link to the element to be deleted.

XMI.add

The XMI.add element is contained by XMI.difference. The contents of XMI.add is the
element to be added. The link attributes contain a link to the element to be deleted and
an optional position element. The numbering corresponds to XPointer numbering,
where 1 is the first and -1 is the last element.

XMI.replace

The XMI.replace element is contained by XMI.difference. The contents of
XMI.replace is the element to replace the old element with. The attributes contain a
link to the element to be replaced and an optional position element for the replacing
element's contents. The numbering corresponds to XPointer numbering, where 1 is the
first and -1 is the last element.

6.9.4 Example

This example will delete a class and its attributes, add a second class, and rename a
package. Fully qualified names are shortened for clarity.

The original document:
<XMI.content>

<Package xmi.id="ppp" xmi.label="p1">
<Class xmi.id="ccc" xmi.label="c1">

<ownedElement>
<Attribute xmi.label="a1"/>

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-79

6

<Attribute xmi.label="a2"/>
</ownedElement>

</Class>
</Package>

</XMI.content>

The differences document:
<XMI.content>

<XMI.difference href="original.xml">
<XMI.delete href="original.xml|ccc"/>
<XMI.add href="original.xml|ppp">

<Class xmi.label="c2"/>
</XMI.add>
<XMI.replace href="original.xml|ppp"/>

<Package xmi.id="ppp" xmi.label="p2"/>
</XMI.replace>

</XMI.difference>
</XMI.content>

Here’s how the 3 differences change the document as they’re applied. The XMI.delete:
<XMI.content>

<Package xmi.id="ppp" xmi.label="p1">
</Package>

</XMI.content>

Next, the XMI.add:
<XMI.content>

<Package xmi.id="ppp" xmi.label="p1">
<Class xmi.label="c2">
</Class>

</Package>
</XMI.content>

Finally, the XMI.replace:
<XMI.content>

<Package xmi.id="ppp" xmi.label="p2">
<Class xmi.label="c2">
</Class>

</Package>
</XMI.content>

6.10 Document exchange with multiple tools

This section contains a recommendation for an optional methodology which can be
used when multiple tools interchange documents. In this methodology, the xmi.uuid
and extensions are used together to preserve tool-specific information. In particular,
tools may have particular requirements on their IDs which makes ID interchange
difficult. Extensions are used to hold tool-specific information, including tool-specific
IDs.

6-80 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

The basic policy is that the XML ID is assigned by the tool that initially creates a
construct. The UUID will most likely be the same as the ID the tool would chose for
its own use. Any other modifiers of the document must preserve the original UUID,
but may add their own as part of their extensions.

6.10.1 Definitions:

General:

• MC - Model construct. An XML element that contains an xmi.uuid attribute.

• Extension - Extensions use the XMI.extension element. Extensions to MCs may be
nested in MCs, linked to the XMI.extensions section(s) of the document, or linked
outside the document. Each XMI.extension contains a tool-specific identifier in the
xmi.extender attribute. XMI.extensions are considered private to a particular tool.
An MC may have zero or more XMI.extensions. XMI.extensions may be nested.

IDs:

• xmi.uuid - The universally unique ID of an MC, expressed as the xmi.uuid
attribute. Example: <Class xmi.uuid="ABCDEFGH">

• xmi.extenderID - The tool-specific ID of an MC. The xmi.extenderID is stored in
an XMI.extension of the MC when it differs from the xmi.uuid.

Tool ID policies:

Every tool is either Open or Closed.

• Open tool - A tool that will accept any xmi.uuid as it's own. Open tools do not
need to add extensions to contain a tool-specific id.

• Closed tool - A tool that will not accept an xmi.uuid created by another tool.
Closed tools store their ids in the xmi.extenderID attribute of an XMI.extension.
The xmi.extender attribute of the XMI.extension is set to the name of the closed
tool.

6.10.2 Procedures:

Document Creation:

• The Creating Tool writes a new XMI document. Each MC is assigned an xmi.uuid.
If the xmi.uuid differs from the xmi.extenderID, an XMI.extension for that tool is
added containing the xmi.extenderID.

Document Import:

• The importing tool reads an existing XMI document. Extensions from other tools
may be stored internally but not interpreted in the event a Modification will occur at
a later time. One of the following cases occurs:

1. If the importing tool is an Open tool, the xmi.uuids are accepted internally and no
conversion is needed.

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-81

6

2. If the importing tool is a closed tool, the tool looks for a contained XMI.extension
(identified by xmi.extender) with a xmi.extenderID. If one does not exist, the
importing tool creates its own internal id.

Document Modification:

• The modifying tool writes the MCs and any extensions preserved from import.

• For new MCs, the MC is assigned an xmi.uuid.

• Closed tools add an XMI.extension including their internal id in the
xmi.extenderID.

6.10.3 Example

This section describes a scenario in which Tool1 creates an XMI document which is
imported by Tool2, then exported to Tool1, and then a third tool imports the document.
All the tools are closed tools.

1. A model is created in Tool1 with one class and written in XMI.

<Class xmi.label="c1" xmi.uuid="abcdefgh">
</Class>

2. The class is imported into Tool2. Tool2 assigns xmi.extenderID
"JKLMNOPQRST". A second class is added with name "c2" and xmi.extenderID
"X012345678"

3. The model is merged back to XMI:

<Class xmi.label="c1" xmi.uuid="abcdefgh">
<XMI.extension xmi.extender="Tool2" xmi.extenderID="JKLMNOPQRST"/>

</Class>
<Class xmi.label="c2" xmi.uuid="X012345678">
</Class>

4. The model is imported into Tool1. Tool1 assigns xmi.extenderID "ijklmnop" to
"c2" and a new class "c3" is created with xmi.extenderID "qrstuvwxyz".

5. The model is merged back to XMI:

<Class xmi.label="c1" xmi.uuid="abcdefgh">
<XMI.extension xmi.extender="Tool2" xmi.extenderID="JKLMNOPQRST"/>

</Class>
<Class xmi.label="c2" xmi.uuid="X012345678">

<XMI.extension xmi.extender="Tool1" xmi.extenderID="ijklmnop"/>
</Class>
<Class xmi.label="c3" xmi.uuid="qrstuvwxyz">
</Class>

6. A third closed tool, Tool3, adds its ids:

<Class xmi.label="c1" xmi.uuid="abcdefgh">
<XMI.extension xmi.extender="Tool2" xmi.extenderID="JKLMNOPQRST"/>

6-82 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

<XMI.extension xmi.extender="Tool3" xmi.extenderID="s1234"/>
</Class>
<Class xmi.label="c2" xmi.uuid="X012345678">

<XMI.extension xmi.extender="Tool1" xmi.extenderID="ijklmnop"/>
<XMI.extension xmi.extender="Tool3" xmi.extenderID="s5678"/>

</Class>
<Class xmi.label="c3" xmi.uuid="qrstuvwxyz">

<XMI.extension xmi.extender="Tool3" xmi.extenderID="s90ab"/>
</Class>

7. An open tool imports and modifies the file. There are no changes because the
xmi.uuids are used by the tool.

6.11 UML DTD

Appendix A contains an automatically generated DTD generated that represents the
UML metamodel. This DTD generally follows the specification of the above section
on representing metamodel information. By examining this DTD, you can gain a
better understanding of the types of metamodel information that can be represented in
an XML DTD, and the information that cannot be specified.

The structure of the DTD closely corresponds to the document “UML Semantics
version 1.1, 1 September 1997”. Each XML element corresponding to a class has a
comment indicating which pages of that document describe the class. You can verify
the accuracy of the DTD against the document by reading the pages of the document in
the comments and verifying that the encoding for them is correct.

The DTD is organized according to the packages in the UML metamodel. For
example, the Core package is presented first.

A DTD automatically generated from the MOF for UML using the Hierarchical Entity
DTD generation rules (Rule Set 3) should closely resemble the example DTD, except
that the example DTD uses an additional level of entity definition for elementary items
such as attributes.

Considering the issues that arose from representing UML in an XML DTD, aided the
development of this specification.

The UML DTD sample can also be used by tools which exchange UML information as
a standard for importing and exporting UML metamodels. It can be used for that
purpose even if the tools do not directly deal with the MOF.

Note that the UML DTD covers the UML semantics but not the UML notation.
Additional work may address the issue of the UML diagrammatic information as an
optional level of interchange.

6.12 General datatype mechanism

The ability to support general data types in XMI has significant benefits. The
applicability of XMI is significantly expanded since domain metamodels are likely to

10/25/1999 ad/99-10-02: XML Metadata Interchange 6-83

6

have a set of domain-specific data types. This general solution allows the user to
provide a domain datatype metamodel with a defined mapping to the XML data types.

The domain metamodel is supplemented by adding the domain data type metamodel.
These metamodels are connected by adding a relationship between the metamodels.
For example, the Java data type String could be made a subclass of the UML class
DataType, which is an instance of MOF DataType.

The data type metamodel is then mapped into XML types. Each "primitive" element
of the data type metamodel is mapped to an XML data type. Currently, XML supports
two data types, string and enumeration. Future versions of XML are expected to
support additional types. The mapping is accomplished by attaching a Tag-Value to
the primitive data type.

The Tag XMIDataType indicates that this class is a datatype with XML mapping. If
the XMIDataType Value is "org.omg.xmi.string" the XML string datatype is used. If
the Value is "org.omg.xmi..enumeration" the XML enumeration type is used. The set
of allowed values is provided by the Value of the XMIEnumSet Tag. The DTD
declarations for these types are shown in Section 6.6.5.

In UML, the DataType classes "String" and "Integer" have XMIDataType "string".
The class Boolean has XMIDataType "enum" and XMIEnumSet "true false". The
class VisibilityKind has XMIDataType "enum" and XMIEnumSet "public private
protected."

The convention for converting UML classes into MOF datatypes is the following:
UML classes with a "primitive" stereotype become the String datatype. UML classes
with the "enumeration" stereotype become the Enumeration datatype. The names of
attributes of the enumeration class become the names of the enumeration literals. If
the type of the attribute in an enumeration class is another enumeration class, those
enumerations are added to the set of literals recursively.

6-84 ad/99-10-02: XML Metadata Interchange 10/25/1999

6

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-85

XML DTD Production 7

7.1 Purpose

This section describes the rules for creating a DTD from a MOF-based metamodel. Rule
set 1 describes the grammar for an XMI DTD without using XML entities. Rule sets 2
and 3 use XML entities for convenience and compactness.

Each of the three types of DTDs defined by the rules in this section may be used to
validate the XML text created by following the rules of Chapter 9, XML Document
Production on page 199. In XMI 1.1, these rule sets are stated formally in EBNF. The
pseudo-code that was used to state these rules in XMI 1.0 remains for reference and
explanatory value.

Conformance

The conformance rules are stated in Chapter 11.

Notation for EBNF

The rule sets are stated in EBNF notation. Each rule is numbered for reference. Rule
names are enclosed in angle brackets, for example <DTD>. Text within quotation marks
are literal values, for example "<!ELEMENT". Text enclosed in double slashes
represents a placeholder to be filled in with the appropriate external value, for example
//Name of Attribute//. Literals should be enclosed in single or double quotation marks
when used as the values for XML attributes in XML documents. The suffix "*" is used
to indicate repetition of an item 0 or more times. The suffix "?" is used to indicate
repetition of an item 0 or 1 times. The suffix "+" is used to indicate repetition of item 1
or more times. The vertical bar "|" indicates a choice between two items. Parentheses
"()" are used for grouping items together.

EBNF ignores white space; hence these rules do not specify white space treatment.
However, since white space in XML is significant, the actual DTD generation process
must insert white space at the appropriate points.

7-86 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

The XML element names generated using these rules are qualified names. A qualified
name consists of an optional namespace name and colon ":", and a Class, Package, or
Association name. Attributes or References are further prefixed by a period (".")
delimiter. See Section 6.6.1, “Namespace Qualified XML Element Names.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-87

7

7.2 Rule Set 1: Simple DTD

7.2.1 EBNF

The EBNF for rule set 1 is listed below with rule descriptions between sections:

1. <DTD> ::= <1b:FixedContent>

 <1d:XMIAttList>?

 <2:PackageDTD>+

1a. <XMIFixedAttribs> ::= "%XMI.element.att;" "%XMI.link.att;"

1b. <FixedDeclarations> ::= //Fixed declarations//

1c. <Namespace> ::= (//Name of namespace// ":")?

1d. <XMIAttList> ::= "<!ATTLIST" "XMI" ("xmlns:"

 //Name of namespace// "CDATA" "#IMPLIED")+

 ">"

1. A DTD consists of a set of fixed declarations plus declarations for the namespaces
and contents of the Packages in the metamodel.

1a. The fixed XMI attributes present on the major elements provide element identity
and element linking.

1b. The fixed declarations are listed in section 7.5.

1c. A namespace is a namespace name followed by a ":". If no namespace name is
given, the rule is a blank.

1d. The XMI element attribute declaration for the namespace, if used.

2. <PackageDTD> ::= (<2:PackageDTD>

 | <3:ClassDTD>

 | <4:AttributeElmtDef>

 | <7:CompositionDTD>

 | <10:AssociationDTD>)*

 <9:PackageElementDef>

2. The DTD contribution from a Package consists of the declarations for any contained
Packages, Classes, classifier level Attributes, containment aggregations, Associations
without References, and an XML element definition for the Package itself.

7-88 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

3. <ClassDTD> ::= (<4:AttributeElmtDef> | <5:ReferenceElmtDef>)*

 <6:ClassElementDef>

3. The class DTD contribution consists of the element definitions for any Attributes
and References of the Class and an element definition for the Class itself.

4. <AttributeElmtDef> ::= "<!ELEMENT" <4a:AttribElmtName>

 <4c:AttribContents> ">"

 ("<ATTLIST" <4a:AttribElmtName>

 "xmi.value" "(" <4g:AttribEnumList> ")"

 "#REQUIRED" ">")?

4a. <AttribElmtName> ::= <6a:ClassElmtName> "." <4b:AttribName>

4b. <AttribName> ::= //Name of Attribute//

4c. <AttribContents> ::= <4d:AttribData>

 | <4e:AttribEnum>

 | <4f:AttribClasses>

4d. <AttribData> ::= "(" "#PCDATA" "|" "XMI.reference" ")*"

4e. <AttribEnum> ::= "EMPTY"

4f. <AttribClasses> ::= "(" <6a:ClassElmtName>

 ("|" <6a:ClassElmtName>)* ")*"

4g. <AttribEnumList> ::= <4h:AttribEnum> ("|" <4h:AttribEnum>)*

4h. <AttribEnum> ::= //Name of Enumeration Literal//

4. These rules define the declaration of an Attribute of the Classes of the metamodel as
the content of an XML element. These metamodel Attributes can, in some cases, be
expressed as XML attributes rather than element content. This is further specified in
rule 6h and gives the document writer the ability to choose which representation is
most convenient in a particular use in an XML document.

4a, 4b. The name of the XML element representing an Attribute of a Class is the
element name of the Class containing the Attribute followed by a dot separator and the
name of the Attribute.

4c. An Attribute which can be expressed as a data value is expressed in terms of a
string or reference to its content (4d) or an enumeration (4e, 4g, 4h). An Attribute
which has a Class as its value is expressed in terms of the possible Class types that can
be instances of its value (4f). If the Class has subclasses, the element name of each of
its subclasses is included in the declaration.

Note – If the MOF Tag "org.omg.xmi.enumerationUnprefix" is attached to the
DataType where the enumerated values of the Attribute are defined, the value of this
Tag contains a prefix which will be removed from the values of enumeration literals
before they are written in the DTD.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-89

7

Note – Although the DTD as produced by this grammar cannot restrict the
interspersing of other Attribute values among the instances of the values of a multi-
valued Attribute, the XML document production rules state that all values for the
Attribute should be consecutive elements and not interspersed with other Attribute
values.

5. <ReferenceElmtDef> ::= "<!ELEMENT" <5a:ReferenceElmtName>

 <5c:RefContents> ">"

5a. <ReferenceElmtName> ::= <6a:ClassElmtName> "." <5b:ReferenceName>

5b. <ReferenceName> ::= //Name of Reference//

5c. <RefContents> ::= "(" <6a:ClassElmtName>

 ("|" <6a:ClassElmtName>)* ")*"

5. These rules define the declaration of a metamodel Reference as XML element
content for linking by proxy. It is also possible to place the Reference in the attribute
list of the XML element, as defined in rule 6i. This provides the ability to more
conveniently represent References when the limited linking facilities available in such
a case are sufficient.

5a, 5b. The name of the XML element representing a Reference is the element name of
the Class containing the Reference, a dot separator, and the name of the Reference.

5c. The element name of the type of the Reference is given in the declaration. Any
subclass of the type can, but need not, appear in the declaration as well. An XML
linkage to a Class element will work if the target of the linkage is a member of a Class
or one of its subclasses.

7-90 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

6. <ClassElementDef> ::= "<!ELEMENT" <6a:ClassElmtName>

 <6b:ClassContents> ">"

 "<!ATTLIST" <6a:ClassElmtName>

 <6g:ClassAttListItems> ">"

6a. <ClassElmtName> ::= <1c:Namespace> //Name of Class//

6b. <ClassContents> ::= "(" <6d:ClassAttributes> ?

 <6e:ClassReferences> ?

 <6f:ClassCompositions> ?

 <6c:Extension> ")*" ">"

6c. <Extension> ::= "XMI.extension"

6d. <ClassAttributes> ::= <4a:AttribElmtName>

 ("|" <4a:AttribElmtName>)* "|"

6e. <ClassReferences> ::= <5a:ReferenceElmtName>

 ("|" <5a:ReferenceElmtName>)* "|"

6f. <ClassCompositions> ::= <6a:ClassElmtName>

 ("|" <6a:ClassElmtName>)* "|"

6g. <ClassAttListItems> ::= <6h:ClassAttribAtts> <1a:XMIFixedAttribs>

6h. <ClassAttribAtts> ::= (<6i:ClassAttribRef>

 | <6j:ClassAttribData>

 | <6k:ClassAttribEnum>)*

6i. <ClassAttribRef> ::= <4b:AttribName> "IDREFS" "#IMPLIED"

6j. <ClassAttribData> ::= <4b:AttribName> "CDATA" "#IMPLIED"

 <6l:ClassAttribDflt>

6k. <ClassAttribEnum> ::= <4b:AttribName>

 "(" <4g:AttribEnumList> ")" "#IMPLIED"

 <6l:ClassAttribDflt>

6l. <ClassAttribDflt> ::= //Default value//

6. These rules describe the declaration of a Class in the metamodel as an XML element
with XML attributes.

6a. The name of the XML element for the Class is name of the Class prefixed by the
namespace, if present.

6b, 6c. The XML element for the Class contains XML elements for the contained non-
derived Attributes, References and Compositions of the Class, plus an extension
element, which can refer to a locally-defined subclass of this Class in the
XMI.extensions section of the XML document.

6d. The XML element name for each non-derived Attribute of the Class is listed as
part of the content model of the Class element. This includes the Attributes defined
for the Class itself as well as all of the non-derived Attributes inherited from
superclasses of the Class.

6e. The XML element name for each non-composite Reference of the Class is listed in
the content model of the Class. A non-composite Reference is one where the

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-91

7

aggregation of the exposedEnd of the Reference is not composite. The list includes the
the References defined for the Class itself, as well as all References inherited from the
superclasses of the Class.

6f. The XML element name for each Class contained in this Class in the content model
of the Class element. Here, containment means that the contained Class is either
directly owned as an ownedElement of the Class or it is the type of a Reference of the
Class, the aggregation of whose exposedEnd is composite. In addition to the element
name of the contained Class, the element name of each subclass of the contained Class
must also be listed.

6g, 6h. In addition to the standard identification and linkage attributes, the attribute list
of the Class element can contain XML attributes for the Attributes and non-composite
References of the Class, when the limited facilities of the XML attribute syntax allow
expression of the necssary values.

6i. References (either directly owned by the Class or inherited) can be expressed as
XML id reference XML attributes.

6j. Single-valued Attributes (direct or inherited) of a Class that have a string
representation for their data are mapped to CDATA XML attributes. Multi-valued
Attributes of a Class cannot be so expressed, since the XML attribute syntax does not
allow repetition of values.

6k. Single-valued Attributes (direct or inherited) that have enumerated values are
mapped to enumerated XML attributes in the same manner as in an AttributeElmtDef
(4, 4g).

6l. If an Attribute is expressed as an XML attribute, its default value may be expressed
in the DTD if there is a MOF Tag "org.omg.xmi.defaultValue" attached to the
Attribute. The value of this Tag must be expressible as an XML attribute string.

7. <CompositionDTD> ::= <8:CompositionElmtDef>*

7. Elements for Associations that represent compositions are described using rule 8.

8. <CompositionElmtDef ::= "<!ELEMENT" <8a:RoleElmtName>

 "(" <6f:ClassCompositions> ")*" ">"

8a. <RoleElmtName> ::= <6a:ClassElmtName> "." <8b:RoleName>

8b. <RoleName> ::= //Name of Role//

8. The composition element is generated for each Reference in the Package which has
an exposedEnd whose aggregation is composite. This element is used in the class
contents XML element (6). It is a list of the Class which is the type of the Reference,
as well as all of its subclasses.

7-92 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

8a, 8b. The name of the Reference XML element is the element name of the Class
containning the Reference, followed by a dot and the name of the Reference.

9. <PackageElementDef> ::= "<!ELEMENT" <9a:PkgElmtName> <9c:PkgContents> ">"

 "<!ATTLIST" <9a:PkgElmtName>

 <9h:PkgAttListItems> ">"

9a. <PkgElmtName> ::= <1c:Namespace> <9b:PkgName>

9b. <PkgName> ::= //Name of Package//

9c. <PkgContents> ::= "(" <9d:PkgAttributes> ?

 <9e:PkgClasses> ?

 <9f:PkgAssociations> ?

 <9g:PkgPackages> ?

 <6c:Extension> ")*" ">"

9d. <PkgAttributes> ::= <4a:AttribElmtName> ("|" <4a:AttribElmtName>)* "|"

9e. <PkgClasses> ::= <6a:ClassElmtName> ("|" <6a:ClassElmtName>)* "|"

9f. <PkgAssociations> ::= <12a:AssnElmtName> ("|" <12a:AssnElmtName>)* "|"

9g. <PkgPackages> ::= <9b:PkgElmtName> ("|" <9b:PkgElmtName>)* "|"

9h. <PkgAttListItems> ::= <9i:PkgAttribAtts> <1a:XMIFixedAttribs>

9i. <PkgAttribAtts> ::= <6h:ClassAttribAtts>

9. The DTD contribution from the Package consists of an XML element definition for
the Package, with a content model specifying the contents of the Package.

9a, 9b. The name of the Package XML element.

9c. The Package contents consists of any classifier level Attributes, Associations
without References, Classes, nested Packages and an extension reference.

9d. Classifier level Attributes of a Package are also known as static attributes. Such
Attributes inherited from Packages from which this Package is derived are also
included.

9e. Each Class in the Package is listed. Classes contained in Packages from which this
Package is derived are also included.

9f. It is possible that the Package contains Associations which have no References, i.e.
no Class contains a Reference which refers to an AssociationEnd owned by the
Association. Every such Association contained in the Package or Package from which
the Package is derived is listed as part of the Package contents in order that its
information can be transmitted as part of the XML document.

9g. Nested Packages are listed. Nested Packages included in Packages from which this
Package is derived are also included.

9h, 9i. XML attributes for classifier level Attributes are generated following the same
rules as those for instance level Attributes. The fixed identity and linking XML
attributes are included.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-93

7

10. <AssociationDTD> ::= <11:AssociationEndDef>

 <11:AssociationEndDef>

 <12:AssociationDef>

10. The XML elements for unreferenced Associations consist of definitions for its
AssociationEnds and for the Association itself.

11. <AssociationEndDef> ::= "<!ELEMENT" <11a:AssocEndElmtName> "EMPTY" ">"

 "<!ATTLIST" <11a:AssocEndElmtName>

 <11c:AssocEndAtts> ">"

11a.<AssocEndElmtName> ::= <12a:AssnElmtName> "." <11b:AssocEndName>

11b.<AssocEndName> ::= //Name of AssociationEnd//

11c.<AssocEndAtts> ::= <1a:XMIFixedAttribs>

11. The declaration for an AssociationEnd XML element has no content model, though
it has the standard set of XML attributes.

11a, 11b. The name of the AssociationEnd XML element is the element name of the
association containing the AssociationEnd, a dot separator, and the name of the
AssociationEnd.

11c. The fixed identity and linking XML attributes are the AssociationEnd’s only XML
attributes.

12. <AssociationDef> ::= "<!ELEMENT" <12a:AssnElmtName>

 <12c:AssnContents> ">"

 "<!ATTLIST" <12a:AssnElmtName> <12d:AssnAtts> ">"

12a.<AssnElmtName> ::= <1c:Namespace> <12b:AssnName>

12b.<AssnName> ::= //Name of Association//

12c.<AssnContents> ::= "(" <11a:AssocEndElmtName> "|"

 <11a:AssocEndElmtName> "|"

 <6c:Extension> ")*"

12d.<AssnAtts> ::= <1a:XMIFixedAttribs>

12, 12c. The declaration of an unreferenced Association consists of the names of its
AssociationEnd XML elements.

12a, 12b. The name of the XML element representing the Association.

7-94 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

12d. The fixed identity and linking XML attributes are the Association XML attributes.

7.2.2 Pseudo-code

The pseudo-code for the rule set is included below for reference. It shows, in more
detail than is possible with the EBNF description, how a DTD using Rule Set 1 might
be created from a metamodel.

Notation for pseudo-code

The rules are specified by a combination of EBNF, which serves as a syntactic
framework, and rules written in pseudo-code which embody the rules for producing the
metasyntactic elements in the EBNF specification. The EBNF is extended slightly to
account for the fact that XML DTD constructs are being generated. Since what is
being defined is textual content, spaces are sometimes important. The “S”
metasyntactic element should be understood to mean “at least one space”. This is at
variance with standard EBNF, where spaces are usually ignored. In addition, the “Q”
metasyntactic element is intended to indicate either a single quote or a double quote,
either of which is valid in the XML DTD constructs generated using these rules. XML
requires that the quotes used in this way must match, and if they enclose quoted
strings, they must differ from the quotes used in the string.

Note – Notation: Non-terminal symbols, (except for FixedContent) on the right hand
side (RHS) of the productions below are prefixed by a number followed by a colon
(“:”). These numbers are the production in which the non-terminal is defined. If there
is no prefix on a RHS symbol, then the symbol is a variable whose value is defined in
the rules following the EBNF production.

The DTD for a MOF-based metamodel consists of a set of DTD definitions for each of
the outermost Packages in the metamodel.

1. DTD

A complete XMI DTD consists of fixed DTD content which is required for any XMI
DTD, followed by at least one set of Package DTD elements. The “XMI” element,
defined in this fixed content, is the XML document root type for a valid XMI
document. The elements defined in the Package DTD elements can be placed in the
content model of this root element.

Note – In the productions and pseudo-code below, the use of ‘DTD’ as a suffix means
a fragment of a DTD, not a complete DTD.

1. DTD ::= FixedContent 2:PackageDTD+

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-95

7

To generate a DTD:

Generate the FixedContent XMI definitions.
For each Package in the Metamodel not contained by another Package Do

Generate a PackageDTD(#2).
End

2. PackageDTD

A PackageDTD is a sequence of DTD elements of various types, reflecting the
contents of the Package. It includes DTD elements describing the Packages and
Classes contained in the Package as well as DTD elements for Classifier-level
Attributes of the Classes contained in the Package and for the References to
compositions made by the Classes of the Package. The rather unusual case of an
Association with no References is also handled at the Package level.

To Generate a PackageDTD:

For Each Class of the Package Do
For each Attribute of the Class Do

If isDerived is false Then
If the scope of the Attribute is classifierLevel Then

Generate an AttributeElementDef (#4) for the Attribute
End

End
End

End
For Each Association of the Package Do

If isDerived is false Then
If the Association contains an AssociationEnd whose aggregation is
compositeThen

Generate the CompositionDTD (#7) for the Association
Else If the Association has no References Then

Generate the AssociationDTD(#10) for the Association
End

End
End
For Each Class of the Package Do

Generate the ClassDTD (#3) for the Class
End
For Each (sub) Package of the Package Do

Generate the PackageDTD (#2) for the (sub) Package
End
Generate the PackageElementDef (#9) for the Package

2. PackageDTD ::= (2:PackageDTD | 3:ClassDTD
| 4:AttributeElementDef | 7:CompositionDTD
| 10:AssociationDTD)*
 9:PackageElementDef

7-96 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

3. ClassDTD

A ClassDTD is a set of DTD fragments that describe the contents of a Class. These
fragments include element definitions for the instance-scope Attributes of the Class
and for its non-composition References. The Classifier-scope Attributes of the Class
are defined at the level of the Package that contains the Class, as are the composition
References which are included in the Class.

To Generate a ClassDTD:

For Each Attribute of the Class Do
If isDerived is false Then

If scope is instanceLevel then
Generate the AttributeElementDef (#4) for the Attribute

End
End

End
For Each Reference of the Class Do

If the isDerived attribute of the associated Association is false Then
If the the aggregation of the AssociationEnd which is the exposedEnd of the
Reference is not composite Then

Generate the ReferenceElementDef (#5) for the Reference
End

End
End
Generate the ClassElementDef (#6) for the Class

4. AttributeElementDef

An AttributeElementDef is the XML element definition for an Attribute. It gives the
name and type for the Attribute. If the attribute type is a data type, then the data value
is the element content. If the attribute type is an object, then the actual object will be
embedded as the element content.

3. ClassDTD::= (4:AttributeElementDef | 5:ReferenceElementDef)*
6:ClassElementDef

4. AttributeElementDef ::= ‘<!ELEMENT’ S AttribName S AttribContents ‘>’
 (’<ATTLIST’ S AttribName S AttribAttList ’>’)?

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-97

7

To Generate an AttributeElementDef:

Set AttribName := the qualified name of the Attribute.
If the type reference refers to a DataType Then

If DataType.typeCode is tk_Boolean or tk_enum Then
Set AttribContents := ’EMPTY’

 Set AttribAttList := ’xmi.value (’ + the enumerated values, separated by "|" +
’)’ + ’#REQUIRED"

Else If DataType.typeCode is tk_string or tk_wstring or tk_char or tk_wchar Then
Set AttribContents := ‘(#PCDATA | XMI.reference)*’

Else If DataType.typeCode is tk_struct Then
Set AttribContents := ‘(XMI.field | XMI.reference)*’

Else If DataType.typeCode is tk_union Then
Set AttribContents := (XMI.unionDiscrim, XMI.field)

Else If DataType.typeCode is tk_sequence or tk_array Then
Set AttribContents := ‘(XMI.octetStream | XMI.seqItem | XMI.reference)*’

Else If DataType.typeCode is tk_any Then
Set AttribContents := ‘(XMI.any)’

Else If DataType.typeCode is tk_objref Then
Set AttribContents := ’(XMI.reference)’

Else If DataType.typeCode is tk_TypeCode Then
Set AttribContents := ’(XMI.CorbaTypeCode | XMI.reference)’

Else
Set AttribContents := ’(#PCDATA | XMI.reference)*

End
Else the type refers to a Class Then

Set AttribContents := ’(’ + GetClasses(Class, ’’) + ’)’
End
Generate the !ELEMENT and !ATTLIST definitions using AttribName, AttribContents, and
AttribAttList

5. ReferenceElementDef

The ReferenceElementDef for a Reference in a Class is the XML element definition
for the Reference. It gives the name of the Reference and the Class which is the type
of its referencedEnd. The content model also includes the subclasses of this Class,
since any subclass can appear where the Class appears.

The multiplicity of the reference is specified in this rule as well as in GetAllReferences
call made by the rule for generation of the ClassElementDef. This duplication allows
grouping of references for compactness. Multiple references can be grouped together
under one element tag or each reference can be its own element. For example, the
Generalizes reference in the GeneralizableElement class of UML can be expressed as:

<generalization>
 <Generalization xmi.idref="X1"/>
 <Generalization xmi.idref="X2"/>
</generalization>

or as

<generalization>
 <Generalization xmi.idref="X1"/>
</generalization>
<generalization>

7-98 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

 <Generalization xmi.idref="X2"/>
</generalization>

To generate a ReferenceElementDef:

Set RefName := The qualified name of the Reference
Set cls := Reference.referencedEnd.type (which is constrained to be a Class)
Set m := GetReferenceMultiplicity(the Reference)
Set RefContents := ‘(‘ + GetClasses(cls, ’’) + ‘)’ + m
Generate the !ELEMENT definition using RefName and RefContents

6. ClassElementDef

The ClassElementDef for a Class is the XML element definition for the Class. Its
content model combines the AttributeElementDefs, ReferenceElementDefs and
CompositionElementDefs for the Class. If the Class contains other Classes its content
model also refers to the ClassElementDefs for the contained Classes.

To Generate a ClassElementDef:

Set ClassName := the qualified name of the Class
Set atts := GetAllInstanceAttributes(the Class, ‘’)
Set refs := GetAllReferences(this Class, ‘’)
If Length(refs) > 0 Then

Set refs := ’(’ + ’XMI.extension’ + ’*’ + ’,’ + refs + ’)’
Else

Set refs := ’(’ + ’XMI.extension’ + ’*’ + ’)’
End
Set comps1 := GetAllComposedRoles(this Class, ‘’)
Set comps2 := GetContainedClasses(this Class, ‘’)
Set ClassContents to match the pattern:

 atts, refs, comps1, comps2
Remove dangling commas due to empty terms from ClassContents
Set ClassContents := ‘(‘ + ClassContents + ‘)’ + ’?’
Set ClassAttlistItems := ’%XMI.element.att; %XMI.link.att;’
Generate the !ELEMENT and !ATTLIST definitions using ClassName, ClassContents
 and ClassAttlistItems.

7. CompositionDTD

A CompositionDTD is a DTD fragment for an Association which has an
AssociationEnd whose aggregation is composite. The CompositionDTD, although
defined at the Package level, appears in the content model of the Class that contains

5. ReferenceElementDef ::= ‘<!ELEMENT’ S RefName S RefContents ‘>’

6. ClassElementDef ::= ‘<!ELEMENT’ S ClassName S ClassContents ‘>’
 ‘<!ATTLIST’ S ClassName S ClassAttListItems ‘>’

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-99

7

the Reference to the AssociationEnd as an exposedEnd. It also appears in the content
models of the subclasses of this Class.

To generate a CompositionDTD:

Generate the CompositionElementDef (#8)

 8. CompositionElementDef

The CompositionElementDef is the XML element generated for an Association which
has a Reference whose aggregation is composite. It names the Reference and the Class
which is the type of its referencedEnd. It also contains the names of the subclasses of
this Class, since an instance of one of these can be used wherever the Class is used

To Generate a CompositionElementDef:

Set Container := the Class containing the Reference whose exposedEnd is the
AssociationEnd whose aggregation is composite.
Set RoleName := the qualified name of the Reference in Container.
Set Contained := the Class which is Reference.referencedEnd.type
Set CompContents := GetClasses(Contained, ’’)
Set m:= GetReferenceMultiplicity(the Reference)
Set CompContents := ’(’ + CompContents + ’)’ + m
Generate the !ELEMENT definition using RoleName and CompContents

9. PackageElementDef

The PackageElementDef gives the name of a Package and indicates the contents of the
Package.

7. CompositionDTD ::= 8:CompositionElementDef

8. CompositionElementDef ::= ’<!ELEMENT’ S RoleName S CompContents ’>’

9. PackageElementDef ::= ‘<!ELEMENT’ S PkgName S PkgContents ‘>’
 ‘<!ATTLIST’ S PkgName S PkgAttListItems ‘>’

7-100 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

To Generate a PackageElementDef

Set PkgName := the qualified name of the Package
Set atts := GetClassLevelAttributes(the Package)
Set atts2 := ’’
For each Package contained in the Package Do

Set temp := GetNestedClassLevelAttributes(the contained Package)
If Length(temp) > 0 Then

If Length(att2s) > 0 Then
Set atts2 := ’(’ + atts2 + ’)’ + ’,’

End
Set temp := ’(’ + temp + ’)’

End
Set atts2 := atts2 + temp

End
Set classes := GetPackageClasses(the Package)
Set assns = GetUnreferencedAssociations(the Package)
Set pkgs := GetContainedPackages(the Package)
Set PkgContents to match the pattern:

(atts) , (atts2) , (classes | assns | pkgs) *
Remove empty parentheses and any dangling commas from PkgContents
If Length(PkgContents) > 0 Then

Set PkgContents := ‘(‘ + PkgContents + ‘)’
Else

Set PkgContents := ‘EMPTY’
End
Set PkgAttlistItems := ’%XMI.element.att; %XMI.link.att;’
Generate the !ELEMENT and !ATTLIST definitions using PkgName, PkgContents and
PkgAttlistItems

 10. AssociationDTD

An AssociationDTD is generated only for Associations which have no References.
Associations with at least one Reference are handled as normal References or
Compositions. The AssociationDTD defines elements for the two AssociationEnds of
the Association.

To Generate an AssociationDTD:

Generate an AssociationEndDef (#11) for the first AssociationEnd of the Association
Generate an AssociationEndDef (#11) for the second AssociationEnd of the
Association
Generate the AssociationDef (#12) for the Association

10. AssociationDTD ::= 11:AssociationEndDef 11:AssociationEndDef
 12: AssociationDef

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-101

7

 11. AssociationEndDef

An AssociationEndDef is generated for an AssociationEnd of an Association with no
references. It is simply a place holder for a content reference.

To Generate an AssociationEndDef:

Set EndName := the qualified name of the AssociationEnd.
Set EndAtts := ’%XMI.link.att;’
Generate the AssociationEndDef using EndName and EndAtts

 12. AssociationDef

An AssociationDef is generated for an Association with no References and contains a
specification that allows an unlimited number of end1-end2 pairs.

To Generate an AssociationDef:

Set AssnName := the qualified name of the Association.
Set AssnContents := name of end1 + ’,’ + name of end2
Set AssnAtts := ’%XMI.element.att; %XMI.link.att;’
Generate the AssociationDef using AssnName and AssnAtts

11. AssociationEndDef ::= ’<!ELEMENT’ S EndName S ’EMPTY’ ‘>’
 ‘<!ATTLIST’ S EndName S EndAtts‘>’

12. AssociationDef ::= ’<!ELEMENT’ S AssnName S ’AssnContents ‘>’
‘<!ATTLIST’ S AssnName S AssnAtts‘>’

7-102 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

7.2.3 Auxiliary functions

All of the auxiliary functions defined in this section are used in the Simple DTD rule
set. Some are used in other rule sets.

GetAllInstanceAttributes

The GetAllInstanceAttributes function produces a string containing the names of all of
the non-derived instance-scope Attributes of the given Class, separated by commas to
indicate ordering in XML.

The list includes the Attributes defined in the Class itself as well as those in the
Class(es) from which it is derived. The Attribute names produced are ordered by the
inheritance hierarchy of the Class, with those of any Class appearing after those of its
parent Class(es). Within a Class the ordering of Attributes is determined by their
ordering in the MOF definition of the Class. In the event of multiple inheritance, one
inheritance path is chosen arbitrarily and its set of Attributes appears completely.
These are followed by all of the Attributes of another arbitrarily-chosen inheritance
path, and so on. The Attributes of a Class in the inheritance hierarchy appear only
once, regardless of how many times the Class appears in the hierarchy. The
“previousCls” parameter is used to enforce this rule.

The definition of GetAllInstanceAttributes is:

Function GetAllInstanceAttributes(in cls : Class,
 inout previousCls : String) Returns String

If cls appears in previousCls, return the empty string
Set parentAtts := ’’
For each parent Class of cls Do

Set temp := GetAllInstanceAttributes(parent Class, previousCls)
If Length(parentAtts) >0 and Length(temp) >0 Then

Set parentAtts := parentAtts + ’,’
End
Set parentAtts := parentAtts + temp

End
Set atts := GetAttributes(cls, ’instance’)
If Length(parentAtts) > 0 and Length(atts) > 0) Then

Set parentAtts := parentAtts + ‘,’
End
Add cls to previousCls
Return parentAtts + atts

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-103

7

GetAttributes

The GetAttributes function returns a string containing the names and multiplicities of
all of the non-derived Attributes of a Class, separated by commas (",") to indicate their
ordering. The ordering should be the same as that in the MOF definition of the Class.
The "type" parameter indicates whether the instanceLevel or classifierLevel Attributes
are to be returned. Only the Attributes of the Class itself are returned. Inheritance is
handled by the caller of this function.

Function GetAttributes(in cls : Class, in type: String) Returns String
Set rslt := ‘’
For each Attribute of cls, in the order specified by the MOF definition of the Class Do

If isDerived is false Then
If (type = ’instance’ And scope is instanceLevel) Or
 (type = ’classifier’ And scope is classifierLevel) Then

Set name := Qualified name of the Attribute
If the multiplicity of the Attribute is “1..*” Then

Set m := ‘+’ (or ’*’ for a relaxed DTD)
Else If the multiplicity of the Attribute is “0..1” Then

Set m := ‘?’
Else If the multiplicity of the Attribute is not “1..1” Then

Set m := ‘*’
Else

Set m := ‘’ (or ’?’ for a relaxed DTD)
End
If Length(rslt) > 0 Then

Set rslt := rslt + ‘,’
End
Set rslt := rslt + name + m

End
End

End
Return rslt

End

7-104 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetAllReferences

The GetAllReferences function returns a string containing all of the References for the
given Class and the Class(es) from which it is derived. The entries on the list are
partially ordered. All of the References of a Class appear after those of its parent
Class(es), but the ordering of the References within a Class is not specified.

In the case of multiple inheritance, one inheritance path is chosen arbitrarily as the first
path and appears completely before any other path. The References of a Class appear
only once in the generated list, regardless of how many times the Class appears in the
inheritance hierarchy. The “previousCls” parameter is used to enforce this rule.

The definition of GetAllReferences is:

Function GetAllReferences(in cls : Class, inout previousCls: String) Returns String
If cls appears in previousCls, return the empty string
Set parentRefs := ’’
For each parent Class of cls Do

Set temp := GetAllReferences(parent Class)
If Length(parentRefs) > 0 and Length(temp) > 0 Then

Set parentRefs := parentRefs + ’,’
End
Set parentRefs := parentRefs + temp

End
Set refs := GetReferences(cls)
If Length(refs) > 0 Then

If Length(parentRefs) > 0 Then
Set parentRefs := parentRefs + ‘,’

End
End
Add cls to previousCls
Return parentRefs + refs

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-105

7

GetReferences

The GetReferences function returns a string containing the names and multiplicities of
all of the References of a Class, separated by commas (","). The References should be
listed in the order defined in the MOF. Only the References of the Class itself are
returned. Inheritance is handled by the caller of this function.

Function GetReferences(in cls : Class) Returns String
Set refs := ’’
For Each Reference contained in cls Do

If Reference.exposedEnd.aggregation is not composite Then
Set name := Qualified name of the Reference
Set m := GetReferenceMultiplicity(Reference)
Set temp := name + m
If Length(refs) > 0 Then

Set refs := refs + ‘,’
End
Set refs := refs + temp

End
End
Return refs

End

7-106 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetReferenceMultiplicity

This function returns a string containing the XML representation of the multiplicity of
a Reference. This function relies on the constraint that both ends of an Association
cannot be composite. This allows it to be used for both composition and non-
composition References.

Note – References by composed objects to the object into which they are composed are
optional in an XMI DTD, notwithstanding any specified multiplicity in the metamodel.
The XML element of a composed objects in XMI appears as part of the XML element
which composes them, making this reference redundant in most cases.

Function GetReferenceMultiplicity(in ref:Reference) Returns String
If Ref.referencedEnd.multiplicity is “0..1” Or
Ref.referencedEnd.aggregation is composite Then

Set m := ‘?’
Else If Ref.referencedEnd.multiplicity is “1..*” Then

Set m := ‘+’ (or ’*’ for a relaxed DTD)
Else If Ref.referencedEnd.multiplicity is not “1..1” Then

Set m := ‘*’
Else

Set m := ‘’ (or ’?’ for a relaxed DTD)
End
Return m

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-107

7

GetContainedClasses

The GetContainedClasses function returns a string describing the Classes contained in
a MOF Class by means of the “Namespace-Contains-ModelElement” link only. It does
not include the list of Classes contained by composition.

The “previousCls” parameter is used to avoid duplications of contained Classes due to
multiple inheritance. It allows the contained Classes to be entered into the result list
only once.

The definition of GetContainedClasses is:

Function GetContainedClasses(in cls : Class, inout previousCls : String) Returns String
If cls appears in previousCls, return the empty string
Set parentClasses := ’’
For each parent Class of cls Do

Set temp := GetContainedClasses(parent Class)
If Length(parentClasses) > 0 and Length(temp) > 0 Then

Set parentClasses := parentClasses + ’,’
End
Set parentClasses := parentClasses + temp

End
Set classes := ‘’
For Each Class contained in cls Do

Set Temp := Qualified name of the contained Class
If Length(classes) > 0 Then

Set classes := classes + ‘|’
End
Set classes := classes + Temp

End
If Length(classes) > 0 Then

If Length(parentClasses) > 0 Then
Set parentClasses := parentClasses + ‘,’

End
Set classes = ’(’ + classes + ’)’ + ’*’

End
Add cls to previousCls
Return parentClasses + classes

End

7-108 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetAllComposedRoles

The GetAllComposedRoles function returns a string containing the names of
References of a Class which place the Class in a containing role in an Association. A
Class is in a containing role in an Association if it (or a subclass) contains a Reference
whose exposedEnd is an AssociationEnd with an aggregation of composite.

The string produced by this function is partially ordered. All composed roles of a
Class appear after the composed roles of its parent Class(es). The composed roles
within a particular Class are not ordered. In the event of multiple inheritance, the role
names in one arbitrarily-chosen inheritance path appear in their entirety, followed by
those of another arbitrarily-chosen path, and so on. No role name appears more than
once, regardless of the number of times the referring Class appears. The “previousCls”
parameter is used to enforce this rule.

The definition of GetAllComposedRoles is:

Function GetAllComposedRoles(in cls : Class, inout previousCls : String) Returns String
If cls appears in previousCls, return the empty string
Set parentRoles := ’’
For each parent Class of cls Do

Set temp := GetAllComposedRoles(parent Class)
If Length(parentRoles) > 0 and Length(temp) > 0 Then

Set parentRoles := parentRoles + ’,’
End
Set parentRoles := parentRoles + temp

End
Set roles := GetComposedRoles(cls)
If Length(roles) > 0 Then

If Length(parentRoles) > 0) Then
Set parentRoles := parentRoles + ’,’

End
End
Add cls to previousCls
Return parentRoles + roles

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-109

7

GetComposedRoles

The GetComposedRoles function returns a string containing the names of References
of a Class which place the Class in a containing role in an Association, separated by
commas (",") to indicate ordering. The composed roles should appear in the order they
are defined in the MOF. A Class is in a containing role in an Association if it (or a
subclass) contains a Reference whose exposedEnd is an AssociationEnd with an
aggregation of composite.

Function GetComposedRoles(in cls : Class) Returns String
Set rslt := ‘’
For Each Reference of cls Do

If the aggregation of the AssociationEnd which is exposedEnd of the
Reference is composite Then

Set name := Qualified name of the Reference
Set m := GetReferenceMultiplicity(the Reference)
If Length(rslt) > 0 Then

Set rslt := rslt + ‘,’
End
Set rslt := rslt + name + m

End
End
Return rslt

End

7-110 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetClasses

The GetClasses function returns a string containing the name of a Class and all of the
Classes which are derived from it. This function is used in a number of places where
a Class is used and a subclass of the Class may also appear. The prevCls parameter is
used to prevent duplication of class names in the event of multiple inheritance.

Function GetClasses(in cls : Class, inout prevCls) Returns String
If cls appears in prevCls, return the empty string (’’)
Set rslt := the qualified name of cls
For Each subclass of cls Do

Set Temp := GetClasses(the subclass, prevCls)
If (Length(Temp) > 0) Then

Set rslt := rslt + ‘|’
End
Set rslt := rslt + Temp

End
Add cls to prevCls
Return rslt

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-111

7

GetClassLevelAttributes

The GetClassLevelAttributes function produces a string containing the names of all of
the non-derived Classifier-scope Attributes of all the Classes of the given Package and
any Packages which contain it or generalize it.

The ordering rule is that the Classifier-level Attributes of a Package follow those of its
parent or containing Package(s). The ordering of Attributes within a Package are
determined by their ordering in the Classes where they are defined.

The definition of GetClassLevelAttributes is:

Function GetClassLevelAttributes(in pkg : Package) Returns String
If pkg has a parent or containing Package Then

Set parentAtts := GetClassLevelAttributes(parent Package)
End
Set atts := ’’
For Each Class of pkg Do

Set temp := GetAttributes(the Class,’classifier’)
If Length(temp) > 0 And Length (atts) > 0) Then

Set atts := atts + ‘|’
End
Set atts := atts + temp

End
If Length(atts) > 0) then

If Length(parentAtts) > 0 Then
Set parentAtts := parentAtts + ‘,’

End
Set atts := ’(’ + atts + ’)’

End
Return parentAtts + atts

End

7-112 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetNestedClassLevelAttributes

The GetNestedClassLevelAttributes function gets all of the non-derived Class
Attributes which have Classifier scope for the Classes of the given Package and any
Packages which it contains.

The definition of GetNestedClassLevelAttributes is:

Function GetNestedClassLevelAttributes(in pkg : Package) Returns String
Set rslt := ‘’
For each Class of pkg Do

Set temp := GetAttributes(the Class, ’classifier’)
If Length(temp) > 0 Then

If Length (rslt) > 0) Then
Set rslt := rslt + ‘|’

End
Set temp := ’(’ + temp + ’)’

End
Set rslt := rslt + temp

End
For Each Package of Pkg

Set childAtts := GetNestedClassLevelAttributes(contained Package)
If Length(childAtts) > 0 Then

If Length(rslt) > 0 Then
Set rslt := ’(’ + rslt + ’)’ + ’,’

End
Set childAtts := ’(’+ childAtts + ’)’

End
Set rslt := rslt + childAtts

End
Return rslt

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-113

7

GetPackageClasses

The GetPackageClasses function gets all of the Classes in the given Package and any
Packages from which it is derived or in which it is contained.

Function GetPackageClasses(in pkg : Package) Returns String
If pkg has a parent or containing Package Then

Set parentClasses := GetPackageClasses(parent Package)
End
Set classes := ‘’
For Each Class of pkg Do

Set Temp := Qualified name of the Class
If Length(classes) > 0 Then

Set classes := classes + ‘|’
End
Set classes := classes + Temp

End
If Length(parentClasses) > 0 and Length(classes) > 0) Then

Set parentClasses := parentClasses + ‘|’
End
Return parentClasses + classes

End

7-114 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetContainedPackages

The GetContainedPackages function gets all of the Packages contained in the given
Package and any Packages which it contains.

Function GetContainedPackages(in pkg:Package) Returns String
If pkg has a parent Package Then

Set parentPkgs := GetContainedPackages(parent Package)
End
Set pkgs := ‘’
For Each (sub) Package of pkg Do

Set Temp := Qualified name of the (sub) Package.
If Length(pkgs) > 0 Then

Set pkgs := pkgs + ‘|’
End
Set pkgs := pkgs + Temp

End
If Length(parentPkgs) > 0 and Length(pkgs) > 0) Then

Set parentPkgs := pkgs + ‘|’
End
Return parentPkgs + pkgs

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-115

7

GetUnreferencedAssociations

This auxiliary function gets all of the Associations of the Package (and its parent
packages) that have no References.

Function GetUnreferencedAssociations(in pkg: Package) Returns String
Set parentAssns := ’’
If pkg has a parent Package Then

Set parentAssns := GetUnreferencedAssociations(parent Package)
End
Set assns := ’’
For each Association of pkg Do

if isDerived is false Then
If The Association has no References Then

Set temp := qualified name of the Association
If Length(assns) > 0) then

Set assns := assns + ’|’
End
Set assns := assns + temp

End
End

End
If Length(parentAssns >0) and Length(assns > 0) Then

Set parentAssns := parentAssns + ’|’
End
Return parentAssns + assns

End

7-116 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

7.3 Rule Set 2: Grouped entities

Although the productions in the previous rule set are very simple, they can result in
large DTDs. The repetition of detail also makes it difficult to perform modifications
for the purposes of extension or experimentation. This is due to the fact that the object
contents and any enumerated attlist values are given for not only an object but for all
of the Classes that inherit from it, directly or indirectly.

The set of rules in this section allow for the grouping of the parts of an object into
XML entity definitions. These entities may be used in place of the actual listing of the
elements. This makes for more compact DTD files. The savings is about 15 to 20
percent over the Simple DTD rule set. In addition, since the Attributes, References
and compositions of an object are defined in only one place, modification is greatly
simplified.

This rule set requires somewhat more computational complexity than the Simple DTD
rule set. In particular, the DTD generation program must:

• Be able to keep a table of generated enumerated type entities in order to re-use them
and avoid duplicate entity generation.

7.3.1 EBNF

The EBNF for rule set 2 is listed below with rule descriptions between sections:

1. <DTD> ::= <1b:FixedDeclarations>

 <1f:XMIAttList>?

 <15:EntityDTD>

 <2:PackageDTD>+

1a. <XMIFixedAttribs> ::= "%XMI.element.att;" "%XMI.link.att;"

1b. <FixedDeclarations> ::= //Fixed declarations//

1c. <Q> ::= "’" | ’"’

1d. <Namespace> ::= (//Name of namespace// ":")?

1e. <Extension> ::= "XMI.extension"

1f. <XMIAttList> ::= "<!ATTLIST" "XMI" ("xmlns:"

 //Name of namespace// "CDATA" "#IMPLIED")+

 ">"

1. A DTD consists of a set of fixed declarations plus declarations for the namespaces
and contents of the Packages in the metamodel.

1a. The fixed attributes present on the major elements provide element identity and
element linking.

1b. The fixed declarations are listed in section 7.5.

1c. Q represents a single or double quote mark and is used to delimit the text of XML
entity definitions.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-117

7

1d. The namespace name followed by a ":". If no namespace name is given, the rule is
a blank.

1e. The XMI.extension element is used to refer to extensions of a metamodel element.
Such an extension might be a locally-derived subclass of a metamodel Class that
contains tool-specific information not included in a standard metamodel. The
extension information resides in the XMI.extensions section of the XMI document and
is referred to by the XML ID value contained in the XMI.extension element.

1f. The XMI element attribute declaration for the namespace, if used.

2. <PackageDTD> ::= (<2:PackageDTD>

 | <3:ClassDTD>

 | <4:AttributeElmtDTD>

 | <12:CompositionDTD>

 | <16:AssociationDTD>)*

 <14:PackageElementDef>

2. The DTD contribution from a Package consists of the XML element definitions for
any contained Packages, Classes, classifier level Attributes, containment aggregations,
Associations without References and the Package itself.

3. <ClassDTD> ::= (<4:AttributeElmtDef> | <7:ReferenceElmtDef>)*

 <11:ClassElementDef>

3. The class DTD contribution consists of the element definitions for any Attributes or
References of a Class and an element definition for the Class itself.

4. <AttributeElmntDTD> ::= <5:AttribEnumEntDef>?

 <6:AttributeElementDef>

4. These rules define the declaration of an Attribute of a Class as an XML element and,
if the Attribute has a type which is an enumerated value, an XML entity definition for
the enumerated values of the type.

7-118 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

5. <AttribEnumEntDef> ::= "<!ENTITY" "%" <5a:AttribEnumTypeName>

 <Q> "xmi.value" "(" <5b:AttribEnumValues> ")"

 "#REQUIRED" <Q> ">"

5a. <AttribEnumTypeName> ::= //Name of the Enumeration DataType//

5b. <AttribEnumValues> ::= <5c:AttribEnum> ("|" <5c:AttribEnum>)*

5c. <AttribEnum> ::= //Name of Enumeration Literal//

5. These rules define the entity declaration for the values of a set of enumerated values.
This entity is invoked as the XML attribute "xmi.value" in the XML element definition
for any Attribute which uses this set of enumerated values. It is not necessary to use
this mechanism; rule 19e provides an alternative value specification mechanism where
flexibility of expression is desired.

5a. The name of the XML entity representing an enumerated value set is the element
name of the DataType defining the value set.

5b, 5c. All of the enumeration literals for the enumerated DataType are listed.

Note – If the MOF Tag "org.omg.xmi.enumerationUnprefix" is attached to this
DataType, the value of this Tag contains a prefix which will be removed from the
values of enumeration literals before they are written in the DTD.

6. <AttributeElmtDef> ::= "<!ELEMENT" <6a:AttribElmtName>

 <6c:AttribContents> ">"

 ("<ATTLIST " <6a:AttribElmtName>

 <6g:AttribEntityInv> ">")?

6a. <AttribElmtName> ::= <11a:ClassElmtName> "." <6b:AttribName>

6b. <AttribName> ::= //Name of Attribute//

6c. <AttribContents> ::= <6d:AttribData>

 | <6e:AttribEnum>

 | <6f:AttribClasses>

6d. <AttribData> ::= "(" "#PCDATA" "|" "XMI.reference" ")*"

6e. <AttribEnum> ::= "EMPTY"

6f. <AttribClasses> ::= "(" <11a:ClassElmtName>

 ("|" <11a:ClassElmtName>)* ")*"

6g. <AttribEntityInv> ::= "%" <5a:AttribTypeName> ";"

6. These rules define the declaration of an Attribute of a Class in the metamodel as the
content of an XML element. If the Attribute is enumerated, the XML attribute list
includes an invocation of the entity definition for the enumerated type of the Attribute.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-119

7

There is also a declaration of a model Attribute as an XML attribute in rule 19a,
allowing flexibility by the document writer to choose which representation is most
convenient in a particular use in an XML document.

6a, 6b. The name of the XML element representing an Attribute is the element name of
the Class containing the Attribute, followed by a dot separator, and the name of the
Attribute.

6c. An Attribute which can be expressed as a data value is expressed in terms of a
string or reference to its content (6d), an enumeration with an invocation of the XML
entity declared in rule 5 (6e, 6g). An Attribute which has a Class as its value is
expressed in terms of the possible Class types that can be instances of its value (6f). If
the Class has subclasses, the element name of each of its subclasses is included in the
declaration.

7. <ReferenceElmtDef> ::= "<!ELEMENT" <7a:ReferenceElmtName>

 <7c:RefContents> ">"

7a. <ReferenceElmtName> ::= <11a:ClassElmtName> "." <7b:ReferenceName>

7b. <ReferenceName> ::= //Name of Reference//

7c. <RefContents> ::= "(" <11a:ClassElmtName>

 ("|" <11a:ClassElmtName>)* ")*"

7. These rules define the declaration of a model Reference in a Class as an XML
element for linking by proxy. It is also possible to place the Reference in the attribute
list of an XML element, as defined in rule 19j. This provides the flexibility to more
conveniently represent References, when the limited linking facilities available in such
a case are sufficient.

7a, 7b. The name of the XML element representing a Reference is the element name of
the Class containing the Reference, a dot separator, and the name of the Reference.

7c. The element name of the type of the Reference is given in the declaration. Any
subclass of this type can, but need not, appear in the declaration as well. An XML
linkage to a Class element will work if the target of the linkage is a member of the
Class or one of its subclasses.

7-120 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

8. <PropertiesEntDef> ::= "<!ENTITY" "%" <8a:PropsEntityName>

 <Q> <8b:PropsList> <Q> ">"

8a. <PropsEntityName> ::= <11b:ClassName> "Properties"

8b. <PropsList> ::= <8c:InstanceAttributes>

8c. <InstanceAttributes> ::= <6a:AttribElmtName>

 ("|" <6a:AttribElmtName>)*

8. These rules define the entity declaration of the non-derived instance-level model
Attributes in a particular Class. If the list of instance Attributes in 8b is empty, the
declaration of the entity is suppressed and the entity is not invoked in the Class
element definition.

8a. The name of the XML entity representing the non-derived instance-level Attributes
for a Class is based on the name of the Class.

8b, 8c. The element names of all of the non-derived instance-level model Attributes in
a particular Class are listed.

9. <RefsEntityDef> ::= "<!ENTITY" "%" <9a:RefsEntityName>

 <Q> <9b:RefsList> <Q> ">"

9a. <RefsEntityName> ::= <11b:ClassName> "Associations"

9b. <RefsList> ::= <9c:InstanceReferences>

9c. <InstanceReferences> ::= <7a:ReferenceElmtName>

 ("|" <7a:ReferenceElmtName>)*

9. These rules define the entity declaration of the instance-level References in a
particular Class. Here, a Reference is a non-composite Reference, i.e. the
AssociationEnd which is the exposedEnd of the Reference has an aggregation value
other than composite. If the list in 9b is empty, the declaration of the RefsEntity is
suppressed and the entity is not invoked in the Class element definition.

9a. The name of the XML entity representing the instance-level References of a Class
is based on the name of the Class.

9b, 9c. All of the instance-level model References contained in a particular Class are
listed.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-121

7

10. <CompsEntityDef> ::= "<!ENTITY" "%" <10a:CompsEntityName>

 <Q> <10b:CompsList> <Q> ">"

10a. <CompsEntityName> ::= <11b:ClassName> "Compositions"

10b. <CompsList> ::= <10c:ComposedRoles>

10c. <ComposedRoles> ::= <10d:ComposedRole>

 ("|" <10c:ComposedRoles>)*

10d. <ComposedRole> ::= <13a:RoleElmtName>

10. The composition entity for a Class is the list of Classes contained in another Class
by means of composite Reference. A composite Reference is one where the
AssociationEnd which is the exposedEnd of the Reference has an aggregation value of
composite. This entity is used in the XML element of the containing Class. If the
composed role list in 10b is empty, the declaration is suppressed and the entity is not
invoked in the Class element definition.

10a. The name of the XML entity representing the compositions of a Class is based
on the name of the Class.

10b, 10c, 10d. The list of XML elements for the composed roles of a Class consists of
the element names of the composition role of the contained Class (the type of the
composite Reference) and all of its subclasses.

7-122 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

11. <ClassElementDef> ::= "<!ELEMENT" <11a:ClassElmtName>

 <11c:ClassContents> ">"

 "<!ATTLIST" <11a:ClassElmtName>

 <11m:ClassAttListItems> ">"

11a. <ClassElmtName> ::= <1d:Namespace> <11b:ClassName>

11b. <ClassName> ::= //Name of Class//

11c. <ClassContents> ::= "(" (<11d:ClassPropsEntityListInv> "|")?

 (<11g:ClassRefEntityListInv> "|")?

 (<11j:ClassCompEntityListInv> "|")?

 (<11t:ClassesContained> "|")?

 <1e:Extension> ")*" ">"

11d. <ClassPropsEntListInv> ::= <11e:SupclsPropsEntityInv>?

 <11f:ClassPropsEntityInv>

11e. <SupclsPropsEntityInv> ::= <11f:ClassPropsEntityInv>

 ("|" <11e:SupclsPropsEntityInv>)*

11f. <ClassPropsEntityInv> ::= "%" <8a:PropsEntityName> ";"

11g. <ClassRefEntListInv> ::= <11h:SupclsRefEntityInv>?

 <11i:ClassRefEntityInv>

11h. <SupclsRefEntityInv> ::= <ClassRefEntityInv

 ("|" <11h: SupclsRefEntityInv>)*

11i. <ClassRefEntityInv> ::= "%" <9a:RefsEntityName> ";"

11j. <ClassCompEntListInv> ::= <11k:SupclsCompEntityInv>?

 <11l:ClassCompEntityInv>

11k. <SupclsCompEntityInv> ::= <11l: ClassCompEntityInv>

 ("|" <11k:SupclsCompEntityInv>)*

11l. <ClassCompEntityInv> ::= "%" <10a:CompsEntityName> ";" "|"

11m. <ClassAttListItems> ::= <11n:ClassAttPropsEntListInv>?

 <11q:ClassAttRefEntListInv>?

 <1a:XMIFixedAttribs>

11n. <ClassAttPropsEntListInv> ::= <11o:SupclsAttPropsEntInv>?

 <11p:ClassAttPropsEntInv>

11o. <SupclsAttPropsEntInv> ::= <11p:ClassAttPropEntInv>

 <11o:SupclsAttPropsEntInv>*

11p.<ClassAttPropEntInv> ::= "%" <19b:ClassAttPropsEntName> ";"

11q. <ClassAttRefEntListInv> ::= <11r:SupclsAttRefEntInv>?

 <11s:ClassAttRefEntInv>

11r. <SupclsAttRefEntInv> ::= <11s:ClassAttRefEntInv>

 <11r:SupclsAttRefEntInv>*

11s. <ClassAttRefEntInv> ::= "%" <19h:ClassAttRefsEntName> ";"

11t. <ClassesContained> ::= <11a:ClassElmtName>

 ("|" <11a:ClassElmtName>)*

11. These rules describe the declaration of a Class element defintion as an XML
element plus XML attributes.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-123

7

11a, 11b. The name of the XML element for the Class is name of the Class prefixed by
the namespace, if present.

11c. The XML element content model for the Class contains the Attributes,
References, Compositions, contained Classes and the extension element. The
definitions take the form of invocations of entities that list the Attributes, References
and Compositions of for the Class and its superclasses.

11d, 11e, 11f. The list of XML element names for the Attributes of the Class is
obtained by invoking the attributes entity (8) for the Class and each of its superclasses.
Any entity declarations that were suppressed are skipped.

11g, 11h, 11i. The list of XML element names for the (non-composite) References of
the Class is obtained by invoking the refs entity (9) for the Class and each of its
superclasses. Any entity declarations that were suppressed are skipped.

11j, 11k, 1ll. The list of XML element names for the Compositions (composite
References) of the Class is obtained by invoking the comps entity (9) for the Class and
each of its superclasses. Any entity declarations that were suppressed are skipped.

11m. The list of XML attributes in the class element is the list of single-valued string-
representable Attributes and References, along with the fixed identity and linking
XML attributes.

11n, 11o, 1lp. The list of XML attributes for the Class’s string-representable
Attributes is obtained by invoking the attribute list entity for the Attributes (19b) of the
Class and all of its superclasses. Any entity declarations that were suppressed are
skipped.

11q, 11r, 1ls. The list of XML attributes for the Class’s References is obtained by
invoking the refs list entity for the References (19h) of the Class and all of its
superclasses. Any entity declarations that were suppressed are skipped.

11t. The list XML element names of all directly contained (nested) classes following
the MOF Namespace-contains-ModelElement relationship, including subclasses of the
contained Classes.

12. <CompositionDTD> ::= <13:CompositionElmtDef>

12. The compositionDTD is the contribution of a DTD from composition element
definitions (13).

7-124 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

13. <CompositionElmtDef> ::= "<!ELEMENT" <13a:RoleElmtName>

 "(" <13c:CompContents> ")*" ">"

13a. <RoleElmtName> ::= <11a:ClassElmtName> "." <13b:RoleName>

13b. <RoleName> ::= //Name of Role//

13c. <CompContents> ::= <11a:ClassElmtName> ("|" <13c:CompContents>)*

13. The composition element is generated for each Reference in the Package which has
an exposedEnd whose aggregation is composite. This element is used in the class
contents XML element (11). The XML element contains the list of contained classes
and subclasses (13c).

13a, 13b. The name of the Reference XML element is the element name of its
containing Class, followed by a dot separate and the name of the Reference.

13c. The list of XML elements for the contained classes and each of their subclasses.

14. <PackageElementDef> ::= "<!ELEMENT" <14a:PkgElmtName>

 <14c:PkgContents> ">"

 "<!ATTLIST" <14a:PkgElmtName>

 <14h:PkgAttListItems> ">"

14a. <PkgElmtName> ::= <1d:Namespace> <14b:PkgName>

14b. <PkgName> ::= //Name of Package//

14c. <PkgContents> ::= "(" <14d:PkgAttributes> ?

 <14e:PkgClasses> ?

 <14f:PkgAssociations> ?

 <14g:PkgPackages> ?

 <1e:Extension> ")" *" ">"

14d. <PkgAttributes> ::= <6a:AttribElmtName>

 ("|" <6a:AttribElmtName>)* "|"

14e. <PkgClasses> ::= <11a:ClassElmtName>

 ("|" <11a:ClassElmtName>)* "|"

14f. <PkgAssociations> ::= <18a:AssnElmtName>

 ("|" <18a:AssnElmtName>)* "|"

14g. <PkgPackages> ::= <14b:PkgElmtName>

 ("|" <14b:PkgElmtName>)* "|"

14h. <PkgAttListItems> ::= <14i:PkgAttribAtts> <1a:XMIFixedAttribs>

14i. <PkgAttribAtts> ::= <19c:ClassAttribAtts>

14. The DTD contribution from the Package consists of an XML element definition for
the Package, with a content model specifying the contens of the Package.

14a, 14b. The name of the Package XML element.

14c. The Package contains classifier level Attributes, unreferenced Associations,
Classes, nested Packages, and extensions.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-125

7

14d. Classifier level Attributes of a Package (i.e. of the Classes of the Package) are
also known as static Attributes. Attributes inherited from packages from which this
Package is derived are also included.

14e. Each Class in the Package is listed. Classes inherited from Packages from which
this Package is derived are also included.

14f. It is possible that the Package contains unreferenced Associations, i.e. no Class
contains a Reference that refers to an AssociationEnd owned by the Association.
Every such Association contained in the Package or some Package from which the
Package is derived is listed as part of the contents of the Package in order that its
information be transmitted by the XML document.

14. Nested Packages are listed. Nested Packages inherited from Packages from which
this Package is derived are also included.

14h, 14i. Classifier level Attributes (14d) can be expressed as part of the XML
attribute list for the Package, if their value is expressible as a string. Otherwise, the
same rules as in 14d apply. The fixed identity and linking XML attributes are
included.

15. <EntityDTD> ::= (<8:PropertiesEntDef>

 | <9:RefsEntityDef>

 | <10:CompsEntityDef>

 | <19a:ClassAttPropsEntity>

 | <19g:ClassAttRefEntity>)+

15. The entities for properties (Attributes of Classes), refs (non-composite References
of Classes) and compositions (composite References of Classes) are generated. The
properties and refs entities may be defined for both XML element content or XML
attribute lists. Compositions entities can be defined only as element content.

16. <AssociationDTD> ::= <17:AssociationEndDef>

 <17:AssociationEndDef>

 <18:AssociationDef>

16. The declaration of an Association with no references consists element definitions
for the AssociationEnds and for the Association itself.

7-126 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

17. <AssociationEndDef> ::= "<!ELEMENT" <17a:AssocEndElmtName> "EMPTY" ">"

 "<!ATTLIST" <17a:AssocEndElmtName>

 <17c:AssocEndAtts> ">"

17a. <AssocEndElmtName> ::= <18a:AssnElmtName> "." <17b:AssocEndName>

17b. <AssocEndName> ::= //Name of AssociationEnd//

17c. <AssocEndAtts> ::= <1a:XMIFixedAttribs>

17. The declaration for an AssociationEnd XML element has no content model, though
it has the standard set of XML attributes.

17a, 17b. The name of the AssociationEnd XML element is the element name of the
Association containing the AssociationEnd, a dot separator, and the name of the
AssociationEnd.

17c. The fixed identity and linking XML attributes are the AssociationEnd’s only
XML attributes.

18. <AssociationDef> ::= "<!ELEMENT" <18a:AssnElmtName>

 <18c:AssnContents> ">"

 "<!ATTLIST" <18a:AssnElmtName>

 <18d:AssnAtts> ">"

18a. <AssnElmtName> ::= <1d:Namespace> <18b:AssnName>

18b. <AssnName> ::= //Name of Association//

18c. <AssnContents> ::= "(" <17a:AssocEndElmtName> "|"

 <17a:AssocEndElmtName> "|"

 <1e:Extension> ")*"

18d. <AssnAtts> ::= <1a:XMIFixedAttribs>

18, 18c. The declaration of an unreferenced Association consists of the names of its
AssociationEnd XML elements.

18a, 18b. The name of the XML element representing the Association.

18d. The fixed identity and linking XML attributes are the Association’s XML
attributes.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-127

7

19a. <ClassAttPropsEntity> ::= "<!ENTITY" "%" <19b:ClassAttPropsEntName>

 <Q> <19c:ClassAttribAtts> <Q> ">"

19b. <ClassAttPropsEntName> ::= <11b:ClassName> "AttPropsList"

19c. <ClassAttribAtts> ::= (<19d:ClassAttribData>

 | <19e:ClassAttribEnum>)*

19d. <ClassAttribData> ::= <6b:AttribName> "CDATA" "#IMPLIED"

 <19f:ClassAttribDflt>?

19e. <ClassAttribEnum> ::= <6b:AttribName>

 "(" <5b:AttribEnumValues> ")" "#IMPLIED"

 <19f:ClassAttribDflt>?

19f. <ClassAttribDflt> ::= //Default value//

19g. <ClassAttRefEntity> ::= "<!ENTITY" "%" <19h:ClassAttRefsEntName>

 <Q> <19i:ClassAttribRefs> <Q> ">"

19h. <ClassAttRefsEntName> ::= <11b:ClassName> "AttRefsList"

19i. <ClassAttribRefs> ::= <19j:ClassAttribRef>*

19j. <ClassAttribRef> ::= <7b:ReferenceName> "IDREFS" "#IMPLIED"

19a, 19c. The declaration of an XML entity of the list of Attributes of a Class with
single-valued values represented by CDATA strings or enumeration literals. If there
are no such Attributes, definition of the entity is suppressed.

19b. The entity name is based on the name of the Class.

19d. The XML Attribute declaration for single-valued values represented by CDATA
and default, if present.

19e. The XML Attribute declaration for Attributes with an enumerated type, with the
list of enumeration literals and default, if present.

19f. If the Attribute has a default value, it is placed here. The default value may be
specified in a MOF model using a tag of "org.omg.xmi.defaultValue".

19g. The XML attribute declaration for non-composite References of a Class. If the
Class has no such References, the definition of this entity is suppressed.

19h. The entity name is based on the name of the containing Class.

19i, 19j. The XML attribute declaration for each Reference whose type is reachable
using the XML ID value.

7.3.2 Pseudo-code

The pseudo-code for the rule set is included for reference and to provide illustration of
one possible means for generating the items in Rule Set 2.

As in the Simple DTD rule set, The DTD for a MOF-based metamodel consists of a set
of DTD definitions for the outermost Packages in the metamodel.

7-128 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

7.3.3 Rules

1. DTD

The XMI DTD under Rule Set 2 consists of the fixed DTD content which is required
for any XMI DTD and the various Package DTD elements. Rule Set 2 adds a set of
entity definitions, which must appear before the Package DTD elements, since entities
must be defined before their use.

The document root type required by XML is defined in the fixed content. This root
element is the “XMI” element. The elements defined in the Package DTD elements are
placed in the content model of this root element.

Note – In the productions and pseudo-code below, the use of ‘DTD’ as a suffix means
a fragment of a DTD, not a complete DTD.

To generate a DTD:

Generate initial fixed XMI definitions common to all MOF-based metamodel DTDs
Generate the EntityDTD (#15)
Generate the PackageDTD (#2) for each Package which is not contained by another
Package.

2. PackageDTD

A PackageDTD is a sequence of DTD elements of various types, reflecting the
contents of the Package. It includes DTD elements describing the Packages and
Classes contained in the Package as well as DTD elements for Classifier-level
Attributes of the Classes contained in the Package and for the References to
compositions made by the Classes of the Package. The rather unusual case of an
Association with no References is also handled at the Package level.

1. DTD ::= FixedContent 15:EntityDTD 2:PackageDTD+

2. PackageDTD ::= (2:PackageDTD | 3:ClassDTD
| 4:AttributeElementDTD | 12:CompositionDTD
16:AssociationDTD)*
 14:PackageElementDef

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-129

7

To Generate a PackageDTD:

For Each Class of the Package Do
For each Attribute of the Class Do

If isDerived is false Then
If the scope of the Attribute is classifierLevel Then

Generate an AttributeElementDTD (#4) for the Attribute
End

End
End

End
For Each Association of the Package Do

If isDerived is false Then
If the Association contains an AssociationEnd whose aggregation is
composite Then

Generate the CompositionDTD (#12) for the Association
Else If the Association has no References Then

Generate the AssociationDTD(#16) for the Association
End

End
End
For Each Class of the Package Do

Generate the ClassDTD (#3) for the Class
End
For Each (sub) Package of the Package Do

Generate the PackageDTD (#2) for the (sub) Package
End
Generate the PackageElementDef (#14) for the Package

3. ClassDTD

A ClassDTD is a sequence of DTD fragments for the non-derived instance-scope
Attributes of the Class and the References that it makes, followed by entity definitions
that summarize this information.

3. ClassDTD::= (4:AttributeElementDTD | 7:ReferenceElementDef) *
11:ClassElementDef?

7-130 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

To Generate a ClassDTD:

For Each Attribute of the Class Do
If isDerived is false Then

If scope is instanceLevel then
Generate the AttributeElementDTD (#4) for the Attribute

End
End

End
For Each Reference of the Class Do

If the isDerived attribute of the associated Association is false Then
If the the aggregation of the AssociationEnd which is the exposedEnd of the
Reference is not composite Then

Generate the ReferenceElementDef (#7) for the Reference
End

End
End
Generate the ClassElementDef (#11) for the Class

4. AttributeElementDTD

An AttributeElementDTD is as sequence of DTD fragments for an Attribute. These
fragments include entity definitions for enumerated types and the AttributeElementDef
items.

To Generate an AttributeElementDTD:
If the type of the Attribute refers to a DataType Then

If the DataType.typeCode is Boolean or enum Then
If an AttributeEntityDef for this type name has not previously been produced,
Then

Generate an AttributeEntityDef (#5) for this DataType
End

End
End
Generate an AttributeElementDef (#6) for this Attribute

5. AttributeEntityDef

An AttributeEntityDef is an XML entity which specifies an enumerated set of values
which an Attribute may have.

4. AttributeElementDTD ::= 5:AttributeEntityDef? 6:AttributeElementDef

5. AttributeEntityDef ::= ‘<!ENTITY’ S ‘%’ S TypeName S Q ‘xmi.value’
 ‘(‘ enumvalues ‘)’ ‘#REQUIRED’ Q ‘>’

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-131

7

To Generate an AttributeEntityDef:

Set TypeName := the qualified name of the DataType
Set enumvalues := ‘’
For Each possible enumerated value in DataType.typeCode Do

If Length(enumvalues) > 0) Then
Set enumvalues := enumvalues + ‘|’

End
Set enumvalues := enumvalues + the enumerated value

End
Generate the !ENTITY definition using TypeName and enumvalues

6. AttributeElementDef

An AttributeElementDef is the XML element definition for an Attribute. It gives the
name and type (which may be a reference to a Class) for the Attribute.

To Generate an AttributeElementDef:

Set AttribName := the qualified name of the Attribute.
If the type reference refers to a DataType Then

If DataType.typeCode is tk_Boolean or tk_enum Then
Set AttribContents := ‘EMPTY’
Set TypeName := the qualified name of the enumerated type or Boolean
Set AttribAttList := ‘%’ + TypeName + ’;’

Else If DataType.typeCode is tk_string or tk_wstring or tk_char or tk_wchar Then
Set AttribContents := ‘(#PCDATA | XMI.reference)*’

Else If DataType.typeCode is tk_struct Then
Set AttribContents := ‘(XMI.field | XMI.reference)*’

Else If DataType.typeCode is tk_union Then
Set AttribContents := (XMI.unionDiscrim, XMI.field)

Else If DataType.typeCode is tk_sequence or tk_array Then
Set AttribContents := ‘(XMI.octetStream | XMI.seqItem | XMI.reference)*’

Else If DataType.typeCode is tk_any Then
Set AttribContents := ‘(XMI.any)’

Else If DataType.typeCode is tk_objref Then
Set AttribContents := ’(XMI.reference)’

Else If DataType.typeCode is tk_TypeCode Then
Set AttribContents := ’(XMI.CorbaTypeCode | XMI.reference)’

Else
Set AttribContents := ’(#PCDATA | XMI.reference)*

End
Else (the type refers to a Class)

Set AttribContents := ‘(’ + GetClasses(Class, ’’) + ’)’
End
Generate the !ELEMENT and !ATTLIST definitions using AttribName, AttribContents and
AttribAttlist.

6. AttributeElementDef ::= ‘<!ELEMENT’ S AttribName S AttribContents ‘>’
 (‘<!ATTLIST’ S AttribName S AttribAttList ‘>’)?

7-132 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

7. ReferenceElementDef

The ReferenceElementDef for a Reference in a Class is the XML element definition
for the Reference. It gives the name of the Reference and the Class which is the type
of its referencedEnd. The content model also includes the subclasses of this Class,
since any subclass can appear where the Class appears.

To generate a ReferenceElementDef:

Set RefName := The qualified name of the Reference
Set cls := Reference.referencedEnd.type (which is constrained to be a Class)
Set m := GetReferenceMultiplicity(the Reference)
Set RefContents := ‘(‘ + GetClasses(cls, ’’) + ‘)’ + m
Generate the !ELEMENT definition using RefName and RefContents

8. PropertiesEntityDef

The PropertiesEntityDef for a Class is an entity containing a list of the names and
multiplicities of its instance-scope non-derived Attributes.

To Generate a PropertiesEntityDef:

The PropertiesEntityDef is generated by the OutputEntityDefs2 call (see EntityDTD #15)

9. RefsEntityDef

The RefsEntityDef for a Class is an entity containing a list of the names of its non-
derived References.

To Generate a RefsEntityDef:

The RefsEntityDef is generated by the OutputEntityDefs2 call (see EntityDTD #15)

10. CompsEntityDef

The CompsEntityDef for a Class is an entity containing a list of the names its
contained Classes and composition roles.

7. ReferenceElementDef ::= ‘<!ELEMENT’ S RefName S RefContents ‘>’

8. PropertiesEntityDef ::= ‘<!ENTITY’ S ‘%’ S PropsEntityName S Q PropsList Q ‘>’

9. RefsEntityDef ::= ‘<!ENTITY’ S ‘%’ S RefsEntityName S Q RefsList Q ‘>’

10. CompsEntityDef ::= ‘<!ENTITY’ S ‘%’ S CompsEntityName S Q CompsList Q ‘>’

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-133

7

To Generate a CompsEntityDef:

The CompsEntityDef is generated by the OutputEntityDefs2 call (see EntityDTD #15)

11. ClassElementDef

The ClassElementDef for a Class is the XML element definition for the Class. It gives
the name of the Class and indicates the Attributes, contained Classes and References of
the Class. Here, “contained Classes” means, in addition to the Classes actually in the
Namespace of the Class, those Classes which are the types of the contained
AssociationEnds (roles) of composition Associations which have this Class as the
containing Class.

Whereas the ClassElementDef in the Simple DTD rule set explicitly listed all of the
Attributes, References and compositions of the Class, the ClassElementDef contents in
this rule set is a list of the PropertiesEntityDefs, RefsEntityDefs and CompsEntityDefs
of its own Class and all of the Classes from which it is derived.

To Generate a ClassElementDef:

Set ClassName := the qualified name of the Class
Set props := GetPropertiesEntities2(the Class, ‘’)
Set refs := GetRefsEntities2(the Class, ‘’)
If Length(refs) > 0 Then

Set refs := ’(’ +’XMI.extension’ + ’*’ + ’, ’ + refs + ’)’
Else

Set refs := ’(’ + ’XMI.extension’ +’*’+ ’)’
End
Set comps := GetCompsEntities2(the Class, ‘’)
Set comps2 := GetContainedClasses(the Class, ’’)
Set ClassContents to match the pattern:

 props , refs , comps, comps2
Remove dangling commas caused by empty terms in ClassContents
Set ClassContents := ‘(’ + ClassContents + ‘)’ + ’?’
Set ClassAttlistItems := ’%XMI.element.att; %XMI.link.att;’
Generate the !ELEMENT and !ATTLIST definitions using ClassName, ClassContents and
ClassAttlistItems.

12. CompositionDTD

A CompositionDTD is a DTD fragment for an Association which has an
AssociationEnd whose aggregation is composite. The CompositionDTD, although
defined at the Package level, appears in the content model of the Class that contains

11. ClassElementDef ::= ‘<!ELEMENT’ S ClassName S ClassContents ‘>’
 ‘<!ATTLIST’ S ClassName S ClassAttListItems ‘>’

7-134 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

the Reference to the AssociationEnd as an exposedEnd. It also appears in the content
models of the subclasses of this Class.

To generate a CompositionDTD:

Generate the CompositionElementDef (#13)

13. CompositionElementDef

The CompositionElementDef is the XML element generated for an Association which
has a Reference whose aggregation is composite. It names the Reference and the Class
which is the type of its referencedEnd. It also contains the names of the subclasses of
this Class, since an instance of one of these can be used wherever the Class is used.

To Generate a CompositionElementDef:

Set Container := the Class containing the Reference whose exposedEnd is the
AssociationEnd whose aggregation is composite.
Set RoleName := the qualified name of the Reference in Container.
Set Contained := the Class which is Reference.referencedEnd.type
Set m := GetReferenceMultiplicity(the Reference)
Set CompContents := GetClasses(Contained, ’’)
Set CompContents := ’(’ + CompContents + ’)’ + m
Generate the !ELEMENT definition using RoleName and CompContents

14. PackageElementDef

The PackageElementDef gives the name of a Package and indicates the contents of the
Package.

12. CompositionDTD ::= 13:CompositionElementDef

13. CompositionElementDef ::= ‘<!ELEMENT’ S RoleName S CompContents ‘>’

14. PackageElementDef ::= ‘<!ELEMENT’ S PkgName S PkgContents ‘>’
 ‘<!ATTLIST’ S PkgName S PkgAttListItems‘>’

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-135

7

To Generate a PackageElementDef

Set PkgName := the fully qualified name of the Package
Set atts := GetClassLevelAttributes(the Package)
Set atts2 := ’’
For each Package contained in the Package Do

Set temp := GetNestedClassLevelAttributes(the contained Package)
If Length(temp) > 0 Then

If Length(att2s) > 0 Then
Set atts2 := ’(’ + atts2 + ’)’ + ,

End
Set temp := ’(’ + temp + ’)’

End
Set atts2 := atts2 + temp

End
Set classes := GetPackageClasses(the Package)
Set assns := GetUnreferencedAssociations(the Package)
Set pkgs := GetContainedPackages(the Package)
Set PkgContents to match the pattern:

(atts) , (atts2) , (classes | assns | pkgs) *
Remove empty parentheses and any dangling commas from PkgContents
If Length(PkgContents) > 0 Then

Set PkgContents := ‘(‘ + PkgContents + ‘)’
Else

Set PkgContents := ‘EMPTY’
End
Set PkgAttlistItems := ’%XMI.element.att; %XMI.link.att;’
Generate the !ELEMENT and !ATTLIST definitions using PkgName, PkgContents and
PkgAttlistItems

15. EntityDTD

Rather then being repeated in the Element definition for a Class and all of its
subclasses, the Attributes, References and compositions of the Class are placed into
Entity definitions and referenced from the Element definitions of the Class and its
subclasses. Changing an Entity definition results in the change appearing in all of
these Package. There can be up to three entity definitions for the Class, one each for
the Attributes, References and compositions of the Class. If the content of the entity is
empty, it need not be present.

To Generate an EntityDTD:
Call OutputEntityDefs2 (the topmost Package in the metamodel)

 16. AssociationDTD

An AssociationDTD is generated only for Associations which have no References.
Associations with at least one Reference are handled as normal References or

15. EntityDTD ::= (8:PropsEntityDef? 9:RefsEntityDef? 10:CompsEntityDef?)+

7-136 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

Compositions. The AssociationDTD defines elements for the two AssociationEnds of
the Association.

To Generate an AssociationDTD:

Generate an AssociationEndDef (#17) for the first AssociationEnd of the Association
Generate an AssociationEndDef (#17) for the second AssociationEnd of the
Association
Generate the AssociationDef (#18) for the Association

 17. AssociationEndDef

An AssociationEndDef is generated for an AssociationEnd of an Association with no
references. It is simply a place holder for a content reference.

To Generate an AssociationEndDef:

Set EndName := the qualified name of the AssociationEnd.
Set EndAtts := ’%XMI.link.att;’
Generate the AssociationEndDef using EndName and EndAtts

 18. AssociationDef

An AssociationDef is generated for an Association with no References and contains a
specification that allows an unlimited number of end1-end2 pairs.

To Generate an AssociationDef:

Set AssnName := the qualified name of the Association.
Set EndAtts := ’%XMI.element.att; %XMI.link.att;’
Generate the AssociationDef using AssnName and AssnAtts

16. AssociationDTD ::= 17:AssociationEndDef 17:AssociationEndDef
 18: AssociationDef

17. AssociationEndDef ::= ’<!ELEMENT’ S EndName S ’EMPTY’ ‘>’
 ‘<!ATTLIST’ S EndName S EndAtts‘>’

18:AssociationDef ::= ’<!ELEMENT’ S AssnName S ’AssnContents ‘>’
 ‘<!ATTLIST’ S AssnName S AssnAtts‘>’

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-137

7

7.3.4 Auxiliary functions

The following auxiliary functions are used in this rule set. They have a suffix of “2”,
which indicates that they are introduced in this rule set. Functions referenced which
do not end in "2" are defined in the Simple DTD rule set, and their definitions are not
repeated here.

OutputEntityDefs2

This function controls the definition of all entity definitions in the EntityDTD for the
metamodel. It must first be called for the outermost Package in the model; it calls
itself recursively for other Packages in the metamodel. It finds those Classes which
are not derived from any other Class and calls the entity definition functions
(OutputPropertiesEntityDef2, OutputRefsEntityDef2 and OutputCompsEntityDef2) for
these Classes. These functions call themselves recursively for every subclass of these
Classes, thereby generating all required entity definitions in the proper order.

Subroutine OutputEntityDefs2(in pkg: Package)
For each Class in pkg Do

If the Class.supertype is null Then
Call OutputPropertiesEntityDef2 (the Class, ’’, ’’)
Call OutputRefsEntityDef2(the Class, ’’, ’’)
Call OutputCompsEntityDef2(the Class, ’’, ’’)

End
End
For each Package contained in pkg Do

Call OutputEntityDefs2(the Package)
End

End

7-138 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

OutputPropertiesEntityDef2

The OutputPropertiesEntityDef2 function is a recursive function that creates an Entity
definition for the instance-level Attributes of a Class and then calls itself to generate
those for all of the subclasses of the Class. This Entity definition consists of a listing
of all of the instance-level Attributes for the Class. It is possible for the entity content
to be empty; if so, the entity is not generated. This fact is remembered so that the
entity will not be referenced.

The prevCls parameter is used to insure that the function does not attempt to generate
the PropertiesEntityDef more than once, which would otherwise happen in inheritance
hierarchies including multiple inheritance.

The function is defined as follows:

Subroutine OutputPropertiesEntityDef2(in cls: Class, inout prevCls: String)
If cls appears in prevCls, Then

Return the empty string (’’)
End
Set PropsEntityName := the qualified name of the Class + ’Properties’
Set PropsList := GetAttributes(cls, ’instance’)
If Length(PropsList) > 0) Then

Generate the PropertiesEntityDef (#8), using PropsEntityName and PropsList
Remember that an entity was generated for cls

End
Add cls to prevCls
For each subclass of cls Do

Call OutputPropertiesEntityDef2(the subclass, prevCls)
End

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-139

7

OutputRefsEntityDef2

The OutputRefsEntityDef2 function is similar to OutputPropertiesEntityDef2, except
that it produces a set of RefsEntitiesDefs instead of PropertiesEntityDefs.

Subroutine OutputRefsEntityDef2(in cls: Class, inout prevCls: String,)
If cls appears in prevCls, Then

Return the empty string (’’)
End
Set RefsEntityName := the qualified name of the Class + ’Associations’
Set RefsList := GetReferences(cls)
If Length(RefsList) > 0 Then

Set RefsList := ’(’+ RefsList + ’)’
Generate the RefsEntityDef (#9), using RefsEntityName and RefsList
Remember that an entity def was generated for cls

End
Add cls to prevCls
For each subclass of cls Do

Call OutputRefsEntityDef2(the subclass, prevCls)
End

End

7-140 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

OutputCompsEntityDef2

The OutputCompsEntityDef2 function is similar to OutputPropertiesEntityDef2, except
that it produces a set of CompsEntitiesDefs instead of PropertiesEntityDefs.

Subroutine OutputCompsEntityDefEntityDTD(in cls: Class, inout prevCls: String)
If cls appears in prevCls, Then

Return the empty string (’’)
End
Set CompsEntityName := the qualified name of the Class + ’Compositions’
Set CompsList := GetComposedRoles(cls)
If Length(CompsList) > 0 Then

Set CompsList := ’(’ + CompsList + ’)’
Generate the CompsEntityDef (#9), using CompsEntityName and CompsList
Remember that an entity was generated for cls

End
Add cls to prevCls
For each subclass of cls Do

Call OutputCompsEntityDef2(the subclass
End

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-141

7

GetContainedClasses2

The GetContainedClasses2 function returns a string describing the Classes contained in
a MOF Class by means of the “Namespace-Contains-ModelElement” link only. It does
not include the list of Classes contained by composition.

Function GetContainedClasses2(in cls : Class) Returns String
Set classes := ‘’
For Each Class contained in cls Do

Set Temp := Qualified name of the Class.
If Length(classes) > 0 Then

Set classes := classes + ‘|’
End
Set classes := classes + Temp

End
Return classes

End

7-142 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetPropertiesEntities2

The GetPropertiesEntities2 function collects together a sequence of invocations of the
PropertiesEntityDefs for the given Class and the Classes from which it is derived.

The “previousCls” parameter is used to avoid duplications due to multiple inheritance.

Function GetPropertiesEntities2(in cls: Class, inout previousCls : String) Returns String
If cls appears in previousCls Then

Return the empty string (’’)
End
Set parentProps := the empty string (’’)
For each parent Class of cls Do

Set temp := GetPropertiesEntities2(the parent Class, prevCls)
If Length (temp) > 0 Then

If Length(parentProps) > 0 Then
Set parentProps := parentProps + ’,’

End
Set parentProps := parentProps + temp

End
End
Set ClassName := the qualified name of cls
Set props := the empty string (’’)
If a property ENTITY was generated for cls (see #8) Then

If Length (parentProps) > 0 Then
Set parentProps := parentProps + ’,’

End
Set props := ‘%’ + ClassName + ’Properties’ + ’;’

End
Add cls to previousCls
Return parentProps + props

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-143

7

GetRefsEntities2

The GetRefsEntities2 function collects together a sequence of invocations of the
RefsEntityDefs for the given Class and the Classes from which it is derived.

The “previousCls” parameter is used to avoid duplications due to multiple inheritance.

Function GetRefsEntities2(in cls: Class, inout previousCls : String) Returns String
If cls appears in previousCls Then

Rreturn the empty string (’’)
End
Set parentRefs := the empty string (’’)
For each parent Class of cls Do

Set temp := GetRefsEntities2(the parent Class, previousCls)
If Length (temp) > 0) Then

If Length (parentRefs) > 0 Then
Set parentRefs := parentRefs + ’,’

End
Set parentRefs := parentRefs + temp

End
End
Set ClassName := the qualified name of cls
Set refs := the empty string (’’)
If a References ENTITY was generated for cls (See #9) Then

If Length(parentRefs) > 0 Then
Set parentRefs := parentRefs + ’,’

End
Set ref := ‘%’ + ClassName + ’Associations’ + ’;’

End
Add cls to previousCls
Return parentRefs + refs

End

7-144 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetCompsEntities2

The GetCompsEntities2 function collects together a sequence of invocations of the
CompsEntityDefs for the given Class and the Classes from which it is derived.

The “previousCls” parameter is used to avoid duplications due to multiple inheritance.

Function GetCompsEntities2(in cls: Class, inout previousCls : String) Returns String
If cls appears in previousCls Then

Return the empty string (’’)
End
Set parentComps := the empty string (’’)
For each parent Class of cls Do

Set temp := GetCompsEntities2(the parent Class, previousCls)
If Length(temp) > 0 Then

If Length(parentComps) > 0 Then
Set parentComps := parentComps + ’,’

End
Set parentComps := parentComps + temp

End
End
Set ClassName := the qualified name of cls
Set comps := the empty string (’’)
If a compositions !ENTITY was generated for cls Then

If Length (parentComps) > 0 Then
Set parentComps := parentComps + ’,’

End
Set comps := ‘%’ + ClassName + ’Compositions’ + ’;’

End
Add cls to previousCls
Return parentComps + comps

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-145

7

7.4 Rule Set 3: Hierarchical Grouped entities

Although the productions in the previous rule set are more compact than the first, it
still means the repetition of a number of entity names in each element definition. The
set of rules in this section allows for the grouping of the parts of an object into entity
definitions, as in the Grouped Entity rule set and adds the ability to group the usage of
these definitions into hierarchies that reflect the generalization hierarchy(s) in the
defined metamodel. The size of the generated DTD is approximately the same as that
in Rule Set 2.

A more complete description of the design principles used in this Rule Set can be
found in Section 6.6, “Metamodel Class Specification.

This rule set requires much more computational complexity than the Simple DTD rule
set and somewhat more than in the Grouped Entity rule set. In particular, the DTD
generation program must:

• Generate the entities for a Class in inheritance order, i.e. starting at the topmost
Class(es) in any inheritance hierarchy(ies) and proceed downward while avoiding
duplication of entities in cases of multiple inheritance, and

• Be able to keep a table of generated enumerated type entities in order to re-use them
and avoid duplicate entity generation.

As in the Simple DTD and Grouped Entity rule sets, The DTD for a MOF-based
metamodel consists of a set of DTD definitions for the outermost Packages in the
metamodel.

7.4.1 EBNF

The EBNF for rule set 3 is listed below with rule descriptions between sections:

1. <DTD> ::= <1b:FixedDeclarations>

 <1f:XMIAttList>?

 <15:EntityDTD>

 <2:PackageDTD>+

1a. <XMIFixedAttribs> ::= "%XMI.element.att;" "%XMI.link.att;"

1b. <FixedDeclarations> ::= //Fixed declarations//

1c. <Q> ::= "’" | ’"’

1d. <Namespace> ::= (//Name of namespace// ":")?

1e. <Extension> ::= "XMI.extension"

1f. <XMIAttList> ::= "<!ATTLIST" "XMI" ("xmlns:"

 //Name of namespace// "CDATA" "#IMPLIED")+

 ">"

1. A DTD consists of a set of fixed Declarations plus declarations for the namespace
contents of the Packages of a metamodel.

7-146 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

1a. The fixed attributes present on the major elements provide element identity and
element linking.

1b. The fixed declarations are listed in section 7.5.

1c. Q represents a single or double quote mark, used to delimit the contents of XML
entity definitions.

1d. The namespace name followed by a ":". If no namespace name is given, the rule is
a blank.

1e. The XMI.extension element.

1f. The XMI element attribute declaration for the namespace, if used.

2. <PackageDTD> ::= (<2:PackageDTD>

 | <3:ClassDTD>

 | <4:AttributeElmtDTD>

 | <12:CompositionDTD>

 | <16:AssociationDTD>)*

 <14:PackageElementDef>

2. The DTD contribution from a Package consists of the declarations for any contained
Packages, Classes, classifier level Attributes, composite aggregations, Associations
without References, and an XML element defintion of the Package itself.

3. <ClassDTD> ::= (<4:AttributeElmtDef>

 | <7:ReferenceElmtDef>)*

 <11:ClassElementDef>

3. The Class DTD contribution consists of the declarations for the Class, its Attributes,
and References.

4. <AttributeElmntDTD> ::= <5:AttribEnumEntDef>?

 <6:AttributeElementDef>

4. These rules define the declaration of an element defintion for an Attribute of a
Class. If the Attribute has a type which is an enumerated type, an entity definition for
that enumerated type is also generated.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-147

7

5. <AttribEnumEntDef> ::= "<!ENTITY %" <5a:AttribEnumTypeName>

 <Q> "xmi.value" "(" <5b:AttribEnumValues> ")"

 "#REQUIRED" <Q> ">"

5a. <AttribEnumTypeName> ::= //Name of the Enumeration DataType//

5b. <AttribEnumValues> ::= <5c:AttribEnum> ("|" <5c:AttribEnum>)*

5c. <AttribEnum> ::= //Name of Enumeration Literal//

5. These rules define the entity declaration for the values of a set of enumerated values.
This entity is invoked as the XML attribute "xmi.value" in the XML element definition
for any Attribute which uses this set of enumerated values.

5a. The name of the XML entity representing an enumerated value set is the element
name of the DataType which is the type of the Attribute.

5b, 5c. All of the enumeration literals for the enumerated type are listed.

Note – If the MOF Tag "org.omg.xmi.enumerationUnprefix" is attached to this
DataType, the value of this Tag contains a prefix which will be removed from the
values of enumeration literals before they are written in the DTD.

6. <AttributeElmtDef> ::= "<!ELEMENT" <6a:AttribElmtName>

 <6c:AttribContents> ">"

 ("<ATTLIST " <6a:AttribElmtName>

 <6g:AttribEntityInv> ">")?

6a. <AttribElmtName> ::= <11a:ClassElmtName> "." <6b:AttribName>

6b. <AttribName> ::= //Name of Attribute//

6c. <AttribContents> ::= <6d:AttribData>

 | <6e:AttribEnum>

 | <6f:AttribClasses>

6d. <AttribData> ::= "(" "#PCDATA" "|" "XMI.reference" ") "*"

6e. <AttribEnum> ::= "EMPTY"

6f. <AttribClasses> ::= "(" <11a:ClassElmtName>

 ("|" <11a:ClassElmtName>)* ")*"

6g. <AttribEntityInv> ::= "%" <5a:AttribTypeName> ";" "|"

6. These rules define the declaration of an Attribute as an XML element, with an XML
attribute list in the case that the Attribute has an enumerated type. There is also a
declaration of an Attribute as an XML attribute in rule 19a, allowing flexibility by the
document writer to choose which representation is most convenient in a particular use
in an XML document.

7-148 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

6a, 6b. The name of the XML element representing a model Attribute is the element
name of the Class containing the Attribute, a dot separator, and the name of the
Attribute.

6c. An Attribute which can be expressed as a data value is expressed in terms of a
string or reference to its content (6d), an enumeration with an invocation of the XML
entity declared in rule 5 (6e, 6g). An Attribute which has a Class as its value is
expressed in terms of the possible Class types that can be instances of its value (6f). If
the Class has subclasses, the element name of each of its subclasses is included in the
declaration.

7. <ReferenceElmtDef> ::= "<!ELEMENT" <7a:ReferenceElmtName>

 <7c:RefContents> ">"

7a. <ReferenceElmtName> ::= <11a:ClassElmtName> "." <7b:ReferenceName>

7b. <ReferenceName> ::= //Name of Reference//

7c. <RefContents> ::= "(" <11a:ClassElmtName>

 ("|" <11a:ClassElmtName>)* ")*"

7. These rules define the declaration of a model Reference in a Class as an XML
element for linking by proxy. There is also a declaration of a Reference as an XML ID
reference attribute in rule 19j, allowing flexibility by the document writer to choose
which representation is most convenient in a particular use in an XML document.

7a, 7b. The name of the XML element representing a Reference is the element name of
the Class containing the Referenc, a dot separator, and the name of the Reference.

7c. The element name of the type of the Reference is given as the ref contents. The
subclasses of the type can be, but need not be, included as well.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-149

7

8. <PropertiesEntDef> ::= "<!ENTITY" "%" <8a:PropsEntityName>

 <Q> <8b:PropsList> <Q> ">"

8a. <PropsEntityName> ::= <11b:ClassName> "Properties"

8b. <PropsList> ::= <8c:AllInstanceAttrs>

8c. <AllInstanceAttrs> ::= <8d:SuperclassPropEntInv>?

 <8e:SuperclassAttributes>*

 <8f:InstanceAttributes>?

8d. <SuperclassPropEntInv> ::= "%" <8g:SuperclassName> "Properties;"

 ("|")?

8e. <SuperclassAttributes> ::= <6a:AttribElmtName>

 ("|" <8e:SuperclassAttributes>)*

8f. <InstanceAttributes> ::= <6a:AttribElmtName>

 ("|" <8f:InstanceAttributes>)*

8g. <SuperclassName> ::= <11b:ClassName>

8. These rules define the entity declaration of the instance-level Attributes in a
particular Class. There is also a declaration of the Attributes as XML attribute in rule
11g, allowing flexibility by the document writer to choose which representation is most
convenient in a particular use in an XML document. If the props list in 8b is empty,
the declaration is suppressed.

8a. The name of the XML entity representing the instance-level model Attributes is
based on the name of the Class owning the Attribute.

8b, 8c. The props list for a Class consists of all of the instance-level Attributes in the
Class, including those of the parent classes. The list is generated by invoking the
Properties entity for (one of the) superclass(es) of the Class and adding the Attributes
of the Class itself. If there is more than one superclass, see rules 8e and 8g.

8d. At most one props entity for a superclass is invoked. Note that the "|" following
the invocation of the entity is only produced when there are either additional
superclass attributes (8e) or instance attributes (8f).

8e, 8g. In the case where there is more than one superclass of the Class, the individual
Attributes of the additional superclass(es) and all of its (their) superclasses are listed.

8f. All non-derived instance-level Attributes of the Class are listed.

7-150 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

9. <RefsEntityDef> ::= "<!ENTITY" "%" <9a:RefsEntityName>

 <Q> <9b:RefsList> <Q> ">"

9a. <RefsEntityName> ::= <11b:ClassName> "Associations"

9b. <RefsList> ::= <9c:AllReferences>

9c. <AllReferences> ::= <9d:SuperclassRefsEntInv>?

 <9e:SuperclassReferences>*

 <9f:InstanceAttributes>?

9d. <SuperclassRefsEntInv> ::= "%" <8g:SuperclassName> "Associations;"

 ("|") ?

9e. <SuperclassReferences> ::= <7a:ReferenceElmtName>

 ("|" <9e:SuperclassReferences>)*

9f. <InstanceReferences> ::= <7a:ReferenceElmtName>

 ("|" <9f:InstanceReferences>)*

9. These rules define the entity declaration of the instance-level model References in a
particular Class. There is also a declaration of the model references as XML attribute
in rule 19g, allowing flexibility by the document writer to choose which representation
is most convenient in a particular use in an XML document. If the refs list in 9b is
empty, the declaration is suppressed.

9a. The name of the XML entity representing the Reference is based on the name of
the Class owning the Reference.

9b, 9c. The refs list for a Class consists of all of the References in the Class, including
those of the parent Classes. The list is generated by invoking the Refs entity for (one
of the) superclass(es) of the Class and adding the References of the Class itself. If
there is more than one superclass, see rule 9e.

9d. At most one refs entity for a superclass is invoked. Note that the "|" following the
invocation of the entity is only produced when there are either additional superclass
References (9e) or Instance References of the Class (9f).

9e. In the case where there is more than one superclass of a Class, the individual
References of the additional superclass(es) and all of its (their) superclasses are listed.

9f. All References of the Class itself are listed.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-151

7

10. <CompsEntityDef> ::= "<!ENTITY" "%" <10a:CompsEntityName>

 <Q> <10b:CompsList> <Q> ">"

10a. <CompsEntityName> ::= <11b:ClassName> "Compositions"

10b. <CompsList> ::= <10c:AllComposedRoles>

10c. <AllComposedRoles> ::= <10d:SupclsCompsEntInv>?

 <10e:SuperclassComposedRoles>*

 <10f:ComposedRoles>?

10d. <SupclsCompsEntInv> ::= "%" <8g:SuperclassName> "Compositions;"

 ("|")?

10e. <SupclsComposedRoles> ::= <10g:ComposedRole>

 ("|" <10e:SupclsComposedRoles>)*

10f. <ComposedRoles> ::= <10g:ComposedRole>

 ("|" <10f:ComposedRoles>)*

10g. <ComposedRole> ::= <13a:RoleElmtName>

10. The composition entity for a Class is the list of Classes contained in it by
composite References, i.e. those that have an exposedEnd whose aggregation value is
composite. This entity is used in the class contents XML element. If the comps list in
10b is empty, the declaration is suppressed.

10a. The name of the composition entity is based on the name of the Class.

10b, 10c. The comps list for a Class consists of all of the composed Roles in the Class,
including those of the parent Classes. The list is generated by invoking the Comps
entity for (one of the) superclass(es) of the Class and adding the compositions of the
Class itself. If there is more than one superclass, see rule 10e.

10d. At most one comps entity for a superclass is invoked. Note that the "|" following
the invocation of the entity is only produced when there are either additional
superclass composed roles (10e) or composed roles of the Class (10f).

10e, 10g. In the case where there is more than one superclass of a the Class, the
individual compositions of the additional superclass(es) and all of its (their)
superclasses are listed.

10f. All instance-level compositions of the Class are listed.

7-152 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

11. <ClassElementDef> ::= "<!ELEMENT" <11a:ClassElmtName>

 <11c:ClassContents> ">"

 "<!ATTLIST" <11a:ClassElmtName>

 <11g:ClassAttListItems> ">"

11a. <ClassElmtName> ::= <1d:Namespace> <11b:ClassName>

11b. <ClassName> ::= //Name of Class//

11c. <ClassContents> ::= "(" <11d:ClassAttribEntityInv>?

 <11e:ClassRefEntityInv>?

 <11f:ClassCompEntityInv>?

 <11ab:ClassesContained>?

 <1e:Extension> ")*" ">"

11d. <ClassAttribEntityInv> ::= "%" <8a:PropsEntityName> ";" "|"

11e. <ClassRefEntityInv> ::= "%" <9a:RefsEntityName> ";" "|"

11f. <ClassCompEntityInv> ::= "%" <10a:CompsEntityName> ";" "|"

11g. <ClassAttListItems> ::= (<11h:ClassAttPropsEntInv>?

 | <11i:ClassAttRefEntInv>?)*

 <1a:XMIFixedAttribs>

11h. <ClassAttPropsEntInv> ::= "%" <11k:ClassAttPropsEntName> ";"

11i. <ClassAttRefEntInv> ::= "%" <11u:ClassAttRefsEntName> ";"

11j. <ClassAttPropsEntity> ::= "<!ENTITY" "%" <11k:ClassAttPropsEntName>

 <Q> <11l:AttPropsList> <Q> ">"

11k. <ClassAttPropsEntName> ::= <11b:ClassName> "AttPropsList"

11l. <AttPropsList> ::= <11m:AllAttListAttributes>

11m. <AllAttListAttributes> ::= <11n:SupclsAttPropsEntInv>?

 <11o:SupclsAttListAttrs>*

 <11p:ClassAttribAtts>?

11n. <SupclsAttPropsEntInv> ::= "%" <8g:SuperclassName> "AttListProps;"

11o. <SupclsAttListAttrs> ::= <11p:ClassAttribAtts>

 <11o:SupclsAttListAttrs>*

11p. <ClassAttribAtts> ::= (<11q:ClassAttribData>

 | <11r:ClassAttribEnum>)*

11q. <ClassAttribData> ::= <6b:AttribName> "CDATA" "#IMPLIED"

 <11s:ClassAttribDflt>?

11r. <ClassAttribEnum> ::= <6b:AttribName>

 "(" <5b:AttribEnumValues> ") #IMPLIED"

 <11s:ClassAttribDflt>?

11s. <ClassAttribDflt> ::= //Default value//

11t. <ClassAttRefEntity> ::= "<!ENTITY" "%" <11u:ClassAttRefsEntName>

 <Q> <11v:AttRefsList> <Q> ">"

11u. <ClassAttRefsEntName> ::= <11b:ClassName> "AttRefsList"

11v. <AttRefsList> ::= <11w:AllAttListReferences>

11w. <AllAttListReferences> ::= <11x:SupclsAttRefsEntInv>?

 <11y:SupclsAttListRefs>*

 <11z:ClassAttribRefs>?

11x. <SupclsAttRefsEntInv> ::= "%" <8g:SuperclassName> "AttListRefs;"

11y. <SupclsAttListRefs> ::= <11z:ClassAttribRefs>

 <11y:SupclsAttListRefs>*

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-153

7

11z. <ClassAttribRefs> ::= <11aa:ClassAttribRef>*

11aa.<ClassAttribRef> ::= <7b:ReferenceName> "IDREFS" "#IMPLIED"

11ab. <ClassesContained> ::= <11a:ClassElmtName> "|"

 (<11a:ClassElmtName> "|")*

11. These rules describe the declaration of a Class as an XML element with an XML
attribute list.

11a, 11b. The name of the XML element for the Class is name of the Class prefixed by
the namespace, if present.

11c. The XML element for the Class contains XML elements for the Attributes,
References, compositions, contained Classes, and the extension element.

11d. The list of XML element names for the Class’s Attributes in the metamodel is
obtained by invoking the Class’s props entity for the Class’s Attributes (8), if it was
generated.

11e. The list of XML element names for the Class’s non-composite References in the
metamodel is obtained by invoking the Class’s refs entity (9), if it was generated.

11f. The list of XML element names for the Class’s compositions in the metamodel is
obtained by invoking the Class’s comps entity (10), if it was generated.

11g. The list of XML attributes for the Class is the list of single-valued string-
representable Attributes, References, and the fixed identity and linking attributes.

11h. The list of XML attributes for the Class’s Attributes (properties) is obtained by
invoking the Class’s AttListProps entity (11k), if it exists.

11i. The list of XML attributes for the Class’s non-composite References is obtained
by invoking the Class’s AttListRefs (11u), if it exists.

11j, 11l, 11m. The declaration of the XML AttListProps entity for the Attributes with
single-valued values represented by CDATA strings or enumeration literals, including
inherited attributes.

11k. The entity name is based on the name of the Class for which it is defined.

11n. At most one entity for the superclass properties is invoked. If there is more than
one superclass, rule 11o is used for the additional superclass(es).

11o. All non-derived instance-level Attributes which can be expressed as single string
values are listed for all of the additional superclasses.

11p. All non-derived instance-level Attributes of the Class are listed that can be
expressed as single string values.

11q. The XML Attribute declaration for single-valued values represented by CDATA
and default, if present.

7-154 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

11r. The XML attribute declaration for enmerated model Attributes, with the list of
enumeration literals and default, if present.

11s. If the model Attribute has a default value that can be specified as a CDATA
string, it is placed here. The default value for an Attribute may be specified in a MOF
model attaching a MOF "org.omg.xmi.defaultValue" Tag to it; the value of this tag
specifies the default.

11t. The declaration of an XML entity of the list of the Class’s non-composite
References of a particular Class. If the list of References in 11v is empty, the
declaration is suppressed.

11u. The entity name is based on the name of the Class for which it is defined.

11v, 11w. All of the instance-level References in a particular Class are listed.

11x. At most one attribute list references entity for a superclass is invoked. If a Class
has more than one superclass, rule 11y is used for the References of the additional
superclass(es).

11y. All instance-level References of all additional superclass are listed.

11z, 11aa. The XML attribute declaration for each instance-level Reference using
XML id references.

11ab. The XML element for the Class contains a list of the element names of all
contained (nested) classes following the MOF Namespace-contains-ModelElement
relationship.

12. <CompositionDTD> ::= <13:CompositionElmtDef>

12. The compositionDTD is the contribution of a DTD from composition element
definitions (13).

13. <CompositionElmtDef> ::= "<!ELEMENT" <13a:RoleElmtName>

 "(" <13c:CompContents> ")*" ">"

13a. <RoleElmtName> ::= <11a:ClassElmtName> "." <13b:RoleName>

13b. <RoleName> ::= //Name of Role//

13c. <CompContents> ::= <11a:ClassElmtName> ("|" <13c:CompContents>)*

13. The composition XML element is generated for each Reference in the Package
which has an exposedEnd whose aggregation value is composite. This element is used
in the class contents XML element. The XML element contains a list of contained
classes and subclasses (13c).

13a, 13b. The name of the XML element is the name of the containing Class, followed
by a dot separator and the name of the Reference.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-155

7

13c. The list of XML elements for the type of the referenced end of the Reference and
all of its subclasses.

14. <PackageElementDef> ::= "<!ELEMENT" <14a:PkgElmtName>

 <14c:PkgContents> ">"

 "<!ATTLIST" <14a:PkgElmtName>

 <14h:PkgAttListItems> ">"

14a. <PkgElmtName> ::= <1d:Namespace> <14b:PkgName>

14b. <PkgName> ::= //Name of Package//

14c. <PkgContents> ::= "(" <14d:PkgAttributes> ?

 <14e:PkgClasses> ?

 <14f:PkgAssociations> ?

 <14g:PkgPackages> ?

 <1e:Extension> ")*" ">"

14d. <PkgAttributes> ::= <6a:AttribElmtName>

 ("|" <6a:AttribElmtName>)* "|"

14e. <PkgClasses> ::= <11a:ClassElmtName>

 ("|" <11a:ClassElmtName>)* "|"

14f. <PkgAssociations> ::= <18a:AssnElmtName>

 ("|" <18a:AssnElmtName>)* "|"

14g. <PkgPackages> ::= <14b:PkgElmtName>

 ("|" <14b:PkgElmtName>)* "|"

14h. <PkgAttListItems> ::= <14i:PkgAttribAtts> <1a:XMIFixedAttribs>

14i. <PkgAttribAtts> ::= <11p:ClassAttribAtts>

14. The DTD contribution from the Package consists of an XML element definition for
the Package, with a content model specifying the contens of the Package.

14a, 14b. The name of the Package XML element.

14c. The Package contains classifier level Attributes, unreferenced Associations,
Classes, nested Packages, and extensions.

14d. Classifier level Attributes of a Package (i.e. of the Classes of the Package) are
also known as static Attributes. Attributes inherited from packages from which this
Package is derived are also included.

14e. Each Class in the Package is listed. Classes inherited from Packages from which
this Package is derived are also included.

14f. It is possible that the Package contains unreferenced Associations, i.e. no Class
contains a Reference that refers to an AssociationEnd owned by the Association.
Every such Association contained in the Package or some Package from which the
Package is derived is listed as part of the contents of the Package in order that its
information be transmitted by the XML document.

14. Nested Packages are listed. Nested Packages inherited from Packages from which
this Package is derived are also included.

7-156 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

14h, 14i. Classifier level Attributes (14d) can be expressed as part of the XML
attribute list for the Package, if their value is expressible as a string. Otherwise, the
same rules as in 14d apply. The fixed identity and linking XML attributes are
included.

15. <EntityDTD> ::= (<8:PropertiesEntDef>

 | <9:RefsEntityDef>

 | <10:CompsEntityDef>

 | <11j:ClassAttPropsEntity>

 | <11t:ClassAttRefEntity>)+

15. The entities for properties (XML elements and XML attributes), references (XML
elements and XML attributes), and compositions (XML elements) are generated.

16. <AssociationDTD> ::= <17:AssociationEndDef>

 <17:AssociationEndDef>

 <18:AssociationDef>

16. The declaration of an Association with no References consists of the names of its
AssociationEnd XML elements.

17. <AssociationEndDef> ::= "<!ELEMENT" <17a:AssocEndElmtName> "EMPTY" ">"

 "<!ATTLIST" <17a:AssocEndElmtName>

 <17c:AssocEndAtts> ">"

17a. <AssocEndElmtName> ::= <18a:AssnElmtName> "." <17b:AssocEndName>

17b. <AssocEndName> ::= //Name of AssociationEnd//

17c. <AssocEndAtts> ::= <1a:XMIFixedAttribs>

17. The declaration for an AssociationEnd XML element has no content model, though
it has the standard set of XML attributes.

17a, 17b. The name of the AssociationEnd XML element is the element name of the
Association containing the AssociationEnd, a dot separator, and the name of the
AssociationEnd.

17c. The fixed identity and linking XML attributes are the AssociationEnd’s only
XML attributes.

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-157

7

18. <AssociationDef> ::= "<!ELEMENT" <18a:AssnElmtName>

 <18c:AssnContents> ">"

 "<!ATTLIST" <18a:AssnElmtName> <18d:AssnAtts> ">"

18a. <AssnElmtName> ::= <1d:Namespace> <18b:AssnName>

18b. <AssnName> ::= //Name of Association//

18c. <AssnContents> ::= "(" <17a:AssocEndElmtName> "|"

 <17a:AssocEndElmtName> "|"

 <1e:Extension> ")*"

18d. <AssnAtts> ::= <1a:XMIFixedAttribs>

18, 18c. The declaration of an unreferenced Association consists of the names of its
AssociationEnd XML elements.

18a, 18b. The name of the XML element representing the Association.

18d. The fixed identity and linking XML attributes are the Association’s XML
attributes.

7.4.2 Pseudo-code

The pseudo-code for the rule set is included for reference and to provide illustration of
one possible method for generating a Rule Set 3 DTD.

As in the Simple DTD rule set, The DTD for a MOF-based metamodel consists of a set
of DTD definitions for the outermost Packages in the metamodel.

7.4.3 Rules

1. DTD

The XMI DTD under Rule Set 3 consists of the fixed DTD content which is required
for any XMI DTD, the initial set of entity definitions and the various Package DTD
elements.

Note – The document root type required by XML is defined in the fixed content. This
root element is the “XMI” element. The elements defined in the Package DTD
elements are placed in the content model of this root element.In the productions and
pseudo-code below, the use of ‘DTD’ as a suffix means a fragment of a DTD, not a
complete DTD.

1. DTD ::= FixedContent 15:EntityDTD 2:PackageDTD+

7-158 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

To generate a DTD:

Generate initial fixed XMI definitions common to all MOF-based metamodel DTDs
Generate the EntityDTD (#15).
Generate the PackageDTD (#2) elements for each Package which is not contained by
another Package.

2. PackageDTD

A PackageDTD is a sequence of DTD elements of various types, reflecting the
contents of the Package. It includes DTD elements describing the Packages and
Classes contained in the Package as well as DTD elements for Classifier-level
Attributes of the Classes contained in the Package and for the References to
compositions made by the Classes of the Package. The rather unusual case of an
Association with no References is also handled at the Package level.

To Generate a PackageDTD:

For Each Class of the Package Do
For each Attribute of the Class Do

If isDerived is false Then
If the scope of the Attribute is classifierLevel Then

Generate an AttributeElementDTD (#4) for the Attribute
End

End
End

End
For Each Association of the Package Do

If isDerived is false Then
If the Association contains an AssociationEnd whose aggregation is
composite Then

Generate the CompositionDTD (#12) for the Association
Else If the Association has no References Then

Generate the AssociationDTD(#16) for the Association
End

End
End
For Each Class of the Package Do

Generate the ClassDTD (#3) for the Class
End
For Each (sub) Package of the Package Do

Generate the PackageDTD (#2) for the (sub) Package
End
Generate the PackageElementDef (#14) for the Package

2. PackageDTD ::= (2:PackageDTD | 3:ClassDTD
| 4:AttributeElementDTD | 12:CompositionDTD
| 16:AssociationDTD)*
 14:PackageElementDef

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-159

7

3. ClassDTD

A ClassDTD is a set of DTD fragments containing type information for non-derived
instance-scope Attributes of the Class and the References that it makes. These are in
addition to entity definitions that summarize the Attributes, References and
compositions of the Class.

To Generate a ClassDTD:

For Each Attribute of the Class Do
If isDerived is false Then

If scope is instanceLevel Then
Generate the AttributeElementDTD (#4) for the Attribute

End
End

End
For Each Reference of the Class Do

If the isDerived attribute of the associated Association is false Then
If the the aggregation of the AssociationEnd which is the exposedEnd of the
Reference is not composite Then

Generate the ReferenceElementDef (#7) for the Reference
End

End
End
Generate the ClassElementDef (#11) for the Class

4. AttributeElementDTD

An AttributeElementDTD is as sequence of DTD fragments for an Attribute. These
fragments include entity definitions for enumerated types and the AttributeElementDef
items.

To Generate an AttributeElementDTD:

If the type of the Attribute refers to a DataType Then
If the DataType.typeCode is Boolean or enum Then

If an AttributeEntityDef for this type name has not previously been produced,
Then

Generate an AttributeEntityDef (#5) for this DataType
End

End
End
Generate an AttributeElementDef (#6) for this Attribute

3. ClassDTD ::= (4:AttributeElementDTD | 7:ReferenceElementDef)*
11:ClassElementDef?

4. AttributeElementDTD ::= 5:AttributeEntityDef? 6:AttributeElementDef

7-160 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

5. AttributeEntityDef

An AttributeEntityDef is an XML entity which specifies an enumerated set of values
which an Attribute may have.

To Generate an AttributeEntityDef:

Set TypeName := the name of the DataType
Set enumvalues := ‘’
For Each possible enumerated value of DataType.typeCode Do

If Length(enumvalues) > 0) Then
Set enumvalues := enumvalues + ‘|’

End
Set enumvalues := enumvalues + the enumerated value

End
Generate the !ENTITY definition using TypeName and enumvalues

6. AttributeElementDef

An AttributeElementDef is the XML element definition for an Attribute. It gives the
name and type (which may be a reference to a Class) for the Attribute.

5. AttributeEntityDef ::= ‘<!ENTITY’ S ‘%’ S TypeName S Q ‘xmi.value’
‘(‘ enumvalues ‘)’ ‘#REQUIRED’ Q ‘>’

6. AttributeElementDef ::= ‘<!ELEMENT’ S AttribName S AttribContents ‘>’
 (‘<!ATTLIST’ S AttribName S AttribAttList ‘>’)?

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-161

7

To Generate an AttributeElementDef:

Set AttribName := the qualified name of the Attribute.
If the type reference refers to a DataType Then

If DataType.typeCode is tk_Boolean or tk_enum Then
Set AttribContents := ‘EMPTY’
Set TypeName := the name of the enumerated type or Boolean
Set AttribAttList := ‘%’ + TypeName + ’;’

Else If DataType.typeCode is tk_string or tk_wstring or tk_char or tk_wchar Then
Set AttribContents := ‘(#PCDATA | XMI.reference)*’

Else If DataType.typeCode is tk_struct Then
Set AttribContents := ‘(XMI.field | XMI.reference)*’

Else If DataType.typeCode is tk_union Then
Set AttribContents := (XMI.unionDiscrim, XMI.field)

Else If DataType.typeCode is tk_sequence or tk_array Then
Set AttribContents := ‘(XMI.octetStream | XMI.seqItem | XMI.reference)*’

Else If DataType.typeCode is tk_any Then
Set AttribContents := ‘(XMI.any)’

Else If DataType.typeCode is tk_objref Then
Set AttribContents := ’(XMI.reference)’

Else If DataType.typeCode is tk_TypeCode Then
Set AttribContents := ’(XMI.CorbaTypeCode | XMI.reference)’

Else
Set AttribContents := ’(#PCDATA | XMI.reference)*

End
Else (the type refers to a Class)

Set AttribContents := ‘(’ + GetClasses(Class, ’’) + ’)’
End
Generate the !ELEMENT and !ATTLIST definitions using AttribName, AttribContents and
AttribAttlist.

7. ReferenceElementDef

The ReferenceElementDef for a Reference in a Class is the XML element definition
for the Reference. It gives the name of the Reference and indicates that it is a
Reference.

To generate a ReferenceElementDef:

Set RefName := The qualified name of the Reference
Set cls := Reference.type (which constrained to be a Class)
Set m := GetReferenceMultiplicity(the Reference)
Set RefContents := ‘(‘ + GetClasses(cls, ’’) + ‘)’ + m
Generate the !ELEMENT definition using RefName and RefContents

7. ReferenceElementDef ::= ‘<!ELEMENT’ S RefName S RefContents ‘>’

7-162 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

8. PropertiesEntityDef

The PropertiesEntityDef for a Class is an entity containing a list of the names and
multiplicities of its instance-scope non-derived Attributes. It also contains an entity
invocation which expands to the Attributes of the Class(es) from which it is derived.

To Generate a PropertiesEntityDef:

The PropertiesEntityDef is generated by OutputEntityDefs3 call (see EntityDTD #15)

9. RefsEntityDef

The RefsEntityDef for a Class is an entity containing a list of the names of its non-
derived References. It also contains an entity invocation which produces the names of
the References from the Class(es) from which it is derived.

To Generate a RefsEntityDef

The RefsEntityDef is generated by OutputEntityDef s3 call (see EntityDTD #15)

10. CompsEntityDef

The CompsEntityDef for a Class is an entity containing a list of the names its
contained Classes and composition roles. It also contains an entity invocation which
produces the names of the compositions from the Class(es) from which it is derived.

To Generate a CompsEntityDef:

The CompsEntityDef is generated by the OutputEntityDefs3 call (See EntityDTD #15)

11. ClassElementDef

The ClassElementDef for a Class is the XML element definition for the Class. It gives
the name of the Class and indicates the Attributes, contained Classes and References of
the Class. Here, “contained Classes” means, in addition to the Classes actually in the
Namespace of the Class, those Classes which are the types of or subtypes of the
AssociationEnds which is the referencedEnds of composition References of the Class.

In this Rule Set, the ClassElementDef consists simply of up to three entity invocations
rather than a complete listing of Attributes, References and composition roles. These

8. PropertiesEntityDef ::= ‘<!ENTITY’ S ‘%’ S PropsEntityName S Q PropsList Q ‘>’

9. RefsEntityDef ::= ‘<!ENTITY’ S ‘%’ S RefsEntityName S Q RefsList Q ‘>’

10. CompsEntityDef ::= ‘<!ENTITY’ S ‘%’ S CompsEntityName S Q CompsList Q ‘>’

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-163

7

entities summarize this information instead. The entity invocations do not appear if
they would be empty.

To Generate a ClassElementDef:

Set ClassName := the qualified name of the Class
Set props := ’’
If a properties entity was generated for this Class Then

Set props := ‘%’ + ClassName + ‘Properties’ + “;”
End
Set refs :=
If a References entity was generated for this Class Then

Set refs := ’,’ + ‘%’ + ClassName + ‘Associations’ + ‘;’
End
Set refs := ‘(‘ + ’ XMI.extension’ + ’*’ + refs + ’)’
Set comps := ’’
If a comps entity was generated for this Class Then

Set comps := ‘%’ + ClassName + ‘Compositions’ + ‘;’
End
Set comps2 := GetContainedClasses(the Class, ’’)
Set ClassContents to match the pattern:

props , refs, comps1, comps2
Remove dangling commas caused by empty terms in ClassContents
If Length(ClassContents) = 0) then

ClassContents := ’EMPTY’
Else

ClassContents := ’(’ + ClassContents + ’)’ + ’?’
End
Set ClassAttlistItems :=’%XMI.element.att; %XMI.link.att;’
Generate the !ELEMENT and !ATTLIST definitions using ClassName, ClassContents
and ClassAttlistItems.

12. CompositionDTD

A CompositionDTD is a DTD fragment for an Association which has an
AssociationEnd whose aggregation is composite. The CompositionDTD, although
defined at the Package level, appears in the content model of the Class that contains
the Reference to the AssociationEnd as an exposedEnd. It also appears in the content
models of the subclasses of this Class.

To generate a CompositionDTD:

Generate the CompositionElementDef (#13)

11. ClassElementDef ::= ‘<!ELEMENT’ S ClassName S ClassContents ‘>’
 ‘<!ATTLIST’ S ClassName S ClassAttListItems ‘>’

12. CompositionDTD ::= 13:CompositionElementDef

7-164 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

13. CompositionElementDef

The CompositionElementDef is the XML element generated for an Association which
has a Reference whose aggregation is composite. It names the Reference and the Class
which is the type of its referencedEnd. It also contains the names of the subclasses of
this Class, since an instance of one of these can be used wherever the Class is used.

To Generate a CompositionElementDef:

Set Container := the Class containing the Reference whose exposedEnd is the
AssociationEnd whose aggregation is composite.
Set RoleName := the qualified name of the Reference in Container.
Set Contained := the Class which is Reference.referencedEnd.type
Set CompContents := GetClasses(Contained, ’’)
Set CompContents := ’(’ + CompContents + ’)’
Generate the !ELEMENT definition using RoleName and CompContents

14. PackageElementDef

The PackageElementDef gives the name of a Package and indicates the contents of the
Package.

13. CompositionElementDef ::= ‘<!ELEMENT’ S RoleName S CompContents ‘>’

14. PackageElementDef ::= ‘<!ELEMENT’ S PkgName S PkgContents ‘>’
 ‘<!ATTLIST’ S PkgName S PkgAttListItems ‘>’

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-165

7

To Generate a PackageElementDef

Set PkgName := the fully qualified name of the Package
Set atts := GetClassLevelAttributes(the Package)
Set atts2 := ’’
For each Package contained in the Package Do

Set temp := GetNestedClassLevelAttributes(the contained Package)
If Length(temp) > 0 Then

If Length(att2s) > 0 Then
Set atts2 := ’(’ + atts2 + ’)’ + ,

End
Set temp := ’(’ + temp + ’)’

End
Set atts2 := atts2 + temp

End
Set classes := GetPackageClasses(the Package)
Set assns := GetUnreferencedAssociations (the Package)
Set pkgs := GetContainedPackages(the Package)
Set PkgContents to match the pattern:

(atts) , (atts2) , (classes | assns | pkgs) *
Remove empty parentheses and any dangling commas from PkgContents
If Length(PkgContents) > 0 Then

Set PkgContents := ‘(‘ + PkgContents + ‘)’
Else

Set PkgContents := ‘EMPTY’
End
Set PkgAttlistItems := ‘%XMI.element.att; %XMI.link.att;’
Generate the !ELEMENT and !ATTLIST definitions using PkgName, PkgContents and
PkgAttlistItems

15. EntityDTD

The EntityDTD portion of the DTD consists of the entity definitions for all Classes of
all Packages in the metamodel. This is managed by a single function,
OutputEntityDefs3, since the Class inheritance hiearchy (ies) does (do) not necessarily
follow Package boundaries, and the process must start at the parent Class(es) of the
hiearchy(ies).

To Generate the EntityDTD:

Call OutputEntityDefs3(the topmost Package in the metamodel)

 16. AssociationDTD

An AssociationDTD is generated only for Associations which have no References.
Associations with at least one Reference are handled as normal References or

15. EntityDTD ::= (8:PropertiesEntityDef | 9:RefsEntityDef | 10:CompsEntityDef)+

7-166 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

Compositions. The AssociationDTD defines elements for the two AssociationEnds of
the Association.

To Generate an AssociationDTD:

Generate an AssociationEndDef (#17) for the first AssociationEnd of the Association
Generate an AssociationEndDef (#17) for the second AssociationEnd of the
Association
Generate the AssociationDef (#18) for the Association

 17. AssociationEndDef

An AssociationEndDef is generated for an AssociationEnd of an Association with no
references. It is simply a place holder for a content reference.

To Generate an AssociationEndDef:

Set EndName := the qualified name of the AssociationEnd.
Set EndAtts := ’%XMI.link.att;’
Generate the AssociationEndDef using EndName and EndAtts

 18. AssociationDef

An AssociationDef is generated for an Association with no References and contains a
specification that allows an unlimited number of end1-end2 pairs.

To Generate an AssociationDef:

Set AssnName := the qualified name of the Association.
Set EndAtts := ’%XMI.element.att; %XMI.link.att;’
Generate the AssociationDef using AssnName and AssnAtts

16. AssociationDTD ::= 17:AssociationEndDef 17:AssociationEndDef
 18: AssociationDef

17. AssociationEndDef ::= ’<!ELEMENT’ S EndName S ’EMPTY’ ‘>’
 ‘<!ATTLIST’ S EndName S EndAtts‘>’

18:AssociationDef ::= ’<!ELEMENT’ S AssnName S ’AssnContents ‘>’
 ‘<!ATTLIST’ S AssnName S AssnAtts‘>’

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-167

7

7.4.4 Auxiliary functions

The following auxiliary functions are used in this rule set. They have a suffix of “3”,
which indicates that they are introduced in this rule set. Otherwise, the auxiliary
functions are the same as in the Simple DTD rule set.

OutputEntityDefs3

This function controls the definition of all entity definitions in the EntityDTD for the
metamodel. It must first be called for the outermost Package in the model; it calls
itself recursively for Packages that are enclosed in Packages. It finds those Classes
which are not derived from any other Class and calls the entity definition functions
(OutputPropertiesEntityDef3, OutputRefsEntityDef3 and OutputCompsEntityDef3) for
these Classes. These functions call themselves recursively for every subclass of these
Classes, thereby generating all required entity definitions in the proper order.

Subroutine OutputEntityDefs3(in pkg: Package)
For each Class in pkg Do

If the Class.supertype is null Then
Call OutputPropertiesEntityDef3 (the Class, ’’, ’’)
Call OutputRefsEntityDef3(the Class, ’’, ’’)
Call OutputCompsEntityDef3(the Class, ’’, ’’)

End
End
For each Package contained in pkg Do

Call OutputEntityDefs3(the Package)
End

End

7-168 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

OutputPropertiesEntityDef3

The OutputPropertiesEntityDef3 function is a recursive function that creates an Entity
definition for the instance-level Attributes of a Class and then calls itself to generate
those for all of the subclasses of the Class. This Entity definition consists of a listing
of the instance-level Attributes for the Class itself, plus a reference to the Properties
entity of the Class from which it is derived. If the Class is derived from more than one
Class, there is still only one entity reference. The Attributes from the additional parent
Class and those of its parents are listed separately in their entirety, except for those
which would appear in the expansion of the entity. This avoids multiple definition of
Attributes should the inheritance tree for the additional parent Class intersect that of
the first parent Class. It is possible for the entity content to be empty; if so, the entity
is not generated. This fact is remembered so that the entity will not be referenced.

The prevCls parameter is used to insure that the function does not attempt to generate
the PropertiesEntityDef more than once, which would otherwise happen in inheritance
hierarchies including multiple inheritance.

The baseCls parameter is used to detect multiple inheritance and provide the control
mechanism for the inclusion of the Attributes from the additional inheritance
hierarchy(ies). It is a list of Classes filled in with the Classes encountered as the
function goes down the inheritance hierarchy. When multiple inheritance is detected,
the algorithm proceeds up the second (and other) inheritance hierarchy(ies) until a
Class in baseCls is encountered. It stops at this point, since the Attributes from this
Class and its parents already appear as part of the entity invocation generated for the
first parent. Note that baseCls is refreshed prior to calling each subclass, since the
inheritance harriers is different for each.

The function is defined as follows:

Subroutine OutputPropertiesEntityDef3(in cls: Class, inout prevCls: String,
 inout baseCls: String)

If cls appears in prevCls, Then
Return the empty string (’’)

End
Set PropsEntityName := the qualified name of the Class + ’Properties’
Set temp := baseCls
Set PropsList := GetAllInstanceAttributes3(cls, temp)
If Length(PropsList) > 0) Then

Set PropsList := ’(’ + PropsList + ’)’
Generate the PropertiesEntityDef (#8), using PropsEntityName and PropsList
Remember that an entity was generated for cls

End
Add cls to baseCls
Set temp := baseCls
Add cls to prevCls
For each subclass of cls Do

Set baseCls := temp
Call OutputPropertiesEntityDef3(the subclass, prevCls, baseCls)

End
End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-169

7

OutputRefsEntityDef3

The OutputRefsEntityDef3 function is similar to OutputPropertiesEntityDef3, except
that it produces a set of RefsEntitiesDefs instead of PropertiesEntityDefs.

Subroutine OutputRefsEntityDef3(in cls: Class, inout prevCls: String,
 inout baseCls: String)

If cls appears in prevCls, Then
Return the empty string (’’)

End
Set RefsEntityName := the qualified name of the Class + ’Associations’
Set temp := baseCls
Set RefsList := GetAllReferences3(cls, temp)
If Length(RefsList) > 0 Then

Set RefsList := ’(’ + RefsList + ’)’
Generate the RefsEntityDef (#9), using RefsEntityName and RefsList
Remember that an entity def was generated for cls

End
Add cls to baseCls
Set temp := baseCls
Add cls to prevCls
For each subclass of cls Do

Set baseCls := temp
Call OutputRefsEntityDef3(the subclass, prevCls, baseCls)

End
End

7-170 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

OutputCompsEntityDef3

The OutputCompsEntityDef3 function is similar to OutputPropertiesEntityDef3, except
that it produces a set of CompsEntitiesDefs instead of PropertiesEntityDefs.

Subroutine OutputCompsEntityDef3(in cls: Class, inout prevCls: String,
 inout baseCls: String)

If cls appears in prevCls, Then
Return the empty string (’’)

End
Set CompsEntityName := the qualified name of the Class + ’Compositions’
Set temp := baseCls
Set CompsList := GetAllComposedRoles3(cls, temp)
If Length(CompsList) > 0 Then

Set CompsList := ’(’ + CompsList + ’)’
Generate the CompsEntityDef (#10), using CompsEntityName and CompsList
Remember that an entity was generated for cls

End
Add cls to baseCls
Set temp := baseCls
Add cls to prevCls
For each subclass of cls Do

Set baseCls := temp
Call OutputCompsEntityDef3(the subclass, prevCls, baseCls)

End
End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-171

7

GetAllInstanceAttributes3

The GetAllInstanceAttributes3 function returns a string containing the name of the
Properties entity of the parent Class of the given Class plus all of the non-derived
instance-level attributes of the Class itself.

In the case of multiple inheritance, this function invokes a multiple-inheritance
management function to gets the Attributes from the parent Classes in the second (and
any additional) set of parent Classes. These are between the parent Properties entity
and the Attributes of the Class itself.

Function GetAllInstanceAttributes3(in cls : Class, in baseCls: String) Returns String
Set parentEntity := ’’
Set parentContents := ’’
For each Class referenced by cls.supertype Do

If cls.supertype is in baseCls Then (it is the first inheritance tree)
If an entity was generated for cls.supertype Then

Set parentEntity := ’%’ + the qualified name of cls.supertype +
’Properties;’

End
Else (it is in another inheritance tree)

Set temp := GetParentAttributes3(cls.supertype, baseCls)
If Length(temp) > 0 and Length(parentContents) > 0) Then

Set parentContents := parentContents + ’,’
End
Set parentContents := parentContents + temp

End
End
If Length(parentEntity) >0 and Length(parentContents) > 0 Then

Set parentEntity := parentEntity + ’,’
End
Set parentContents := parentEntity + parentContents
Set temp := GetAttributes(cls, ’instance’)
If Length (temp) > 0 and Length(parentContents) > 0 Then

Set parentContents := parentContents + ’,’
End
Return parentContents + temp

End

7-172 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetAllReferences3

The GetAllReferences3 is similar to the GetAllInstanceAttributes3 function, except
that it generates References instead of Attributes.

Function GetAllReferences3(in cls : Class, in baseCls: String) Returns String
Set parentEntity := ’’
Set parentContents := ’’
For each Class referenced by cls.supertype Do

If cls.supertype is in baseCls Then (it is the first inheritance tree)
If an entity was generated for cls.supertype Then

Set parentEntity := ’%’ + the qualified name of cls.supertype +
 ’Associations;’

End
Else (it is in another inheritance tree)

Set temp := GetParentReferences3(cls.supertype, baseCls)
If Length(temp) > 0 and Length(parentContents) > 0) Then

Set parentContents := parentContents + ’,’
End
Set parentContents := parentContents + temp

End
End
If Length(parentEntity) >0 and Length(parentContents) > 0 Then

Set parentEntity := parentEntity + ’,’
End
Set parentContents := parentEntity + parentContents
Set temp := GetReferences(cls)
If Length (temp) > 0 Then

If Length(parentContents) > 0 Then
Set parentContents := parentContents + ’,’

End
Set temp := ’(’ + temp + ’)’

End
Return parentContents + temp

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-173

7

GetAllComposedRoles3

The GetAllComposedRoles3 function is similar to the GetAllInstanceAttributes3
function, except that it deals with "composed roles" instead of Attributes.

Function GetAllComposedRoles3(in cls : Class, in baseCls: String) Returns String
Set parentEntity := ’’
Set parentContents := ’’
For each member of cls.supertype Do

If cls.supertype is in baseCls Then (it is the first inheritance tree)
If an entity was generated for cls.supertype Then

Set parentEntity := ’%’ + qualified name of cls.supertype +
 ’Compositions;’

End
Else (it is in another inheritance tree)

Set temp := GetParentCompositionRoles3(cls.supertype, baseCls)
If Length(temp) > 0 and Length(parentContents) > 0) Then

Set parentContents := parentContents + ’,’
End
Set parentContents := parentContents + temp

End
End
If Length(parentEntity) >0 and Length(parentContents) > 0 Then

Set parentEntity := parentEntity + ’,’
End
Set parentContents := parentEntity + parentContents
Set temp := GetComposedRoles(cls)
If Length (temp) > 0 and Length(parentContents) > 0 Then

Set parentContents := parentContents + ’,’
End
Return parentContents + temp

End

7-174 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetParentAttributes3

This is an auxiliary function used by GetAllInstanceAttributes3 to produce the list of
Attributes in parent Classes of a Class, up to the point where a parent Class is
encountered which has already been processed.

Function GetParentAttributes3(in cls: Class, in baseCls: String) : Return String
If cls is in baseCls Then

Return the empty string (’’)
End
Set parentContents := ’’
For each Class referenced by cls.supertype Do

Set temp := GetParentAttributes3(cls.supertype, baseCls)
If Length(temp) > 0 and Length(parentContents) > 0 Then

Set parentContents := parentContents + ’,’
End
Set parentContents := parentContents + temp

End
Set temp := GetAttributeContents(cls, ’instance’)
If Length(temp) > 0 and Length(parentContents > 0) Then

Set parentContents := parentContents + ’,’
End
Return parentContents + temp

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-175

7

GetParentReferences3

This function is similar to GetParentAttributes, except that is called by
GetAllReferences3.

Function GetParentReferences3(in cls: Class, in baseCls: String) : Return String
If cls is baseCls Then

Return the empty string (’’)
End
Set parentContents := ’’
For each Class referenced by cls.supertype Do

Set temp := GetParentReferences3(cls.supertype, baseCls)
If Length(temp) > 0 and Length(parentContents) > 0 Then

Set parentContents := parentContents + ’,’
End
Set parentContents := parentContents + temp

End
Set temp := GetReferences(cls)
If Length(temp) > 0 and Length(parentContents > 0) Then

Set parentContents := parentContents + ’,’
End
Return parentContents + temp

End

7-176 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

GetParentCompositionRoles3

This function is similar to GetParentAttributes3, except that is called by
GetAllComposedRoles3.

Function GetParentCompositionRoles3(in cls: Class, in baseCls: String) : Return String
If cls is in baseCls Then

Return the empty string (’’)
End
Set parentContents := ’’
For each Class referenced by cls.supertype Do

Set temp := GetParentCompositionRoles3(cls.supertype, baseCls)
If Length(temp) > 0 and Length(parentContents) > 0 Then

Set parentContents := parentContents + ’,’
End
Set parentContents := parentContents + temp

End
Set temp := GetCompositionContents(cls)
If Length(temp) > 0 and Length(parentContents > 0) Then

Set parentContents := parentContents + ’,’
End
Return parentContents + temp

End

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-177

7

7.5 Fixed DTD elements

There are some elements of the DTD which are fixed, constituting a form of
“boilerplate” necessary for every MOF DTD. These elements are described in this
section. They should be included at the beginning of the generated DTD. Though, as
elements, these need not be at the beginning of the DTD, the convention is to place
them there.

The use of these fixed content elements means that any DOCTYPE declaration in an
XMI-conformant transfer text should reference “XMI” as its root element. The “XMI”
element includes the “XMI.content” element, which contains the actual transferred
data. The content model of “XMI.content” then allows the transferred data to have any
element as its effective root element.

Only the DTD content of the fixed elements is given here. For a complete description
of the semantics of these elements, See “Metamodel Class Specification” on page 66..

The FixedContent elements are:

<!-- __ -->

<!-- -->

<!-- XMI is the top-level XML element for XMI transfer text -->

<!-- __ -->

<!ELEMENT XMI (XMI.header?, XMI.content?, XMI.difference*,

 XMI.extensions*) >

<!ATTLIST XMI

 xmi.version CDATA #FIXED "1.0"

 timestamp CDATA #IMPLIED

 verified (true | false) #IMPLIED >

<!-- ___ -->

<!-- -->

<!-- XMI.header contains documentation and identifies the model, -->

<!-- metamodel, and metametamodel -->

<!-- ___ -->

<!ELEMENT XMI.header (XMI.documentation?, XMI.model*, XMI.metamodel*,

 XMI.metametamodel*, XMI.import*) >

<!-- ___ -->

<!-- -->

<!-- documentation for transfer data -->

<!-- ___ -->

<!ELEMENT XMI.documentation (#PCDATA | XMI.owner | XMI.contact |

 XMI.longDescription | XMI.shortDescription |

 XMI.exporter | XMI.exporterVersion |

 XMI.notice)* >

7-178 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

<!ELEMENT XMI.owner ANY >

<!ELEMENT XMI.contact ANY >

<!ELEMENT XMI.longDescription ANY >

<!ELEMENT XMI.shortDescription ANY >

<!ELEMENT XMI.exporter ANY >

<!ELEMENT XMI.exporterVersion ANY >

<!ELEMENT XMI.exporterID ANY >

<!ELEMENT XMI.notice ANY >

<!-- ___ -->

<!-- -->

<!-- XMI.element.att defines the attributes that each XML element -->

<!-- that corresponds to a metamodel class must have to conform to -->

<!-- the XMI specification. -->

<!-- ___ -->

<!ENTITY % XMI.element.att

 ’xmi.id ID #IMPLIED

 xmi.label CDATA #IMPLIED

 xmi.uuid

 CDATA #IMPLIED ’ >

<!-- ___ -->

<!-- -->

<!-- XMI.link.att defines the attributes that each XML element that -->

<!-- corresponds to a metamodel class must have to enable it to -->

<!-- function as a simple XLink as well as refer to model -->

<!-- constructs within the same XMI file. -->

<!-- ___ -->

<!ENTITY % XMI.link.att

 ’href CDATA #IMPLIED

 xmi.idref IDREF #IMPLIED’ >

<!-- ___ -->

<!-- -->

<!-- XMI.model identifies the model(s) being transferred -->

<!-- ___ -->

<!ELEMENT XMI.model ANY >

<!ATTLIST XMI.model

 %XMI.link.att;

 xmi.name CDATA #REQUIRED

 xmi.version CDATA #IMPLIED >

<!-- ___ -->

<!-- -->

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-179

7

<!-- XMI.metamodel identifies the metamodel(s) for the transferred -->

<!-- data -->

<!-- ___ -->

<!ELEMENT XMI.metamodel ANY >

<!ATTLIST XMI.metamodel

 %XMI.link.att;

 xmi.name CDATA #REQUIRED

 xmi.version CDATA #IMPLIED >

<!-- ___ -->

<!-- -->

<!-- XMI.metametamodel identifies the metametamodel(s) for the -->

<!-- transferred data -->

<!-- ___ -->

<!ELEMENT XMI.metametamodel ANY >

<!ATTLIST XMI.metametamodel

 %XMI.link.att;

 xmi.name CDATA #REQUIRED

 xmi.version CDATA #IMPLIED >

<!-- ___ -->

<!-- -->

<!-- XMI.import identifies imported metamodel(s) -->

<!-- -->

<!-- ___ -->

<!ELEMENT XMI.import ANY >

<!ATTLIST XMI.import

 %XMI.link.att;

 xmi.name CDATA #REQUIRED

 xmi.version CDATA #IMPLIED >

<!-- ___ -->

<!-- -->

<!-- XMI.content is the actual data being transferred -->

<!-- ___ -->

<!ELEMENT XMI.content ANY >

<!-- ___ -->

<!-- -->

<!-- XMI.extensions contains data to transfer that does not conform -->

<!-- to the metamodel(s) in the header -->

<!-- ___ -->

<!ELEMENT XMI.extensions ANY >

<!ATTLIST XMI.extensions

7-180 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

 xmi.extender CDATA #REQUIRED >

<!-- ___ -->

<!-- -->

<!-- extension contains information related to a specific model -->

<!-- construct that is not defined in the metamodel(s) in the -->

<!-- header -->

<!-- ___ -->

<!ELEMENT XMI.extension ANY >

<!ATTLIST XMI.extension

 %XMI.element.att;

 %XMI.link.att;

 xmi.extender CDATA #REQUIRED

 xmi.extenderID CDATA #IMPLIED >

<!-- ___ -->

<!-- -->

<!-- XMI.difference holds XML elements representing differences to -->

<!-- a base model -->

<!-- ___ -->

<!ELEMENT XMI.difference (XMI.difference | XMI.delete | XMI.add |

 XMI.replace)* >

<!ATTLIST XMI.difference

 %XMI.element.att;

 %XMI.link.att; >

<!-- ___ -->

<!-- -->

<!-- XMI.delete represents a deletion from a base model -->

<!-- ___ -->

<!ELEMENT XMI.delete EMPTY >

<!ATTLIST XMI.delete

 %XMI.element.att;

 %XMI.link.att; >

<!-- ___ -->

<!-- -->

<!-- XMI.add represents an addition to a base model -->

<!-- ___ -->

<!ELEMENT XMI.add ANY >

<!ATTLIST XMI.add

 %XMI.element.att;

 %XMI.link.att;

 xmi.position CDATA "-1" >

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-181

7

<!-- ___ -->

<!-- -->

<!-- XMI.replace represents the replacement of a model construct -->

<!-- with another model construct in a base model -->

<!-- ___ -->

<!ELEMENT XMI.replace ANY >

<!ATTLIST XMI.replace

 %XMI.element.att;

 %XMI.link.att;

 xmi.position CDATA "-1" >

<!-- ___ -->

<!-- -->

<!-- XMI.reference may be used to refer to data types not defined -->

<!-- in the metamodel -->

<!-- ___ -->

<!ELEMENT XMI.reference ANY >

<!ATTLIST XMI.reference

 %XMI.link.att; >

The following fixed DTD declarations are used only when required by the metamodel.

<!-- ___ -->

<!-- -->

<!-- This section contains the declaration of XML elements -->

<!-- representing data types -->

<!-- ___ -->

<!ELEMENT XMI.TypeDefinitions ANY >

<!ELEMENT XMI.field ANY >

<!ELEMENT XMI.seqItem ANY >

<!ELEMENT XMI.octetStream (#PCDATA) >

<!ELEMENT XMI.unionDiscrim ANY >

<!ELEMENT XMI.enum EMPTY >

<!ATTLIST XMI.enum

 xmi.value CDATA #REQUIRED

>

7-182 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

<!ELEMENT XMI.any ANY >

<!ATTLIST XMI.any

 %XMI.link.att;

 xmi.type CDATA #IMPLIED

 xmi.name CDATA #IMPLIED

>

<!ELEMENT XMI.CorbaTypeCode (XMI.CorbaTcAlias | XMI.CorbaTcStruct |

 XMI.CorbaTcSequence | XMI.CorbaTcArray |

 XMI.CorbaTcEnum | XMI.CorbaTcUnion |

 XMI.CorbaTcExcept | XMI.CorbaTcString |

 XMI.CorbaTcWstring | XMI.CorbaTcShort |

 XMI.CorbaTcLong | XMI.CorbaTcUshort |

 XMI.CorbaTcUlong | XMI.CorbaTcFloat |

 XMI.CorbaTcDouble |

 XMI.CorbaTcBoolean |

 XMI.CorbaTcChar | XMI.CorbaTcWchar |

 XMI.CorbaTcOctet | XMI.CorbaTcAny |

 XMI.CorbaTcTypeCode |

 XMI.CorbaTcPrincipal |

 XMI.CorbaTcNull | XMI.CorbaTcVoid |

 XMI.CorbaTcLongLong |

 XMI.CorbaTcLongDouble) >

<!ATTLIST XMI.CorbaTypeCode

 %XMI.element.att; >

<!ELEMENT XMI.CorbaTcAlias (XMI.CorbaTypeCode) >

<!ATTLIST XMI.CorbaTcAlias

 xmi.tcName CDATA #REQUIRED

 xmi.tcId CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcStruct (XMI.CorbaTcField)* >

<!ATTLIST XMI.CorbaTcStruct

 xmi.tcName CDATA #REQUIRED

 xmi.tcId CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcField (XMI.CorbaTypeCode) >

<!ATTLIST XMI.CorbaTcField

 xmi.tcName CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcSequence (XMI.CorbaTypeCode |

 XMI.CorbaRecursiveType) >

<!ATTLIST XMI.CorbaTcSequence

 xmi.tcLength CDATA #REQUIRED >

10/25/1999 ad/99-10-02: XML Metadata Interchange 7-183

7

<!ELEMENT XMI.CorbaRecursiveType EMPTY >

<!ATTLIST XMI.CorbaRecursiveType

 xmi.offset CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcArray (XMI.CorbaTypeCode) >

<!ATTLIST XMI.CorbaTcArray

 xmi.tcLength CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcObjRef EMPTY >

<!ATTLIST XMI.CorbaTcObjRef

 xmi.tcName CDATA #REQUIRED

 xmi.tcId CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcEnum (XMI.CorbaTcEnumLabel) >

<!ATTLIST XMI.CorbaTcEnum

 xmi.tcName CDATA #REQUIRED

 xmi.tcId CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcEnumLabel EMPTY >

<!ATTLIST XMI.CorbaTcEnumLabel

 xmi.tcName CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcUnionMbr (XMI.CorbaTypeCode, XMI.any) >

<!ATTLIST XMI.CorbaTcUnionMbr

 xmi.tcName CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcUnion (XMI.CorbaTypeCode,

 XMI.CorbaTcUnionMbr*) >

<!ATTLIST XMI.CorbaTcUnion

 xmi.tcName CDATA #REQUIRED

 xmi.tcId CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcExcept (XMI.CorbaTcField)* >

<!ATTLIST XMI.CorbaTcExcept

 xmi.tcName CDATA #REQUIRED

 xmi.tcId CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcString EMPTY >

<!ATTLIST XMI.CorbaTcString

 xmi.tcLength CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcWstring EMPTY >

<!ATTLIST XMI.CorbaTcWstring

7-184 ad/99-10-02: XML Metadata Interchange 10/25/1999

7

 xmi.tcLength CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcFixed EMPTY >

<!ATTLIST XMI.CorbaTcFixed

 xmi.tcDigits CDATA #REQUIRED

 xmi.tcScale CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcShort EMPTY >

<!ELEMENT XMI.CorbaTcLong EMPTY >

<!ELEMENT XMI.CorbaTcUshort EMPTY >

<!ELEMENT XMI.CorbaTcUlong EMPTY >

<!ELEMENT XMI.CorbaTcFloat EMPTY >

<!ELEMENT XMI.CorbaTcDouble EMPTY >

<!ELEMENT XMI.CorbaTcBoolean EMPTY >

<!ELEMENT XMI.CorbaTcChar EMPTY >

<!ELEMENT XMI.CorbaTcWchar EMPTY >

<!ELEMENT XMI.CorbaTcOctet EMPTY >

<!ELEMENT XMI.CorbaTcAny EMPTY >

<!ELEMENT XMI.CorbaTcTypeCode EMPTY >

<!ELEMENT XMI.CorbaTcPrincipal EMPTY >

<!ELEMENT XMI.CorbaTcNull EMPTY >

<!ELEMENT XMI.CorbaTcVoid EMPTY >

<!ELEMENT XMI.CorbaTcLongLong EMPTY >

<!ELEMENT XMI.CorbaTcLongDouble EMPTY >

10/25/1999 ad/99-10-02: XML Metadata Interchange 8-185

XML Generation Principles 8

8.1 Purpose

This section describes the manner in which XML Documents are generated to
represent models. The subsequent section specifies the specific rules that XMI uses in
this generation process.

8.2 Introduction

XMI defines the manner in which a model will be represented as an XML document.
For a given model, each XMI-conforming implementation will produce an equivalent
XML document.

XML document production is defined as a set of rules, which when applied to a model
or model elements, produce an XML document. These rules can be applied to any
model whose metamodel can be described by the Meta Object Facility (MOF). This
section provides an informal description of the production of XML documents from
models. Although it may appear from this description that XML production should be
performed using certain algorithms, interfaces, or facilities, any implementation which
produces XML equivalent to the XML produced by the application of the specified
production rules complies with XMI. The specific rules, and the specification of XML
document equivalence is provided in Chapter 9, XML Document Production on page
199.

8.3 Two Model Sources

XMI can be applied to any model whose metamodel can be described by the MOF.
However, the MOF meta-metamodel does not require any specific construct or
mechanism to be used to define, in a metamodel, what will constitute a model. This
approach allows metamodelers greatest flexibility. XMI is not able to identify, for any
metamodel, what will constitute a model. Therefore XMI, to provide greater flexibility

8-186 ad/99-10-02: XML Metadata Interchange 10/25/1999

8

in exchanging model information, provides two distinct methods of specifying the
modeling elements which are used to generate an XML document.

8.3.1 Production by Object Containment

Most metamodels are characterized by a composition hierarchy. Modeling elements of
some type are composed of other modeling elements. In UML, for example, a Model is
composed of Classes, UseCases, Packages, etc. Those elements in turn of composed of
other elements. This composition is defined in metamodels using the MOF’s composite
form of Association. This composition must obey strict containment – an element
cannot be contained in multiple compositions. To support models and model fragments
as compositions, XMI provides for XML document production by object containment.
Given a composite object, XMI’s rules define the XML document which represents the
composite object and all the contained objects in the composition hierarchy of which it
is the root.

Consider a simple example. A very simple metamodel defines a language or set of
constructs for developing graphs. The modeling elements Net, Node, Arc, and Token,
and a supporting data type are defined. Figure 8-1 on page 186 shows this metamodel
in UML notation. The metamodel is defined using the MOF Model. The MOF Model

Figure 8-1 A very simple metamodel for graph modeling

SimpleGraph

source

0..*

target 0..*

owner 1

node 1..*

token

0..*

place

1

Node
name : string
marker [0..*] : Token {ref: token}
owner : Net {ref: owner}
targetNodes [0..*] : Node {ref: target}

0..*

0..*

Arc

owner 1

Net
created : DateTimeType
nodes [0..*] : Node {ref: node}
tokens [0..*] : Token {ref: token}

execute ()

1

1..*

Contains

token 0..*

Token
color : TokenColor
net : Net {ref: owner}

move (in to : Node)

0..*
1 Marks

1

0..*

Includes

DateTimeType
<<DataType>>

TokenColor
<<DataType>>

10/25/1999 ad/99-10-02: XML Metadata Interchange 8-187

8

instances which compose the SimpleGraph metamodel are shown in Figure 8-2 on
page 187 (with much detail omitted).

Since this metamodel is expressed via the MOF, its model instances can be represented
in XML using the XMI generation rules. A simple model is shown in some net
notation in Figure 8-3 on page 188. As instances of the metamodel elements, the same
model would form the object diagram in Figure 8-4 on page 188.

The XML production rules for Production by Object Containment are applied to a
single root object of a composition. In this example, the rules are applied to the Net
instance, to form the XML document representing this model. The rules are applied
throughout the composition hierarchy by navigating through the composition links. In

Figure 8-2 Object diagram showing simple metamodel as an instance of the MOF Model

SimpleGraph : Package

Net : Class

Node : Class

Token : Class

DateTimeType : DataType

Arc : Association

target : AssociationEnd

Marks : Association

token : AssociationEnd

Contains : Association

node : AssociationEnd

owner : Reference

place : AssociationEnd

Includes : Association

owner : Reference

token : AssociationEnd

created : MofAttribute

nodes : Reference

tokens : Reference

execute : Operation

net : Reference

move : Operation

nodeName : MofAttribute

marker : Reference

owner : Reference

source : AssociationEnd

color : MofAttribute

TokenColor : DataType

8-188 ad/99-10-02: XML Metadata Interchange 10/25/1999

8

addition, the rules make use of the model’s metamodel to represent the types of the
values.

Each generated XML document begins with a prologue and the standard enclosing
XML element’s start tag. This part of the generation process is Specified in Chapter 9,
XML Document Production on page 199. Section 6.5, Necessary XMI DTD
Declarations on page 53 describes the standard elements placed in the front of each
XMI document. Next comes the actual model, starting with the root object. For each
object, including this root object, the element start tag is generated from the object’s
metaclass name. In this example, it is:

<SimpleGraph.Net xmi.id=’a1’>

Figure 8-3 Example Net as a model of the SimpleGraph metamodel

Figure 8-4 Objects forming the example SimpleGraph model

NodeANodeB

NodeC

green

blue

red
created: 6/30/98 12:57 GMT

target

owner

target

name = ’NodeB’

NodeB : Node

color = green

 : Token

color = red

 : Token

name = ’NodeC’

NodeC : Node

name = ’NodeA’

NodeA : Node

created = 6/30/98 12:57 GMT

 : Net

targetcolor = blue

 : Token

place

place

place

owner

owner

owner

owner

10/25/1999 ad/99-10-02: XML Metadata Interchange 8-189

8

The element attribute xmi.id provides a unique identifier with the document for this
element.

Note that all names in XMI are fully qualified, based on the MOF description of their
metamodel. The name of the item is formed by the sequence of containments and
compositions, starting at the outermost package of the metamodel and separated by
dots.

Next each attribute of the current object is used to generate XML. The attribute is
enclosed in an element, defined by the name of the attribute, as found in the
metamodel:

<SimpleGraph.Net.created>

Next the attribute value is written out as XML. In the example, the attribute is of type
DateTimeType, as defined in the metamodel. The details of that datatype were not
shown above. DateTimeType is a struct with two fields, time, of type long, and
timezone, of type string. The representation of struct values uses field tags as
delimiters:

<XMI.field>1873852</XMI.field>
<XMI.field>GMT</XMI.field>

Then the attribute is completed with the corresponding end tag:

</SimpleGraph.Net.created>

Were there other attributes of the Net object, they would follow in a similar manner.
These are followed by the Net object’s references.

The MOF supports the use of References in defining metamodels. A reference provides
the object’s navigability to linked objects. Following the attributes of an object, each of
its references are written. XMI considers references to be of two different types and
treats them differently.

An object linked to another via a link defined in the metamodel as having an
aggregation other than composite is considered to be a normal reference. On the other
hand, if an object is linked to another object via a link defined in the metamodel as a
composite association, with the composite end corresponding to link end of the
composite object, then the reference used is a composite reference.

In XMI, all of the normal references of an object are written, followed by all of the
composite references. In XMI, this composition is indicated by XML element
containment.

In this example, there is a total of three Node objects and three Token objects
contained by the Net object using composite references. The "nodes" reference will be
expressed as:

<SimpleGraph.Net.nodes>

to indicate the Node objects it contains through the "nodes" reference. Then, for each
Node, the process of producing XML to represent an object is repeated. For the

8-190 ad/99-10-02: XML Metadata Interchange 10/25/1999

8

example, the Node with the name NodeA is written out in XML, starting with the
element start tag:

<SimpleGraph.Node xmi.id=’a2’>

the value of the attribute id of the XML element can be any unique value which is
XML-compliant. Just as before, all the attribute values are written out first. The node
class defines the attribute "name"; for this Node instance, the XML is:

<SimpleGraph.Node.name>NodeA</SimpleGraph.Node.name>

Next the normal, i.e. non-composite, non-component references are written out. These
are the references defined by Associations which are not defined as composites at
either end. Since the Node class defines the Reference "marker", and NodeA has
markers, the XML generated is:

<SimpleGraph.Node.marker>
<SimpleGraph.Token xmi.idref=’a5’ />
<SimpleGraph.Token xmi.idref=’a6’ />

</SimpleGraph.Node.marker>

Since this is a normal, rather than a composite, reference, the Token objects are not
written at this point. Rather, a reference is used to point within the document to the
elements that actually define the objects. A complete set of linking attributes is defined
in XMI; the xmi.idref could, for example, be replaced by an href to element definitions
in another location. See Section 6.5.1, Necessary XMI Attributes on page 47, for a
discussion on linking attributes.

Next, the value of the Node’s "targetNodes" reference is written out as XML:

<SimpleGraph.Node.targetNodes>
<SimpleGraph.Node xmi.idref=’a3’ />

</SimpleGraph.Node.targetNodes>
<SimpleGraph.Node.targetNodes>

<SimpleGraph.Node xmi.idref=’a4’ />
</SimpleGraph.Node.targetNodes>

This example illustrates the fact that, for references with multiplicities with upper
bounds which may be greater than one, it is not necessary to place all of the references
under a single tag. Although this clearly wasteful of space in the XML document, it is
allowed.

Finally, for NodeA, any contained objects are written out. But since The Node class
does not define Node as a composite, this step is skipped. The XML for NodeA is
complete:

</SimpleGraph.Node>

This process is repeated for the other values of the Net’s nodes reference, NodeB and
NodeC:

<SimpleGraph.Node xmi.id=’a3’>
<SimpleGraph.Node.name>NodeB</SimpleGraph.Node.name>
<SimpleGraph.Node.targetNodes>

10/25/1999 ad/99-10-02: XML Metadata Interchange 8-191

8

<SimpleGraph.Node xmi.id=’a3’ />
</SimpleGraph.Node.targetNodes>

</SimpleGraph.Node>
<SimpleGraph.Node xmi.id=’a4’>

<SimpleGraph.Node.name>NodeC</SimpleGraph.Node.name>
<SimpleGraph.Node.marker>

<SimpleGraph.Node xmi.idref=’a7’ />
</SimpleGraph.Node.marker>

</SimpleGraph.Node>

Notice that for NodeB, the "marker" reference element is omitted. When the lower
bound of the multiplicity of an Attribute or a Reference is zero, and no value is
present, the element tag may be omitted. In a similar fashion, the "target" reference
element is absent for NodeC. The composite reference "nodes" is now fully
represented, as is completed in the XML with a corresponding end tag:

</SimpleGraph.Net.nodes>

Next the Token objects contained via the tokens Reference of Net are written out as
XML:

<SimpleGraph.Net.tokens>

Each Token object is written out as the other objects, starting with the attributes.
Although not shown in the example, the TokenColor data type is an enumeration.
Attributes whose types are enumerations or boolean are represented is a special
manner. Their value is represented as an element attribute value, to increase XML
parser validation.

<SimpleGraph.Token xmi.id=’a5’>
<SimpleGraph.Token.color xmi.value=’green’ />

</SimpleGraph.Token>

Since the value of the attribute is encoded in the tag of the empty element, a separate
end tag is not used. The Token class is defined with the single attribute. If the class
were derived from a supertype, the values of attributes and references defined in the
supertype would also be written out as XML, preceding the attributes of the class
itself. Unlike the Node class, the Token class has no composite references. The single
reference defined for token provides the value of the owner, the Net object acting as
the "net" object in the composite link. These references need not be written, since the
XML element containment indicates the composition. They are useful when the
contained object is reached via a link attribute.

The remaining Tokens from the Net’s "tokens" reference yield:

<SimpleGraph.Token xmi.id=’a6’>
<SimpleGraph.Token.color xmi.value=’blue’ />

</SimpleGraph.Token>
<SimpleGraph.Token xmi.id=’a7’>

<SimpleGraph.Token.color xmi.value=’red’ />
</SimpleGraph.Token>

</SimpleGraph.tokens>

8-192 ad/99-10-02: XML Metadata Interchange 10/25/1999

8

At this point, all the values that make up the model have been written out as XML. The
Net object is completed with the end tag:

</SimpleGraph.Net>

All this XML will be embedded in the standard XML element, as described later. Also,
sometimes object links will not be represented via references, and need to be
represented in XML after the root element. For this simple model though, no
unrepresented links remain.

8.3.2 MOF’s Role in XML Production

The specific generation rules rely on a MOF definition of the model’s metamodel. It
would simply not be possible to define meaningful production rules that would work
on any arbitrary model, regardless of its metamodel. The single meta-metamodel
provides the commonality among models, allowing the metamodel information to be
uniformly represented. In addition, the MOF defines standard interfaces for the model
elements of instances of MOF-defined metamodels. These interfaces – from the MOF’s
Reflective module – provide for access to an object’s metaclass, attribute values, and
reference values, among other capabilities. The operations of these interfaces provide
an unambiguous means of specifying the access of model elements’ metamodel and
values.

In order for a metamodel to have its models interchanged through XMI, that
metamodel must be representable through the MOF, as an instance of the MOF Model.
However, this submission does not actually require an implementation to make use of
a MOF, the MOF-defined Reflective interfaces, or even have metamodels represented
as instances of the MOF model. The implementation must, however, conform to the
generation rules. These rules are based on the metamodels defined via the MOF and
the use of the operations in the Reflective interfaces.

8.3.3 Production by Package Extent

It may not always be possible or useful to represent a desired set of modeling elements
through a composition hierarchy. For this reason, XMI defines a second set of rules for
generating XML from modeling elements.

The MOF provides the Package element in support of metamodel development. At
the metamodel level, Package objects are always the top-most (uncontained) elements.
A Package will contain Classes and Associations, directly and possibly through nested
Packages. In the IDL generated from a MOF metamodel, interfaces represent specific
features of these Packages, Classes, and Associations, in the use of model
development. For each Package, there is a corresponding subtype of RefPackage, an
interface in the MOF’s Reflective module. Likewise, for each Class, there is a
corresponding subtype of RefObject, and for each Association, a corresponding
subtype of RefAssociation.

These interfaces define a structure which mirrors the metamodel structure. So the
RefPackage subtype corresponding to the top-level Package in the metamodel contains
all the other RefPackages, RefObjects, and RefAssociations. Each RefObject subtype

10/25/1999 ad/99-10-02: XML Metadata Interchange 8-193

8

object can provide all of the current objects of the class it represents; each
RefAssociation subtype object can provide all the links corresponding to the
Association it represents. The Package Extent, then, is the top-level RefPackage
subtype object, all the RefPackage, RefObject and RefAssociation subtype objects it
contains, and all the objects and links associated with them.

In this example, the IDL generation creates interfaces SimpleGraphPackage, NetClass,
NodeClass, TokenClass, and Arc. Figure 8-5 on page 193 shows some of the interfaces
generated for the example SimpleGraph metamodel. Suppose two different Nets were
modeled, with an Arc crossing from one net to the next, as shown in Figure 8-6 on
page 194. These nets are shown in Figure 8-7 on page 195, as instances of the
SimpleGraph metamodel. The dashed lines in that figure represent the extent the
NetClass, NodeClass, and TokenClass. The extent of the SimpleGraphPackage
includes those extents.

The rules for XML Production by Package Extent act upon the uncontained
RefPackage instance, producing an XML document which represents all the elements
in the extent of that RefPackage. In the example, the rules are applied to the
SimpleGraphPackage instance.

The same XML document prologue and enclosing element is required as was for
Production by Object Containment. Then, the SimplePackageClass is traversed. For
each RefObject instance, the extent is examined. Any object which is not participating

Figure 8-5 Generated interfaces from the SimpleGraph metamodel

RefPackage
<<interface>>

RefAssociaton
<<interface>>

NetClass
<<interface>>

NodeClass
<<interface>>

TokenClass
<<interface>>

Marks
<<interface>>

Contains
<<interface>>

Includes
<<interface>>

Arc
<<interface>>

SimpleGraphPackage
<<interface>>

RefObject
<<interface>>

8-194 ad/99-10-02: XML Metadata Interchange 10/25/1999

8

as a component in a composition link becomes the starting point for generating XML.
For instance, from the NodeClass, all Node instances can be accessed. But since all are
at the component end of a composition link, none are used in XML production. When
the NetClass is accessed, though, each of the two objects in its extent are uncontained
– not on the component end of a composition link. So, within one Net instance, XML
is produced in the same manner as described before:

<SimpleGraph.Net xmi.id=’a1’>
<SimpleGraph.Net.created>

<XMI.field>1868128</XMI.field>
<XMI.field>GMT</XMI.field>

</SimpleGraph.Net.created>
<SimpleGraph.Net.nodes>

<SimpleGraph.Node xmi.id='a2'>
<SimpleGraph.Node.name>NodeX</SimpleGraph.Node.name>
<SimpleGraph.Node.targetNodes

<SimpleGraph.Node xmi.id='a3' />
</SimpleGraph.Node.targetNodes>

</SimpleGraph.Node>
<SimpleGraph.Node xmi.id='a3'>

<SimpleGraph.Node.name>NodeW</SimpleGraph.Node.name>
<SimpleGraph.Node.targetNodes>

Figure 8-6 Example of two nets with a connecting arc

NodeYNodeW

NodeZ

red

created: 6/04/98 18:12 GMT

NodeX

created: 6/15/98 9:30 PDT

10/25/1999 ad/99-10-02: XML Metadata Interchange 8-195

8

<SimpleGraph.Node xmi.id=’a6’ />
</SimpleGraph.Node.targetNodes>

</SimpleGraph.Node>
</SimpleGraph.nodes>

</SimpleGraph.Net>

Similarly, the second Node in the NodeClass extent is used to produce the following
XML:

<SimpleGraph.Net xmi.id=’a4’>
<SimpleGraph.Net.created>

<XMI.field>1872537</XMI.field>
<XMI.field>GMT</XMI.field>

</SimpleGraph.Node.created>
<SimpleGraph.Net.nodes>

<SimpleGraph.Node xmi.id='a5'>

Figure 8-7 Objects representing multiple Nets and instances of RefPackage and RefObject subtypes

target

owner

target

created = 6/04/98 18:12 GMT

 : Net

target

place

owner

owner

owner

owner

created = 6/15/98 9:30 PDT

 : Net

name = ’NodeW’

NodeW : Node name = ’NodeX’

NodeX : Node

name = ’NodeY’

NodeY : Node

color = red

 : Token

name = ’NodeZ’

NodeZ : Node

target

 : SimpleGraphPackage

 : NetClass

 : NodeClass : TokenClass

8-196 ad/99-10-02: XML Metadata Interchange 10/25/1999

8

<SimpleGraph.Node.name>NodeY</SimpleGraph.Node.name>
<SimpleGraph.Node.targetNodes>

<SimpleGraph.Node xmi.idref=’a6’ />
</SimpleGraph.Node.targetNodes>

</SimpleGraph.Node>
<SimpleGraph.Node xmi.id=’a6’>

<SimpleGraph.Node.name>NodeW</SimpleGraph.Node.name>
<SimpleGraph.Node.targetNodes>

<SimpleGraph.Node xmi.idref=’a5’ />
</SimpleGraph.Node.targetNodes>
<SimpleGraph.Node.marker>

<SimpleGraph.Token xmi.idref=’a7’ />
</SimpleGraph.Node.marker>

</SimplGraph.Node>
</SimpleGraph.Node.nodes>
<SimpleGraph.Node.tokens>

<SimpleGraph.Token xmi.id=’a7’>
<SimpleGraph.Token.color xmi.value=’red’ />

</SimpleGraph.Token>
</SimpleGraph.Node.tokens>

</SimpleGraph.Net>

The Production by Package Extent is not unlike writing out an entire workspace,
environment, or database. This approach is more desirable when:

• more than one containment hierarchy needs to be exchanged;

• there are interconnections among separate containment hierarchies that need to be
replicated; or

• classifier-level attributes need to be replicated.

Conversely, creating XML using Production by Object Containment provides:

• finer granularity of the units of interchange; and

• rules definition less dependent upon the RefPackage, RefAssociation, and
RefObject features.

8.4 Distinctions between Approaches in Certain Situations

The examples above used very simple models. Some more complex models create
situations in which the use each of the two approaches has different consequences.

8.4.1 External Links

Each of the Reference links in the examples referred to an XML element within the
XML document. But references can also refer to objects without a representative XML
element in the document. Consider the two nets in the second example above. If
Production by Object Containment is used to produce XML representing the Net which
contains NodeW and NodeX, then the reference of NodeX to NodeZ must be an
external link. Since NodeZ is not part of the Net which is used to produce the XML, it

10/25/1999 ad/99-10-02: XML Metadata Interchange 8-197

8

will not be represented in the generated document. Instead a href will be used, which
can be resolved to navigate to a representation of the NodeZ object.

This distinction means that, for that example, result of Production by Package Extent
would be different than applying Production by Object Containment to the two Net
instances. In the latter approach, two XML documents are produced.

8.4.2 Links not Represented by References

On the example metamodel, each Association had a a corresponding Reference defined
for the class at one end. However, it is possible, and sometimes desirable or necessary,
to define associations without a reference associated with either Association End. For
instance, suppose in the SimpleGraph metamodel that the targetNodes Reference was
not defined in the Nodes class. Under both approaches, the XML Node elements will
not contain any references to the target Nodes. Instead, the links corresponding to the
Arc association would be represented in the contents of an Arc element, which itself
would be contained by the standard XMI.content element.

For Production by Package Extent, after the XML is produced from each of the
uncontained objects (and their contents), each of the RefAssociation instances are
examined for links in their extent which are not represented in the document. These
links would be defined by Associations where no Reference is defined for either end.

For Production by Object Containment, the RefAssociation instances are also
examined. However, the only links written out are those links not already represented
by references in which the objects at both ends are in the containment hierarchy.

8.4.3 Classifier-level Attributes

The MOF supports the definition of classes with classifier-level attributes. At the time
of model development, within a MOF, these attributes are part of and managed by the
RefObject instances (the class proxies) contained by the RefPackage. For Production
by object containment, the values of a classifier-level attribute are not included.
Conversely, in Production by Package Extent, all classifier-level attributes are included
in the XML document. This again highlights the distinction between the approaches. In
programming languages classifier-level attributes, in the form of class variables or
static members, are most often considered part of the programming environment. For
instance, serialization techniques usually do not serialize these attributes.

8.4.4 Standard Elements

Model data placed in an XML document using the rules of XMI are contained in
standard XML elements defined by XMI. XMI document is encapsulated in a set of
standard XMI elements. These elements are described in Section 6.2.2, Requirements
for XMI DTDs on page 50.

8-198 ad/99-10-02: XML Metadata Interchange 10/25/1999

8

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-199

XML Document Production 9

9.1 Purpose

This section specifies the production of an XML document from a model. It is essential
for successful model interchange that this specification be complete and unambiguous.
It is also essential that all significant aspects of the metadata are included in the XML
document and can be recovered from it.

9.2 Introduction

XMI’s XML document production process is defined as a set of production rules.
When these rules are applied to a model or model fragment, the result is an XML
document. The inverse of these rules can be applied to an XML document to
reconstruct the model or model fragment. In both cases, the rules are implicitly applied
in the context of the specific metamodel for the metadata being interchanged.

The production rules are provided as a specification of the XML document production
and consumption processes. They should not be viewed as prescribing any particular
algorithm for XML producer or consumer implementations.

9.3 ENBF Rules Representation

The XML produced by XMI is represented here in Extended Backus Naur Form
(EBNF). The following are the production rules:

1. <Document> ::= <2:XMI>

1. A document is contained within an XMI element.

9-200 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

2. <XMI> ::= "<XMI" <2a:Namespaces>

 "version=" //XMI version//

 ("timestamp=" //timestamp//)?

 ("verified=" //verified//)?

 ">"

 (<3:Header>)?

 (<6:Content>)?

 (<4:Differences>)?

 (<5:Extensions>)?

 "</XMI>"

2a. <Namespaces> ::= ("xmlns:" <2c:NsName> "=" <2d:NsURI>)*

2b. <Namespace> ::= (<2c:NsName> ":")?

2c. <NsName> ::= //Name of namespace//

2d. <NsURI> ::= //URI of namespace//

2e. <Link> ::= "href=" //href// (//XLink attributes//)?

2. An XMI element consists of namespace declartions, if any, and optional sections for
a header, content, differences, and extensions. The version must be "1.1", an optional
timestamp is included, and an optional verification at source indicator of "true" or
"false".

2a. The set of namespace declarations for the XMI element. If there are multiple
metamodels used with DTDs, the DTDs should be concatenated with the fixed
declarations included only once. The XML attribute declarations for the XMI
element’s attributes should all be included.

2b. The use of a namespace name, incuding a ":" separator. If the namespace name is
blank, the result is the empty string.

2c. A particulrar namespace name.

2d. The logical URI of the namespace. Note that namespaces are resolved to logical
URIs, as opposed to physical ones, so that there is no expectation that this URI will be
resolved and that there will be any information at that location.

2e. A cross-document link that is intended be compliant with a future XLink
specification. The href contains the URI of the document to link to.

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-201

9

3. <Header> ::= "<XMI.header>"

 (<3a:Documentation>)?

 (<3b:Model>)*

 (<3c:Metamodel>)*

 (<3d:Metametamodel>)*

 (<3e:Import>)*

 "</XMI.header>"

3a. <Documentation> ::= "<XMI.documentation>" //text//

 ("<XMI.owner>" //text// "</XMI.owner>")*

 ("<XMI.contact>" //text// "</XMI.contact>")*

 ("<XMI.longDescription>" //text//

 "</XMI.longDescription>")*

 ("<XMI.shortDescription>" //text//

 "</XMI.shortDescription>")*

 ("<XMI.exporter>" //text// "</XMI.exporter>")*

 ("<XMI.exporterVersion>" //text//

 "</XMI.exporterVersion>")*

 ("<XMI.exporterID>" //text// "</XMI.exporterID>")*

 ("<XMI.notice>" //text// "</XMI.notice>")*

 "</XMI.documentation>"

3b. <Model> ::= ("<XMI.model xmi.name=" //name//

 "xmi.version=" //version//

 <2e:Link>? ">" //text//

 "</XMI.model>")*

3c. <Metamodel> ::= ("<XMI.metamodel xmi.name=" //name//

 "xmi.version=" //version//

 <2e:Link>? ">" //text//

 "</XMI.metamodel>")*

3d. <Metametamodel> ::= ("<XMI.metametamodel xmi.name=" //name//

 "xmi.version=" //version//

 <2e:Link>? ">" //text//

 "</XMI.metametamodel>")*

3e. <Import> ::= ("<XMI.import xmi.name=" //name//

 "xmi.version=" //version//

 <2e:Link>? ">" //text//

 "</XMI.import>")*

3. An XMI header consists of optional documentation, model, metamodel,
metametamodel, and import elements.

3a. The documentation element contains several optional fields, described in Chapter
6.

9-202 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

3b. The model tag is used to declare the name and version of the information in the
XMI.contents section. A link to additional metamodel data is optional.
Documentation content is allowed.

3c. The metamodel tag is used to declare the name and version of the information in
the metamodel instantiated in XMI.contents section. A link to additional metamodel
data is optional, with the physical URI where an XMI document containing the
metamodel would be found. The name of the metamodel should match the name
declared in the namespace in rule 1. Documentation content is allowed.

3d. The metametamodel tag is used to declare the name and version of the information
in the metamodel instantiated in XMI.contents section. A link to additional
metametamodel data is optional, with the physical URI where an XMI document
containing the metamodel would be found. Documentation content is allowed.

3e. The import tag is used to declare the name and version of the information of
imported models in XMI.contents section. A link to the imported models data is
optional, with the physical URI where an XMI document containing the imported
models would be found. The imports may be found from the MOF imports elements.
Documentation content is allowed.

4. <Differences> ::= "<XMI.difference>"

 (<4:Differences>

 | <4a:Delete>

 | <4b:Add>

 | <4c:Replace>)*

 "</XMI.difference>"

4a. <Delete> ::= "<XMI.delete" <2e:Link> "/>"

4b. <Add> ::= "<XMI.add" <2e:Link>

 ("xmi.position=" //position//)? ">"

 <6a:ContentElements>

 "</XMI.add>"

4c. <Replace> ::= "<XMI.replace" <2e:Link>

 ("xmi.position=" //position//)? ">"

 <6a:ContentElements>

 "</XMI.replace>"

4. A set of differences, in terms of nested differences, adds, deletes, and replacements.

4a. A link to a deleted element.

4b. A link to an element to add the contents to, and an optional position.

4c. A link to an element to replace the contents with those contained below, and an
optional position.

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-203

9

5. <Extensions> ::= "<XMI.extensions xmi.extender=" //extender// ">"

 //Extension elements//

 "</XMI.extensions>"

5. A section for extensions, with an optional extender identifier. The contents are
unrestricted.

6. <Content> ::= "<XMI.content>"

 <6a:ContentElements>

 "</XMI.content>"

6a. <ContentElements> ::= (<7:ObjectAsElement>)*

 (<9:ClassAttributes>)*

 (<10:OtherLinks>)?

6. The XMI information to be interchanged.

6a. The contents are a set of top level objects, classifier level attributes, and other
links.

9-204 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

7. <ObjectAsElement> ::= <7a:ObjectStart> <8:ObjectContents>

 <7b:ElementEnd>

7a. <ObjectStart> ::= "<" <7c:ElementName>

 (<7e:ElementId>)?

 <7h:ElementAtributes>

 ">"

7b. <ElementEnd> ::= "</" <7c:ElementName> ">"

7c. <ElementName> ::= <2b:Namespace> <7d:Elmt>

 ("." <7d:Elmt>)?

7d. <Elmt> ::= //Name of definition//

7e. <ElementId> ::= ("xmi.id=" //id//)?

 ("xmi.label=" //label//)?

 ("xmi.uuid=" //uuid//)?

7f. <ElementRef> ::= ("xmi.idref=" //reference id//

 | <2e:Link>)?

7g. <ObjectRef> ::= "<" <7c:ElementName>

 (<7e:ElementId>)?

 <7f:ElementRef>

 "/>"

7h. <ElementAttributes> ::= (<7i:DataValueAtt>

 | <7j:EnumValueAtt>

 | <7k:RefValueAtt>)*

7i. <DataValueAtt> ::= <7m:AttName> "=" //value//

7j. <EnumValueAtt> ::= <7m:AttName> "=" //enumeration literal//

7k. <RefValueAtt> ::= <7m:AttName> "=" <7l:RefValues>

7l. <RefValues> ::= (//reference id// " ")*

7m. <AttName> ::= //Name of defining attribute//

7. An object has a starting element, contents, and a closing element. If the contents are
empty, an alternative form is to include the element end tag as a "/" in the starting tag
as anl XML shortcut.

7a. The start tag of an element consists of the element name, identifying information,
and attributes.

7b.The end tag name is the same as the start tag name, preceeded with a "/".

7c. The element tag name is the name of the namespace followed by the element name.
For class, package, and association instances, this name is the name of the type
instantiated. For attributes, references, and links, the name is the name of the
containing class, package or association, a ".", and the name of the attribute or
reference.

7d. The tag name of an element is the name of its definition.

7e. The identifiers of an element are an optional id, label, and uuid. If the element has
a MOF uuid, it may be used.

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-205

9

7f. An element reference is a reference to another element by ID or a reference by an
external Link.

7g. An object reference is a link by proxy element, which may declare identifiers
which should match those identifiers of the other end of the link.

7h. The XML attributes of the element are data, enumeration, or reference attributes.
Either the XML attribute or contained XML element for a particular model element or
reference, but not both.

7i. An XML attribute for data represents a single-valued model attribute with a value
expressed as a XML CDATA.

7j. An XML attribute for enumeration represents an enumerated model attribute with
the value matching one of the allowed enumeration literals for the attribute’s type.

7k, 7l. An XML attribute for reference contains the XML ID of each referenced object,
separated by a space.

7m. The name of the XML attribute is the name of the model attribute or reference.

8. <ObjectContents> ::= (<8a:AttributeAsElmt>)*

 (<8k:ReferenceAsElmt>)*

 (<8l:CompositeAsElmt>)*

8a. <AttributeAsElmt> ::= <8b:SvAttribute> | <8h:MvAttribute>

8b. <SvAttribute> ::= <8c:SvAttributeStart> <8d:SvAttContents>

 <7b:ElementEnd>

8c. <SvAttributeStart> ::= "<" <7c:ElementName> (<8g:EnumXMIValue>)? ">"

8d. <SvAttContents> ::= (<8e:DataValueAttCont>

 | <8:ObjectContents>

 | <8f:RefValueAttCont>)?

8e. <DataValueAttCont> ::= //value// "<XMI.reference" <2e:link> "/>"

8f. <RefValueAttCont> ::= <7g:ObjectRef>

8g. <EnumXMIValue> ::= "xmi.value =" //enumeration literal//

8h. <MvAttribute> ::= <8i:MvAttributeStart> <8j:MvAttContents>

 <7b:ElementEnd>

8i. <MvAttributeStart> ::= "<" <7c:ElementName> ">"

8j. <MvAttContents> ::= (<8a:AttributeAsElmt>

 | <8g:RefValueAttCont>)*

8k. <ReferenceAsElmt> ::= <7g:ObjectRef>

8l. <CompositeAsElmt> ::= <8:ObjectContents>

8. The contents of an object are the object’s attributes, references, and compositions,
expressed as XML elements. Any particular reference or single-valued attribute may
be expressed as an XML element or XML attribute, but not both.

8a. An attribute may be single or multi-valued.

8b. A single valued attribute has a start tag, a value, and an end tag.

9-206 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

8c. The start tag of single valued attribute and the value for enumerated attributes.

8d. The contents of a single valued attribute XML element are a data value, an object
as a nested XML element, or an element proxy reference.

8e. The value of the attribute stored as XML PCDATA or a reference to the value.

8f. The value as an element proxy reference.

8g. The enumerated value of the attribute as XML CDATA.

8h. A multi-valued attribute has a start tag, an element for each value, and an end tag.
Note that the values must maintain order if an order is defined, and must not be
insterspersed with other attribute’s values.

8i. The start tag of the multi-valued attribute.

8j. The contents for each value are a value or a reference.

8k. The reference element is a proxy reference to the XML element for the referred-to
element.

8l. Contained object as nested XML elements.

9. <ClassAttributes> ::= (<8a:AttributeAsElmt>)*

9. All classifier-level attributes are expressed using the XML element form.

10. <OtherLinks> ::= <10a:AssociationStart>

 (<10c:AssociationEndRef> <10c:AssociationEndRef>)*

 <10b:AssociationEnd>

10a.<AssociationStart> ::= <7a:ObjectStart>

10b.<AssociationEnd> ::= <7b:ElementEnd>

10c.<AssociationEndRef> ::= <7a:ObjectStart> <7g:ObjectRef> <7b:ElementEnd>

10. All associations which have no references are placed here. Each associationEnd’s
links are contained as pairs of nested XML elements.

10a. The start tag of the association begins with the association name.

10b. The end tag of the association element.

10c. A reference to the linked element from the AssociationEnd.

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-207

9

9.4 OCL Rules Representation

This form of the rules is included for reference.

The XML produced by XMI is represented here in Extended Backus Naur Form
(EBNF). Although this grammar provides a definition of conforming XMI documents,
it does not specify how a model is transformed into a document. The Object Constraint
Language (OCL) is employed to provide that specification. OCL is a formal language
which can specify side-effect free expressions. OCL was introduced as part of the
definition of UML, and was used to specify constraints in support of the definition of
UML. It was also used in the specification of the MOF. Although intended for the
specification of constraints, it is useful in an object-oriented environment for a broader
range of specification.

9.4.1 EBNF Productions

Within the EBNF productions, the various expression elements are distinguished in
font and face in the following manner:

when this document is viewed in an electronic form, symbols defined in other
expressions may provide hyperlinks to their corresponding defining expression.

9.4.2 OCL Rules

The OCL expressions make use of both operations defined in MOF Model elements,
and operations defined for the MOF Reflective Interfaces. Because these operations are
well defined in the MOF specification, their use does not diminish the rigor of these
rules.

Although OCL is side-effect free, it is impractical to represent the complete behavior
of XML production from a model without retaining some state information. Therefore,
a simple OCL class, Producer, is introduced to support this specification. OCL
provides no means of assigning values to objects or their attributes. For this
specification, the following notation and semantics are used:

EBNF Expression Elements

Element Font and Face Example

expression symbols (* +)

terminal <XMI.content>

value to be filled in class-name

symbol defined in
another expression

AttributeValue

9-208 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 Producer-Attribute ← OCL-Expression;

where the Attribute-Expression represents an attribute of the Producer class, the
symbol "←" represents assignment, with the value of the OCL expression replacing the
current value of the Producer attribute. In addition to maintaining state during the
XML production.

Attributes Defined for the Producer Class

Attribute Description Set Used

root : RefObject the supplied root of the model
(for production by object
containment only)

at the start of
generation

In finding links not
included as reference
values

byContainment :
boolean

specifies whether production is
by containment or extent

at the start of
generation

in determining
whether an object is
in the scope of the
objects being
exported

objectInventory :
Sequence
(RefObject)

used with objectIds to provide a
dictionary; objects which have
an id assigned

as each object is
given an id during
XML production

when an id is needed
for an object which
has one assigned

objectIds :
Sequence(integer)

the ids associated with the
objects in objectInventory

as each object is
given an id during
XML production

when an id is needed
for an object which
has one assigned

refPkg :
RefPackage

the supplied RefPackage
instance (for production by
package extent only)

at the start of
generation

In finding links not
included as reference
values

metamodel :
Package

the metamodel of the input
model, as an instance of
Package

at the start of
generation

in finding the
DataType defining
the type of a value
provided as an Any

typeDefinitions :
Sequence(string)

any type definitions required for
datatypes which are not in the
metamodel

whenever a data
value is encountered
whose type is not in
the metamodel

as the last part of
generating the
XMI.content

tcInventory :
Sequence
(TypeCode)

used with tcIds to provide a
dictionary; TypeCodes which are
currently represented in
typeDefinitions

Whenever an
element is added to
typeDefinitions

When an XMI.any
element needs to
refer to a type
definition already in
typeDefinitions

tcIds :
Sequence(integer)

the ids associated with the
TypeCodes in tcInventory

Whenever an
element is added to
typeDefinitions

When an XMI.any
element needs to
refer to a type
definition already in
typeDefinitions

constructedTcList :
Sequence
(TypeCode)

the struct TypeCodes
encountered in generating a
TypeCode; used to support
TypeCodes for recursive
sequences

initialized at the start
of a top-level
TypeCode; set when
a struct TypeCode is
encountered

a TypeCode with a
recursive sequence is
encountered

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-209

9

For each EBNF expression, a corresponding OCL expression is defined. The OCL
expression is a query, returning either a string or a sequence of strings. In OCL, a
sequence of sequences evaluates to a sequence. For instance,
 Sequence{ ’aa’, Sequence{ ’bb’, ’cc’ }, ’dd’}

evaluates to
 Sequence{ ’aa’, ’bb’, ’cc’, ’dd’}.

So OCL queries defined as a sequence of other OCL expressions, all returning
sequences of strings, will return a simple sequence of strings. For this specification,
there is no distinction in the resulting XML between a string and an equivalent
sequence of strings (e.g., the string ’<State><name>on</name></State>’ is
equivalent to Sequence{ ’<State>’,’<name>’,’on’,’</name>’,’</State>’}).

9.5 Production Rules

As described in Section 8.3, Two Model Sources on page 185, an XML document can
be produced by two methods: by object containment, based upon a root object of a
containment hierarchy; and by package extent, based upon a package proxy. So the
XMI.content element of a document production is represented by the alternative of two
rules, as shown by the following EBNF expression:

These two productions are composed of other productions. Most of the productions are
shared by both of these schemes.

9.5.1 Production by Object Containment

The following EBNF expressions and OCL queries are specific to the object by
containment production scheme.

9.5.1.1 ContentsFromRoot

The ContentsFromRoot production generates the XMI.content element and its contents
from the root object of a model. The contents of the element is provided by the root
object, along with all the objects contained in the model, possibly some links, and
possibly some type definitions. The rules do not require that the supplied object be a
root (uncontained) object.

In the OCL operation, the OtherLinks and RequiredTypeDefinitions operations are
always evaluated. However, as shown in the definition of those operations, an empty
sequence may be returned.

XMIContent ::= (ContentsFromRoot | ContentsFromExtent)

ContentsFromRoot ::= <XMI.content>
ObjectAsElement OtherLinks? RequiredTypeDefinitions?
</XMI.content>

9-210 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

ContentsFromRoot(root : RefObject) : Sequence(string)
ContentsFromRoot(root) =
 Sequence{ ’<XMI.content>’,
 ObjectAsElement(root),
 OtherLinks(root),
 RequiredTypeDefinitions(),
 ’</XMI.content>’
 }

9.5.1.2 OtherLinks

Object references provide a representation of links, when a Reference is defined in the
metamodel for that object. However, for Associations where neither end has a
corresponding Reference, the links will not be represented via references. This
production adds the unrepresented links, when the objects at both link ends are in the
model.

This operation gets all the Associations in the metamodel which have no corresponding
Reference. Among those operations, the Associations are selected which have one or
more links in the model (as identified by the root). Over that sequence of Associations,
a sequence of strings is produced. For each Association, the element start tag is
produced with the association name. Then, for each link of the Association which is in
the model, a sequence of strings is produced. For each link, two Reference elements
are produced, representing the two link ends. Finally, for each Association, the
corresponding element end tag is produced.

OtherLinks(root : RefObject) : sequence(String)
OtherLinks(root) =
 UnreferencedAssoc(this.metaModel)->select(a |
 LinksInRoot(a)->notEmpty)->collect(a |
 Sequence{ ’<’,
 DotNotation(a.qualifiedName),
 ’>’,
 LinksInRoot(a)->collect(lnk |
 Sequence{ ’<’,
 DotNotation(End(1, a).qualifiedName)
 ’>
 ReferencingElement(lnk->at(1)),
 ’</’,
 DotNotation(End(1, a).qualifiedName)
 ’>
 ’<’,
 DotNotation(End(2, a).qualifiedName)
 ’>
 ReferencingElement(lnk->at(2)),
 ’</’,
 DotNotation(End(2, a).qualifiedName)
 ’>

OtherLinks ::= < association-name >
 (ReferencingElement ReferencingElement)*
</ association-name >

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-211

9

 }),
 ’</’,
 DotNotation(a.qualifiedName),
 ’>’
 })

9.5.2 Production by Package Extent

These expressions define the production of an XML document using a Package Extent
(See Section 8.3.3, Production by Package Extent on page 192).

9.5.2.1 ContentsFromExtent

The contents of the XML document are enclosed in an XMI.content element. The
contents of that element will contain class attributes, if any are present in the extent.
Then, for each uncontained object in the extent, an element is produced, whose
contents will represent the object and all its contained objects. Additionally, other links
of the extent may be represented, as well as type definitions.

This OCL operation accepts a RefPackage, a package proxy corresponding to an
uncontained Package instance from a MOF-defined metamodel The operation first
produces the XMI.content element start tag. Then, for each class proxy (instance of a
RefObject subtype corresponding to a Class instance in the metamodel) any classifier-
level attributes are represented. For each uncontained object in the extent, the object
and all its contained objects are represented. Additionally, any links in the extent not
represented as reference values are then represented. Note that the two operations,
ClassAttributes and OtherExtentLinks, may return empty sequences.

ContentsFromExtent(pkgProxy : RefPackage) : Sequence(string)
ContentsFromExtent(pkgProxy) =
 Sequence{ ’<XMI.content>’,
 AllClassProxies(pkgProxy)->collect(c | ClassAttributes(c)),
 AllUncontainedObjects(pkgProxy)->collect(obj | ObjectAsElement(obj)),
 OtherExtentLinks(pkgProxy),
 RequiredTypeDefinitions(),
 ’</XMI.content>’
 }

ContentsFromExtent ::= <XMI.content>
ClassAttributes* ObjectAsElement*
OtherExtentLinks? RequiredTypeDefinitions?
</XMI.content>

9-212 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

9.5.2.2 ClassAttributes

The class attributes of a class proxy results in zero or more elements representing the
attributes.

For a class proxy, all the classifier-level attributes of the corresponding Class instance
in the metamodel are determined. For each of those, the AttributeAsElement operation
returns a sequence of strings representing the attribute.

ClassAttributes(classProxy : RefObject) : Sequence(string)
 ClassAttributes(classProxy) =
 classProxy.metaObject().oclAsType(Class).findElementsByTypeExtended
 (MofAttribute, false)->select(attr |
 attr.scope = classifier_level)->
 collect(cAttr | AttributeAsElement(iAttr, obj.value(cAttr)))

9.5.2.3 OtherExtentLinks

This production adds the links which are not represented by reference values. In this
case, the links are represented regardless of whether or not the link end objects are in
the extent.

This operation gets all the Associations in the metamodel which have no corresponding
Reference. Over that sequence of associations, a sequence of strings is produced. For
each association, the element start tag is produced with the association name. Then, for
each link of the association, a sequence of strings is produced. For each link, two
reference elements are produced, representing the two link ends. Finally, for each
Association, the corresponding element end tag is produced

OtherExtentLinks(pkgProxy : RefPackage) : sequence(String)
OtherExtentLinks(pkgProxy) =
 UnreferencedAssoc(pkgProxy.metaObject().oclAsType(Package))->collect(a |
 Sequence{ ’<’,
 DotNotation(a.qualifiedName),
 ’>’,
 a.allLinks()->collect(l |
 Sequence{ ReferencingElement(End(1, a), l->at(1)),
 ReferencingElement(End(2, a), l->at(2))
 })
 ’</’,
 DotNotation(a.qualifiedName),
 ’>’
 })

ClassAttributes ::= AttributeAsElement*

OtherExtentLinks ::= < association-name >
 (ReferencingElement ReferencingElement)*
</ association-name >

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-213

9

9.5.3 Object Productions

The rest of the expressions in this document are not specific to either the object
containment or package extent productions. The object productions define expressions
producing XML from objects.

9.5.3.1 ObjectAsElement

An object is represented as an element by producing an element start tag, then the
object (and any objects it contains) as the contents of the element, followed by the
element end tag.

The operation produces the name of the element from the Class instance in the
metamodel defining the class of this object. The fully-qualified name, using a dot
notation, is used to avoid any ambiguity in naming the Class. The element start tag
also includes an identifier of the object, which is required to be a locally-unique
identifier. The ObjectContents operation provides the contents of the element.

ObjectAsElement(obj : RefObject) : Sequence(string)
ObjectAsElement(obj) =
 Sequence{ ’<’,
 DotNotation(obj.metaObject().oclAsType(Class).qualifiedName),
 ’ xmi.id="’,
 IdOfObject(obj),
 ’">’,
 ObjectContents(obj.metaObject().oclAsType(Class), obj),
 ’</’,
 DotNotation(obj.metaObject().oclAsType(Class).qualifiedName),
 ’>’
 }

9.5.3.2 ObjectContents

The ObjectContents operation produces XML to represent the contents of an object –
its state (attributes and references). The object is represented by its attributes, its non-
composing references, and its components. The attribute values of the object are
included in the contents of this element. The references corresponding to Associations
defined as composite are treated separately from other references. Those which are not
composite are represented in the contents of this element using XML’s XLink
mechanism. Those reference values which correspond to contained elements of the
composition are represented wholly in the contents of this element.

ObjectAsElement ::= < class-name xmi.id=" IdOfObject ">
 ObjectContents </ class-name >

ObjectContents ::= AttributeAsElement* ReferenceAsElement*
CompositeAsElement*

9-214 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

The ObjectContents operation produces XML to represent the contents of an object –
its state (attributes and references). Three steps are required to produce XML from the
input object: produce the XML for the object’s non-derived, instance-level attribute
values, then produce the XML for the object’s non-derived, non-composite, non-
component reference values, and finally produce the XML for the objects’ component
objects. From the object’s class, all the Attributes are obtained, including inherited
attributes. Among those, the non-derived, instance-level attributes are selected. Over
that sequence, string representations of the values are produced, using the
AttributeAsElement operation. The value operation, from the MOF’s RefObject
interface, provides the attribute value or values.

Then, among the classes’ References, those which match the following criteria are
selected: not based upon a derived Association, not with a referencedEnd which is a
composite, and not with an exposedEnd (the other association end) which is a
composite. From those References, the ReferenceAsElement is used to produce the
XML representing the value or values of each reference. References of a component
object which refer to its composite object (reference’s referencedEnd with composite
aggregation) may be optionally included. The generated DTD supports the optional
inclusion of this reference, but it is not shown here.

The non-derived References corresponding to contained elements are then obtained.
These References have their exposedEnd’s AssociationEnd with composite
aggregation. Over these references, the CompositeAsReference operation is used on
the reference value or values of each reference to produce the XML.

ObjectContents(metaClass : MofClass, obj : RefObject) : Sequence(string)
ObjectContents(metaClass, obj) =
 Sequence{
 metaClass.findElementsByTypeExtended(MofAttribute, false)->select(attr |
 attr.scope = instance_level and not attr.isDerived)->collect(iAttr |
 AttributeAsElement(iAttr, obj.value(iAttr))),

 metaClass.findElementsByTypeExtended(Reference, false)->select(ref |
 ref.exposedEnd.aggregation <> composite and
 ref.referencedEnd.aggregation <> composite and not
 ref.referencedEnd.container.oclAsType(Association).isDerived)->
 collect(r | ReferenceAsElement(r, obj.value(r))),

 metaClass.findElementsByTypeExtended(Reference, false)->select(ref |
 ref.exposedEnd.aggregation = composite and not
 ref.referencedEnd.container.oclAsType(Association).isDerived)->
 collect(r | CompositeAsElement(r, obj.value(r)))
 }

9.5.3.3 EmbeddedObject

An alternative is provided to the ObjectAsElement production, for producing elements
of objects without identifiers in the element start tag. Identifiers are not required when
an object is not participating in any link.

EmbeddedObject ::= < class-name > ObjectAsElement </ class-name >

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-215

9

Because the interactions with the MOF are defined using the MOF’s reflective
interfaces, the values of object attributes, references and link ends are represented
using the CORBA Any type, matching the return type of those interfaces’ operations.
The extract_Object operation is an operation defined for the CORBA Any type. It is
used to convert the Any value to an object. The ObjectContents operation is used to
define the contents of this element.

EmbeddedObject(metaClass : MofClass, value : Any) : Sequence(string)
EmbeddedObject(metaClass, value) =
 Sequence{
 ’<’,
 DotNotation(metaClass.qualifiedName),
 ’>’,
 ObjectContents(metaClass,
 value.extract_Object().oclAsType(RefObject)),
 ’</’,
 DotNotation(metaClass.qualifiedName),
 ’>’
 }

9.5.4 Attribute Production

9.5.4.1 AttributeAsElement

Each object attribute value is represented in XML in enclosing start and end tags
which identify the attribute. If the attribute is multi-valued (holding a more than one
instance of an object or datatype) then all those values may be represented within the
contents of the single element representing the attribute. Because of the differences
between single- and multi-valued references, they are handled in separate operations.

If the Attribute’s multiplicity has an upper bound greater than one, including
unbounded, or a lower bound of zero, the attribute value or values are returned in the
MOF as a possibly-empty collection.

AttributeAsElement(attr : MofAttribute, value : Any) : Sequence(string)
AttributeAsElement(attr, value) =
 if attr.multiplicity.lower = 0 or
 attr.multiplicity.upper > 1 or
 attr.multiplicity.upper = unbound then
 MvAttributeContents(attr, value)
 else
 SvAttributeContents(attr, value)
 endif

AttributeAsElement ::= (SvAttributeContents | MvAttributeContents)

9-216 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

9.5.4.2 ObjectReference

This operation represents the reference as a link, using either XML’s local linking
ability, or XLink.

 The IdOfObject will return a local id if the referenced object is part of the model. If
not, it returns an empty string.

ObjectReference(value : Any) : Sequence(string)
ObjectReference(value) =
 Sequence{ ’<XMI.reference’,
 (if IdOfObject(value.extract_Object()) <> ’’ then
 Sequence{ ’ xmi.idref="’, IdOfObject(value.extract_Object()), ’"’ }
 else
 Sequence{ ’ href="’, UrlOfObject(value.extract_Object()), ’"’ }
 endif),
 ’/>’
 }

9.5.4.3 SvAttributeContents

The contents of a single valued attribute is either an object or a data value If it is a
datavalue of type boolean, or of an enum type, special production rules are used. Enum
and boolean values are represented in the XML element’s attribute, while all other
values are represented in the Attribute element’s contents.

Values which are objects are handled by providing an enclosing pair of elements,
named by the attribute’s qualified name, and the EmbeddedObject operation. For data
values, if the value is boolean or an enum type, the EnumAttribute operation provides
the empty element holding the value. Otherwise, the ObjRefOrDataValue operation
provides the element contents for the attribute element.

SvAttributeContents(attr : MofAttribute, value : Any) : Sequence(string)
SvAttributeContents(attr, value) =
 if attr.type().oclIsOfType(Class) then
 Sequence{ ’<’,
 DotNotation(attr.qualifiedName),
 ’>’,
 EmbeddedObject(attr, value),
 ’</’,
 DotNotation(attr.qualifiedName),

ObjectReference :: <XMI.reference
((xmi.idref=" IdOfObject ") |
 (href=" UrlOfObject ")) />

SvAttributeContents ::= (< attribute-name > EmbeddedObject
</ attribute-name >) |
 EnumAttribute |
(< attribute-name > ObjRefOrDataValue
</ attribute-name >)

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-217

9

 ’>’,
 }
 else
 if DeAlias(attr.type().typeCode()).kind() = tk_boolean or
 DeAlias(attr.type().typeCode()).kind() = tk_enum then
 EnumAttribute(attr, value, DeAlias(attr.type().typeCode()).kind())
 else
 Sequence{ ’<’,
 DotNotation(attr.qualifiedName),
 ’>’,
 ObjRefOrDataValue(value, DeAlias(attr.type().typeCode()).kind()),
 ’</’,
 DotNotation(attr.qualifiedName),
 ’>’
 }
 endif
 endif

9.5.4.4 MvAttributeContents

For a multivalued attribute’s contents, multiple attribute values may be present.
Because data values do not have enclosing element tags, each value is delimited with a
sequence item tag.

In the OCL operation, the ExtractSequence operation is a convenience query for
transforming the value of the Any type into an OCL sequence.

MvAttributeContents(attr : MofAttribute, value : Any) : Sequence(string)
MvAttributeContents(attr, value) =
 Sequence{
 ’<’,
 DotNotation(attr.qualifiedName),
 ’>’ ,
 (if attr.type().oclIsOfType(Class) then
 ExtractSequence(value)->collect(obj | EmbeddedObject(attr, obj))
 else
 if DeAlias(attr.type().typeCode()).kind() = tk_boolean or
 DeAlias(attr.type().typeCode()).kind() = tk_enum then
 ExtractSequence(value)->collect(item |
 EnumAttribute(attr, item,
 DeAlias(attr.type().typeCode()).kind()))
 else
 ExtractSequence(value)->collect(item |
 Sequence{ ’<XMI.seqItem>’,
 ObjRefOrDataValue(item, DeAlias(attr.type().typeCode()).kind()),
 ’</XMI.seqItem>’
 }
 endif
 endif),
 ’</’,

MvAttributeContents ::= < attribute-name > (EmbeddedObject+ |
EnumAttribute+ |
ObjRefOrDataValue+) </ attribute-name >

9-218 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 DotNotation(attr.qualifiedName),
 ’>’
 }

9.5.4.5 EnumAttribute

An attribute of an enum of boolean type is treated special. The value is represented in
an element attribute, rather than the element contents.

EnumAttribute(attr, MofAttribute, value : Any, kind : TCKind) :
Sequence(string)

EnumAttribute(attr, value, kind) =
 Sequence{ ’<’,
 DotNotation(attr.qualifiedName),
 ’xmi.value="’,
 (if kind = tk_boolean then
 BooleanAsString(value)
 else
 EnumAsString(value)
 endif)
 ’"/>’
 }

9.5.5 Reference Productions

In the MOF, the object-to-object navigability via links is supported through the
definition of References in Classes. This operation defines the representation of
reference values when they are not component values of a composition.

9.5.5.1 ReferenceAsElement

The ReferenceAsElement operation provides the representation one or more reference
values.

When the Reference’s multiplicity has an upper bound greater than one, including
unbounded, or a lower bound of zero, the reference is checked to see if any values
exist. If not, no elements are returned.

EnumAttribute ::= < attribute-name xmi.value="
(BooleanAsString | EnumAsString) "/>

ReferenceAsElement ::= (< reference-name > ReferencingElement*
</ reference-name >) |
()

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-219

9

ReferenceAsElement(ref : Reference, value : Any)
ReferenceAsElement(ref, value) =
 if ref.multiplicity.lower = 0 or
 ref.multiplicity.upper > 1 or
 ref.multiplicity.upper = unbound then
 if ExtractSequence(value)->notEmpty then
 Sequence{ ’<’,
 DotNotation(ref.qualifiedName),
 ’>’,
 ExtractSequence(value)->collect(item |
 ReferencingElement(ref,
 item.extract_Object().oclAsType(RefObject))),
 '<',
 DotNotation(ref.qualifiedName),
 ’/>’
 }
 else
 Sequence {}
 else
 Sequence{ '<',
 DotNotation(ref.qualifiedName),
 ’>’,
 ReferencingElement(ref, value.extract_Object().oclAsType(RefObject))
 '<',
 DotNotation(ref.qualifiedName),
 ’/>’
 }
 endif

9.5.5.2 ReferencingElement

This operation represents an association end value (a link end) or reference value as a
link, using either XML’s local linking ability, or XLink. The element name could
represent either the reference name or the association end name, depending on its use.

The Element’s name is provided from the fully-qualified name of the supplied
ModelElement. The IdOfObject will return a local id if the referenced object is part of
the model. If not, it returns an empty string. UrlOfObject returns an URL linking to a
representation of the object outside the document.

ReferencingElement(obj : RefObject) : Sequence(string)
ReferencingElement(obj) =
 Sequence{ ’<’,
 DotNotation(obj.metaObject().oclAsType(Class).qualifiedName),
 (if IdOfObject(obj) <> ’’ then
 Sequence{ ’ xmi.idref="’, IdOfObject(obj), ’"’ }
 else
 Sequence{ ’ href="’, UrlOfObject(obj), ’"’ }
 endif),

ReferencingElement :: < element-type-name
((xmi.idref=" IdOfObject ") |
 (href=" UrlOfObject ")) />

9-220 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 ’/>’
 }

9.5.6 Composition Production

9.5.6.1 CompositeAsElement

A Reference to a contained element of a composition has the referenced objects
included in the contents of the reference element.

The element name is supplied by the fully-qualified name of the reference. The
multiplicity of the Reference determines whether the value is an object or a collection
of objects.

CompositeAsElement(ref : Reference, value : Any)
CompositeAsElement(ref, value) =
 Sequence{ ’<’,
 DotNotation(ref.qualifiedName),
 ’>’,
 (if attr.multiplicity.lower = 0 or
 attr.multiplicity.upper > 1
 attr.multiplicity.upper = unbound then
 ObjectAsElement(value.extract_Object().oclAsType(RefObject))
 else
 ExtractSequence(value)->collect (item |
 ObjectAsElement(item.extract_Object().oclAsType(RefObject)))
 endif),
 ’<’,
 DotNotation(ref.qualifiedName),
 ’/>’
 }

9.5.7 DataValue Productions

The MOF currently uses the CORBA type system as the base type system for data
types. In a metamodel, additional data types can be defined, such as Date or
BigInteger. However, values of those types will be represented in terms of CORBA
type values. As a consequence, XMI needs to be able to encode values of CORBA data
types. This is what the DataValue productions are designed to do.

Data values are represented in XMI with a conservative number of elements. The
expected type of most data values in an XML document are defined by the metamodel
and determined by the context. In particular, the expected type for the value of an
attribute is defined in the metamodel by the DataType associated with the Attribute.

CompositeAsElement ::= < reference-name > ObjectAsElement*
</ reference-name >

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-221

9

Thus XML elements that represent data values or their component parts do not need to
identify the type.

The exception to this is instances of the CORBA primitive data type Any. The CORBA
Any type is a "universal union" type; i.e. a type which can encapsulate a value of any
CORBA data type or object reference in a type safe way. An instance of the Any type
consists of two parts; the encapsulated value, and a descriptor for the encapsulated
value’s type. The latter is expressed as an instance of another CORBA primitive data
type called TypeCode.

When an instance of the Any type is encoded in XMI, the expected type of the
encapsulated value cannot be determined before hand. Rather, the type is expressed
using element attributes of the XMI.any element. In most cases, the type information
can be represented using the kind and name element attributes. In the most general
case, however, an href element attribute provides a link to an XMI.CorbaTypeCode
element, to provide the type description.

9.5.7.1 ObjRefOrDataValue

Based upon the supplied type representation, the appropriate operation is used to
represent the value. This production can encounter an object reference when the value
is an item within a datatype value (a struct, union, sequence, or array) or a CORBA
Any-typed value (which, strictly speaking, is also a data value) In these cases, objects
are treated as object references (i.e. using XLink to point to the object) rather than
representing the object directly in the element contents. Likewise, an enum-typed value
will only be encountered in this production as an element of a datatype, or as an Any-
typed value.

ObjRefOrDataValue(value : Any, kind : TcKind) : Sequence(string)
ObjRefOrDataValue(value, kind) =
 if kind = tk_struct then
 StructValue(value)
 else
 if kind = tk_sequence or kind = tk_array then
 SequenceValue(value)
 else
 if kind = tk_union then
 UnionValue(value)
 else
 if kind = tk_string or kind = tk_wstring then
 StringValue(value)
 else
 if kind = tk_char or kind = tk_wchar then
 CharacterValue(value)
 else
 if kind = tk_enum or kind = tk_boolean then
 EnumAsElement(value)

ObjRefOrDataValue ::= (StructValue | SequenceValue | UnionValue |
StringValue | CharacterValue | EnumAsElement |
IntegralValue | RealValue | TypeCodeValue | AnyValue |
ObjectReference)

9-222 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 else
 if Set{ tk_short, tk_ushort, tk_long,
 tk_ulong, tk_longlong,
 tk_ulonglong, tk_octet }->includes(kind) then
 IntegralValue(value)
 else
 if kind = tk_float or kind = tk_double or kind = tk_longdouble then
 RealValue(value)
 else
 if kind = tk_TypeCode then
 TypeCodeValue(value)
 else
 if kind = tk_any then
 AnyValue(value)
 else
 if kind = tk_objref then
 ObjectReference(value)
 else
 -- should never be the case
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif

9.5.7.2 StructValue

A value of a struct type is represented as a sequence of its fields, each enclosed in a
field element.

The operation defines a integer sequence over the range of struct fields. Over this
sequence, each field is represented. For each index value, the field element is
produced, enclosing the value of the field. The member_type operation, part of the
TypeCode object, returns the type of the field at the index. The DeAlias operation,
applied to this typecode, removes any aliases.

StructValue(value : Any) : Sequence(string)
StructValue(value) =
 Sequence{ 0..value.type().member_count() - 1 }->collect(index |
 Sequence{ ’<XMI.field>’,
 ObjRefOrDataValue(ExtractField(value, index),
 DeAlias(value.type().member_type(index)).kind()),
 ’</XMI.field>’
 })

 StructValue ::= (<XMI.field> ObjRefOrDataValue </XMI.field>)+

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-223

9

9.5.7.3 SequenceValue

A value of type sequence is represented by having each of its items contained in a
sequence item element. However, a sequence of octets is treated special, allowing a
blob-like value to be represented more efficiently. A sequence of octet (eight-bit)
values is represented as a string encoded in hexadecimal. A value of type Array is
treated identically a sequence in this production rule.

If the content type of the sequence value is octet, each item is produced as two
hexadecimal characters. Otherwise, each sequence item is produced in the form of a
XMI.seqItem element. The TypeCode’s content_type operation returns the type of the
sequence or array items.

SequenceValue(value : Any) : Sequence(string)
SequenceValue(value) =
 if DeAlias(value.type()).content_type()).kind() = tk_octet then
 Sequence{ ’<XMI.octetStream>’,
 ExtractSequence(value)->collect(seqItem |
 HexAsString(seqItem.extract_octet())),
 ’<XMI.octetStream>’
 }
 else
 ExtractSequence(value)->collect(seqItem |
 Sequence{ ’<XMI.seqItem>’,
 ObjRefOrDataValue(seqItem,
 DeAlias(value.type()).content_type()).kind()),
 ’</XMI.seqItem>’
 })
 endif

9.5.7.4 UnionValue

The union value has both its discriminator value and field value represented in XML
elements.

The discriminator value is provided by ExtractUnionDiscrim operation, the field value
is provided by the ExtractUnionField operation, and the field type is determined by the
GetUnionFieldType operation. These three OCL operations are described in this
chapter.

UnionValue(value : Any) : Sequence(string)
UnionValue(value) =

SequenceValue ::= (<XMI.octetStream> HexAsString*
 </XMI.octetStream>) |
 (<XMI.seqItem> ObjRefOrDataValue </XMI.seqItem>)*

UnionValue ::= <XMI.unionDiscrim> ObjRefOrDataValue
</XMI.unionDiscrim>
<XMI.field> ObjRefOrDataValue </XMI.field>

9-224 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 Sequence {
 ’<XMI.unionDiscrim>’,
 ObjRefOrDataValue(ExtractUnionDiscrim(value),
 DeAlias(DeAlias(value.type().discriminator_type())).kind(),
 ’</XMI.unionDiscrim>’,
 ’<XMI.field>’
 ObjRefOrDataValue(ExtractUnionField(value),
 DeAlias(GetUnionFieldType(value)).kind()),
 ’</XMI.field>’
 }

9.5.7.5 StringValue

A string value is represented directly, without an enclosing element. However, it must
be encoded to remove any characters which can be confused for XML markup, and
thereby become unparsable.

The handling of string and wide string differs here only in the representation of
extraction from the Any-typed value.

StringValue(value : Any) : Sequence(string)
StringValue(value) =
 (if kind = tk_string then
 EncodedString(value.extract_string())
 else
 EncodedString(value.extract_wstring())
 endif)

9.5.7.6 CharacterValue

A character may need to be converted, if it is an XML markup character.

Character and wide character values are have different operations for extraction from
Any values.

CharacterValue(value : Any) : string
CharacterValue(value) =
 (if kind = tk_char then
 EncodedCharacter(value.extract_char())
 else
 EncodedCharacter(value.extract_wchar())
 endif)

StringValue ::= EncodedString

CharacterValue ::= EncodedCharacter

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-225

9

9.5.7.7 EnumAsElement

In XMI, the values of enum and boolean attributes are represented directly in the
element representing the attribute, as element attribute values. This approach allows
the DTD to represent the range of labels, and supports XML parser verification of the
values. However, when the enum value is an item in a constructed data type (struct,
union, sequence, or array) or an Any-typed value, that form of representation is not
possible. For those cases, the enum value is represented in the element defined here.

The BooleanAsString or EnumAsString operation provides the string representation of
the value.

EnumAsElement(value : Any) : Sequence(string)
EnumAsElement(value) =
 Sequence{ ’<XMI.enum xmi.value="’,
 (if kind = tk_boolean then
 BooleanAsString(value)
 else
 EnumAsString(value)
 endif),
 ’"/>’
 }

9.5.7.8 IntegralValue

All integer types are handled by this operation.

The specific type of the value determines the operation used to extract the integer
value from the argument.

IntegralValue(value : Any) : string
IntegralValue(value) =
 IntegralAsString(
 if value.type().kind() = tk_short then
 value.extract_short()
 else
 if value.type().kind() = tk_ushort then
 value.extract_ushort()
 else
 if value.type().kind() = tk_long then
 value.extract_long()
 else
 if value.type().kind() = tk_ulong then
 value.extract_ulong()
 else
 if value.type().kind() = tk_longlong then
 value.extract_longlong()

EnumAsElement ::= <XMI.enum xmi.value=" enum-value-label ">

IntegralValue ::= IntegralAsString

9-226 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 else
 if value.type().kind() = tk_ulonglong then
 value.extract_ulonglong()
 else
 if value.type().kind() = tk_octet then
 value.extract_octet()
 else
 -- undefined
 endif
 endif
 endif
 endif
 endif
 endif
 endif)

9.5.7.9 RealValue

Each of the real types are handled by this operation.

The type of the value determines which extraction operation to use.

RealValue(value : Any) : string
RealValue(value) =
 RealAsString(if value.type().kind() = tk_float then
 value.extract_float()
 else
 if value.type().kind() = tk_double then
 value.extract_double()
 else
 -- undefined
 endif
 endif)

9.5.7.10 AnyValue

This operation supports the transfer of values represented by the Any type. Ideally,
XMI.any could represent any object or data value of any type. However, currently this
element is limited to representing objects and data values whose types are defined in
the metamodel, plus other objects and datatypes when the element links to a type
description of the value’s type. This when linking to a type description, this element is
currently limited to linking to elements representing CORBA TypeCodes.

XMI.any’s element attributes are determined, based on the type of the argument. The
TypeId operation will either provide the required element attributes, or will return an

RealValue ::= RealAsString

AnyValue ::= <XMI.any (TypeId | TypeRef) > ObjRefOrDataValue
</XMI.any>

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-227

9

empty string. When that operation does return an empty string, the TypeRef operation
is used to provide an element attribute representing a link to a type description.

AnyValue(value : Any) : Sequence(string)
AnyValue(value) =
 Sequence{ ’<XMI.any’,
 (if TypeId(value.type()) <> ’ ’ then
 TypeId(value.type())
 else
 TypeRef(value.type())
 endif),
 ’>’,
 ObjRefOrDataValue(value, DeAlias(value.type()).kind()),
 </XMI.any>’
 }

9.5.7.11 RequiredTypeDefinitions

The RequiredTypeDefinitions production generates the type representation for any
value in the document whose type is not defined by the metamodel. The types are
defined by TypeCode values, represented with the TypeCodeState production (which
produces XMI.CorbaTypeCode elements).

The Producer object includes an attribute, typeDefinitions, which accumulates any
required type definitions during the generation of values in a model. If this attribute is
not empty, then the TypeDefinitions element is included in the XML document, with
the sequence of strings held by the Producer attribute as the contents of this element.
That sequence of strings will constitute one or more TypeCodeState elements.

RequiredTypeDefinitions(objs : Set(RefObject)) : Set(TypeCode)
RequiredTypeDefinitions() =
 if self.typeDefinitions->notEmpty then
 Sequence{ ’<XMI.TypeDefinitions>’,
 self.typeDefinitions,
 ’</XMI.TypeDefinitions>
 }
 else
 Sequence{ }
 endif

9.5.7.12 TypeId

This production generates XML element attributes to represent the type of an Any
value, when the type is either a primitive type or a type defined in the metamodel. For
any other type, this production returns an empty string.

RequiredTypeDefinitions ::= <XMI.TypeDefinitions> TypeCodeState+
 </XMI.TypeDefinitions>

9-228 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

XMI.any attributes that encode the type description of the value inside an Any type.
There are three encodings of the type information:

• If the type is a CORBA primitive type or an unbounded string or wstring, it is
encoded as the type’s kind. (Note that this case does not include aliases of primitive
types created via a typedef.)

• If the type corresponds to a DataType in the metamodel, it is encoded as the type’s
kind followed by the qualified name of the DataType. When the type is an alias, the
kind represents the original, or dealiased type.

• Otherwise, an empty string is returned. In this case, another production must be
employed to identify the type.

TypeId(tc : TypeCode) : Sequence(string)
TypeId(tc) =
 if PrimitiveOrUnboundString(tc) then
 Sequence { ’ xmi.kind = "’, CorbaTypeName(tc.kind()), ’"’ }
 else
 if CorrespondingDataType(tc) <> ’’ then
 Sequence { ’ xmi.kind = "’,
 CorbaTypeName(tc.kind()),
 ’",
 ’ xmi.name = "’,
 CorrespondingDataType(tc),
 ’"’
 }
 else
 Sequence { ’’ }
 endif
 endif

9.5.8 CORBA-Specific Types

Although all the data types are CORBA data types, most are general in nature, and
have analogous types in other type systems. The following operations support types
and features which are more CORBA-specific, including the CORBA TypeCode type,
and the representation of the type of a value in an XMI.any element using a TypeCode.

9.5.8.1 TypeRef

This production generates an element attribute for the XMI.any element which
references a separate type definition element. This attribute is used when the value
represented by the XMI.any attribute is of a type not defined in the metamodel.

TypeId ::= (xmi.kind=" type-kind ") |
(xmi.kind=" type-kind " xmi.name=" type-name ") |
()

TypeRef ::= href="| IdOfTypeDefinition "

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-229

9

The element attribute uses an XPointer representation of the link to the type definition
corresponding to the typecode.

TypeRef(tc : TypeCode) : Sequence(string)
TypeRef(tc) =
 Sequence { ’ href="|’, IdOfTypeDefinition(tc), ’"’ }

9.5.8.2 TypeCodeValue

This production creates a representation of a TypeCode value.

The id argument in the operation provides an identifier for the typecode element
produced in the TypeCodeState operation. an empty string may be provided when an
element identifier is not needed.

TypeCodeValue(value : Any, id : string) : Sequence(string)
TypeCodeValue(value) =
 TypeCodeState(value.extract_TypeCode(), id)

Producer object Modifications:

self.constructedTcList ← Sequence{ }

The Producer’s constructedTcList attribute supports the representation of recursive
sequence types. This attribute is initialized here; each struct embedded in this typecode
is added to the sequence.

9.5.8.3 TypeCodeState

This production generates an element representing the state of a TypeCode value.
Because a TypeCode may include other TypeCode values, this production may be
employed recursively.

An id element attribute is only generated if the supplied id is not an empty string. The
appropriate operation is used, based on the type that the provided TypeCode is
representing.

TypeCodeState(tc : TypeCode, id : string) : Sequence(string)
TypeCodeState(tc) =
 Sequence{ ’<XMI.CorbaTypeCode’,
 (if id <> ’’ then

TypeCodeValue ::= TypeCodeState

TypeCodeState ::= <XMI.CorbaTypeCode>
(TcAlias | TcStruct | TcSequence | TcArray | TcObjRef |
TcEnum | TcUnion | TcExcept | TcString | TcWstring |
TcFixed | TcSimple)
</XMI.CorbaTypeCode>

9-230 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 Sequence { ’ xmi.id="’, id, ’"’ }
 else
 Sequence { }
 endif),
 ’>’,
 (if tc.kind() = tk_alias then
 TcAlias(tc)
 else
 if tc.kind() = tk_struct then
 TcStruct(tc)
 else
 if tc.kind() = tk_sequence then
 TcSequence(tc)
 else
 if tc.kind() = tk_array then
 TcArray(tc)
 else
 if tc.kind() = tk_objref then
 TcObjRef(tc)
 else
 if tc.kind() = tk_enum then
 TcEnum(tc)
 else
 if tc.kind() = tk_union then
 TcUnion(tc)
 else
 if tc.kind() = tk_except then
 TcExcept(tc)
 else
 if tc.kind() = tk_string then
 TcString(tc)
 else
 if tc.kind() = tk_wstring then
 TcWstring(tc)
 else
 if tc.kind() = tk_fixed then
 TcFixed(tc)
 else
 TcSimple(tc)
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif),
 ’</XMI.CorbaTypeCode>’
 }

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-231

9

9.5.8.4 TcAlias

This production generates a representation of an alias type.

The operation uses the CORBA-defined operations on TypeCode to extract the state of
the alias typecode. The TypeCode operation is used to represent the type that is being
aliased.

TcAlias(tc : TypeCode) : Sequence(string)
TcAlias(tc : TypeCode) : Sequence(string)
TcAlias(tc) =
 Sequence{ ’<XMI.CorbaTcAlias xmi.tcName="’,
 tc.name(),
 ’" xmi.tcId =",
 tc.id(),
 ’">’,
 TypeCodeState(tc.content_type(), ’’),
 ’</XMI.CorbaTcAlias>’
 }

9.5.8.5 TcStruct

This production generates a representation of a struct type.

The operation iterates through the a zero-based sequence of integers, with a size equal
to the number of fields in the struct. At each iteration, the field definition is extracted.

TcStruct(tc : TypeCode) : Sequence(string)
TcStruct(tc) =
 Sequence{ ’<XMI.CorbaTcStruct xmi.tcName="’,
 tc.name(),
 ’" xmi.tcId =",
 tc.id(),
 ’">’,
 Sequence{ 0..(tc.member_count() - 1) }->collect(i |
 Sequence{ ’<XMI.CorbaTcField xmi.tcName="’,
 tc.member_name(i),
 ’">’,
 TypeCodeState(tc.member_type(i), ’’),
 ’</XMI.CorbaTcField>’
 }),

TcAlias ::= <XMI.CorbaTcAlias xmi.tcName=" alias-name "
xmi.tcId=" alias-id "> TypeCodeState
</XMI.CorbaTcAlias>

TcStruct ::= <XMI.CorbaTcStruct xmi.tcName=" struct-name "
xmi.tcId=" struct-id ">
(<XMI.CorbaTcField xmi.tcName=" field-name ">
TypeCodeState </XMI.CorbaTcField>)*
</XMI.CorbaTcStruct>

9-232 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 ’</XMI.CorbaTcStruct>’
 }

Producer Object Modifications

self.constructedTcList ← self.constructedTcList->append(tc)

Each struct defined within the outermost typecode is held while the XML
representation of the typecode is generated. If a recursive sequence is employed within
the typecode, the sequence of structs will be required.

9.5.8.6 TcSequence

This production generates a representation of a sequence typecode. CORBA allows the
type of the sequence elements to be defined as a struct which encloses this sequence,
known as a recursive sequence. The production must represent that type is a special
manner.

A sequence length of zero means unbounded – no upper limit on the number of
elements. If the constructedTcList attribute contains the typecode representation of the
element type, then this is a recursive sequence.

TcSequence(tc : TypeCode) : Sequence(string)
TcSequence(tc) =
 Sequence{ ’<XMI.CorbaTcSequence xmi.tcLength="’,
 tc.length(),
 ’">’,
 (if self.constructedTcList->includes(tc.content_type()) then
 TcRecursiveLink(tc, tc.content_type())
 else
 TypeCodeState(tc.content_type(), ’’)
 endif),
 ’</XMI.CorbaTcSequence>’
 }

9.5.8.7 TcArray

The Array typecode is represented similarly to the sequence typecode, but recursive
sequences are not permitted.

The array element type is represented using the TypeCodeState operation.

TcSequence ::= <XMI.CorbaTcSequence xmi.tcLength="
type-length ">
(TypeCodeState | TcRecursiveLink)
</XMI.CorbaTcSequence>

TcArray ::= <XMI.CorbaTcArray xmi.tcLength=" type-length ">
TypeCodeState </XMI.CorbaTcArray>

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-233

9

TcArray(tc : TypeCode) : Sequence(string)
TcArray(tc) =
 Sequence{ ’<XMI.CorbaTcArray xmi.tcLength="’,
 tc.length(),
 ’">’,
 TypeCodeState(tc.content_type(), ’’),
 ’</XMI.CorbaTcArray>’

9.5.8.8 TcObjRef

A TypeCode element defining an object reference is generated with this production.

This operation generates an empty element.

TcObjRef(tc : TypeCode) : Sequence(string)
TcObjRef(tc) =
 Sequence{ ’<XMI.CorbaTcObjRef xmi.tcName="’,
 tc.name(),
 ’" xmi.tcId ="’,
 tc.id(),
 ’"/>’
 }

9.5.8.9 TcEnum

This production generates the representation of an enum TypeCode.

The operation iterates over a zero-based sequence of integers equal in length to the
number of enum labels in the typecode.

TcEnum(tc : TypeCode) : Sequence(string)
TcEnum(tc : TypeCode) : Sequence(string)
TcEnum(tc) =
 Sequence{ ’<XMI.CorbaTcEnum xmi.tcName="’,
 tc.name(),
 ’" xmi.tcId =",
 tc.id(),
 ’">’,
 Sequence{ 0..(tc.member_count-1) }->collect(i |
 Sequence{ ’<XMI.CorbaTcEnumLabel xmi.tcName="’,
 tc.member_name(i),

TcObjRef ::= <XMI.CorbaTcObjRef xmi.tcName=" type-name "
tcId=" type-id "/>

TcEnum ::= <XMI.CorbaTcEnum xmi.tcName=" type-name "
xmi.tcId=" type-id ">
(<XMI.CorbaTcEnumLabel
xmi.tcName=" enum-label "/>)*
</XMI.CorbaTcEnum>

9-234 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 ’"/>’
 }
 }
 ’</XMI.CorbaTcEnum>’
 }

9.5.8.10 TcUnion

This production generates the representation of a CORBA Union typecode.

TcUnion(tc : TypeCode) : Sequence(string)
TcUnion(tc) =
 Sequence{ ’<XMI.CorbaTcUnion xmi.tcName="’,
 tc.name(),
 ’" xmi.tcId=",
 tc.id(),
 ’">’,
 TypeCodeState(tc.discriminator_type(), ’’),
 Sequence{ 0..(tc.member_count-1) }->collect(i |
 Sequence{ ’<XMI.CorbaTcUnionMbr xmi.tcName="’,
 tc.member_name(i),
 ’">’,
 TypeCodeState(tc.member_type(i), ’’),
 AnyValue(tc.member_label(i)),
 ’</XMI.CorbaTcUnionMbr>’
 }),
 ’</XMI.CorbaTcUnion>’
 }

9.5.8.11 TcExcept

This production generates the representation of a CORBA exception typecode.

TcExcept(tc : TypeCode) : Sequence(string)
TcExcept(tc : TypeCode) : Sequence(string)
TcExcept(tc) =
 Sequence{ ’<XMI.CorbaTcExcept xmi.tcName="’,

TcUnion ::= <XMI.CorbaTcUnion xmi.tcName=" type-name "
xmi.tcId=" type-id "> TypeCodeState
(<XMI.CorbaTcUnionMbr xmi.tcName="
field-name "> TypeCodeState AnyValue
</XMI.CorbaTcUnionMbr>)* </XMI.CorbaTcUnion>

TcExcept ::= <XMI.CorbaTcExcept xmi.tcName=" exception-name "
xmi.tcId =" exception-id ">
(<XMI.CorbaTcField xmi.tcName=" field-name ">
TypeCodeState </XMI.CorbaTcField>)*
</XMI.CorbaTcExcept>

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-235

9

 tc.name(),
 ’" xmi.tcId=",
 tc.id(),
 ’">’,
 Sequence{ 0..(tc.member_count-1) }->collect(i |
 Sequence{ ’<XMI.CorbaTcField tcName="’,
 tc.member_name(i),
 ’">’,
 TypeCodeState(tc.member_type(i), ’’),
 ’</XMI.CorbaTcField>’
 }),
 ’</XMI.CorbaTcExcept>’
 }

9.5.8.12 TcString

CORBA supports differing string types, since each type may specify a distinct length
for its values.

A length of zero indicates that the string length is unbounded.

TcString(tc : TypeCode) : Sequence(string)
TcString(tc) =
 Sequence{ ’<XMI.CorbaTcString xmi.tcLength="’,
 tc.length(),
 ’"/>’
 }

9.5.8.13 TcWstring

This production is similar to the TcString production, except that it is for wide strings.

A length of zero indicates that the string length is unbounded.

TcWstring(tc : TypeCode) : Sequence(string)
TcWstring(tc) =
 Sequence{ ’<XMI.CorbaTcWstring xmi.tcLength="’,
 tc.length(),
 ’"/>’
 }

TcString ::= <XMI.CorbaTcString xmi.tcLength=" type-length "/>

TcWstring ::= <XMI.CorbaTcWstring xmi.tcLength="
type-length "/>

9-236 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

9.5.8.14 TcFixed

TcFixed(tc : TypeCode) : Sequence(string)
TcFixed(tc)=
 Sequence{ ’<XMI.CorbaTcFixed xmi.tcDigits="’,
 tc.fixed_digits(),
 ’" xmi.tcScale="’,
 tc.fixed_scale(),
 ’"/>’
 }

9.5.8.15 TcSimple

For the rest of the TypeCodes, the empty element itself completely describes the
typecode.

TcSimple(tc : TypeCode) : Sequence(string)
TcSimple(tc) =
 if tc.kind() = tk_short then
 ’<XMI.CorbaTcShort/>’
 else
 if tc.kind() = tk_long then
 ’<XMI.CorbaTcLong/>’
 else
 if tc.kind() = tk_ushort then
 ’<XMI.CorbaTcUshort/>’
 else
 if tc.kind() = tk_ulong then
 ’<XMI.CorbaTcUlong/>’
 else
 if tc.kind() = tk_float then
 ’<XMI.CorbaTcFloat/>’
 else
 if tc.kind() = tk_double then
 ’<XMI.CorbaTcDouble/>’

TcFixed ::= <XMI.CorbaTcFixed xmi.tcDigits=" digits "
xmi.tcScale=" scale "/>

TcSimple ::= (<XMI.CorbaTcShort/> | <XMI.CorbaTcLong/> |
<XMI.CorbaTcUshort/> | <XMI.CorbaTcUlong/> |
<XMI.CorbaTcFloat/> | <XMI.CorbaTcDouble/> |
<XMI.CorbaTcBoolean/> | <XMI.CorbaTcChar/> |
<XMI.CorbaTcWchar/> | <XMI.CorbaTcOctet/> |
<XMI.CorbaTcAny/> | <XMI.CorbaTcTypeCode/> |
<XMI.CorbaTcPrincipal/> | <XMI.CorbaTcNull/> |
<XMI.CorbaTcVoid/> | <XMI.CorbaTcLongLong/> |
<XMI.CorbaTcLongLong/> |
<XMI.CorbaTcLongDouble/>)

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-237

9

 else
 if tc.kind() = tk_boolean then
 ’<XMI.CorbaTcBoolean/>’
 else
 if tc.kind() = tk_char then
 ’<XMI.CorbaTcChar/>’
 else
 if tc.kind() = tk_wchar then
 ’<XMI.CorbaTcWchar/>’
 else
 if tc.kind() = tk_octet then
 ’<XMI.CorbaTcOctet/>’
 else
 if tc.kind() = tk_any then
 ’<XMI.CorbaTcAny/>’
 else
 if tc.kind() = tk_TypeCode then
 ’<XMI.CorbaTcTypeCode/>’
 else
 if tc.kind() = tk_Principal, then
 ’<XMI.CorbaTcPrincipal/>’
 else
 if tc.kind() = tk_null then
 ’<XMI.CorbaTcNull/>’
 else
 if tc.kind() = tk_void then
 ’<XMI.CorbaTcVoid/>’
 else
 if tc.kind() = tk_longlong then
 ’<XMI.CorbaTcLongLong/>’
 else
 if tc.kind() = tk_ulonglong then
 ’<XMI.CorbaTcUlongLong/>’
 else
 if tc.kind() = tk_longdouble then
 ’<XMI.CorbaTcLongDouble/>’
 else
 -- undefined (not expected)
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif
 endif

9-238 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

9.5.8.16 TcRecursiveLink

CORBA allows the recursive definition of TypeCodes. Without a special mechanism, it
would be impossible to represent this recursion in XML. CORBA restricts the use of
recursion to the definition of the items of a sequence. If a sequence is defined within
another type, and either that type, or some other type enclosing this sequence is a
struct, then the sequence items can be of that struct type. The type of the items is then
represented by this element. The offset value is the same as the offset in a TypeCode
representing a recursive sequence, specified as:

"The offset parameter specifies which enclosing struct or union is the target of the
recursion, with the value one indicating the most immediate enclosing struct or
union, and larger values indicating successive enclosing struct or unions."
[CORBA]

So in this type:

struct foo {
long value;
sequence<foo> chain; };

the offset of the recursive link defining the type of chain items would be1.

The distance operation calculates the distance between the sequence type and struct
content type.

TcRecursiveLink(seqTc : TypeCode, contentTc : TypeCode) : Sequence(string)
TcRecursiveLink(seqTc, contentTc) =
 Sequence{ ’<XMI.CorbaRecursiveType xmi.offset="’,
 TcDistance(contentTc, seqTc, 0),
 ’/>’
 }

9.5.9 Helpers

The following operations support the above productions and operations.

9.5.9.1 LinksInRoot

Given an association from the metamodel, this operations detects and returns all
instances of the association (links) in which both the objects at the link ends are in the
model identified by the document root. The allContents operation is defined in the
OCL of the MOF specification.

LinksInRoot(assoc : Association) : Sequence(Link)
LinksInRoot(assoc) =

TcRecursiveLink ::= <XMI.CorbaRecursiveType xmi.offset="
offset-to-sequence "/>

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-239

9

 self.refPkg.getAssociation(a)->iterate(ra; links : Sequence(Link) |
 ra.allLinks()->select(l |
 self.root.allContents->includes(l->at(1)) and
 root.allContents->includes(l->at(2))))

9.5.9.2 UnreferencedAssoc

This operation returns all the Associations in a metamodel defined by a Package,
which have no References corresponding to either AssociationEnd. The operation
considers both the Associations immediately contained by the Package, as well as
those which may be enclosed in nested Packages.

UnreferencedAssoc(pkg : Package) : sequence(Association)
UnreferencedAssoc() =
 pkg.allContents->select(c |
 c.oclIsTypeOf(Association) and not
 c.oclIsTypeOf(Association).contents->exists(ae |
 pkg.allContents->select(c2 | c2.oclIsTypeOf(Reference))->collect(r |
 r.referencedEnd)->includes(ae)))

9.5.9.3 AllClassProxies

This operation returns all the class proxies (instances of subtypes of RefObject) which
are enclosed by the provided RefPackage, including those which may be enclosed by
nested RefPackages.

AllClassProxies(pkgProxy : RefPackage) : Sequence(RefObject)
AllClassProxies(pkgProxy) =
 pkgProxy.metaObject().oclAsType(Package).findElementsByTypeExtended
 (Class, false)->collect(c | pkgProxy.getClassRef(c))->union
 (pkgProxy.metaObject().oclAsType(Package).findElementsByTypeExtended
 (Package, false)->collect(p | AllClassProxies(p)))

9.5.9.4 AllUncontainedObjects

This operation returns all the objects in the extent of the RefPackage which do not
participate in a composite aggregation on the contained end (not contained by any
other object).

AllUncontainedObjects(pkgProxy : RefPackage) : Sequence(RefObject)
AllUncontainedObjects(pkgProxy) =
 AllClassProxies(pkgProxy)->collect(c | c.allObjects(false))->select(obj |
 CompAssocProxies(pkgProxy)->iterate(ap; answer : boolean = false |
 answer or
 (if End(1, ap.metaObject().oclAsType(Association)).aggregation =
 composition then
 ap.query(End(2, ap.metaObject().oclAsType(Association)), obj)->isEmpty
 else

9-240 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

 ap.query(End(1, ap.metaObject().oclAsType(Association)), obj)->isEmpty
 endif))

9.5.9.5 CompAssocProxies

This operation returns all the Associations enclosed in a RefPackage (directly or
indirectly) which are defined as composite aggregations.

CompAssocProxies(pkgProxy : RefPackage) : Sequence(RefAssociation)
CompAssocProxies(pkgProxy) =
 pkgProxy.metaObject().oclAsType(Package).findElementsByTypeExtended
 (Association, false)->select(a |
 End(1, a).aggregation = composite or
 End(2, a).aggregation = composite)->collect(ca |
 pkgProxy.getAssociation(a))

9.5.9.6 End

This operation returns one of the AssociationEnds of the provided Association. The
index indicates whether the requested end is the first end (when the index equals 1) or
the second end.

End(index : integer, assoc : Association) : AssociationEnd
End(i, assoc) =
 assoc->findElementsByType(AssociationEnd, false)->at(i)

9.5.9.7 ExtractSequence

This operation returns an OCL sequence corresponding to the elements of a CORBA
sequence, when the Any-typed value is sequence.

ExtractSequence(value : Any) : Sequence(Any)
ExtractSequence(value) =
 ORB.create_dyn_any(value).oclAsType(DynSequence).get_elements()

9.5.9.8 ExtractField

This operation returns the value of a field of a struct value, where the field is specified
using a zero-based index into the fields of the struct.

ExtractField(value : Any, i : long) : Any
ExtractField(value) =
 ORB.create_dyn_any(value).oclAsType(DynStruct).get_members()->at(i).value()

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-241

9

9.5.9.9 ExtractUnionField

This operation extracts the field value (member value) from a value of type union.

ExtractUnionField(value : Any) : Any
ExtractUnionField(value) =
 ORB.create_dyn_any(value).oclAsType(DynUnion).member().to_any()

9.5.9.10 ExtractUnionDiscrim

This operation extracts the disrciminator value from a union-typed value.

ExtractUnionDiscrim(value : Any) : Any
ExtractUnionDiscrim(value) =
 ORB.create_dyn_any(value).oclAsType(DynUnion).discriminator().to_any()

9.5.9.11 GetUnionFieldType

This operation returns the type of the field of a specific value of a union type.

GetUnionFieldType(value : Any) : TypeCode
-- cannot be represented by OCL
-- need to seek to member field
-- for expression, seek to member field before applying the member_type
-- operation
UnionFieldType(value) =
 DeAlias(SeekToUnionField(ORB.create_dyn_any(value).oclAsType(DynUnion))
 .member_type().to_any()

9.5.9.12 DeAlias

Return a typecode which is not an alias typecode. If the input typecode is not an alias
typecode, it returns the input typecode. Otherwise, it de-aliases the originating
(content) type of the typecode.

DeAlias(tc : TypeCode) : TypeCode
DeAlias(tc) =
 if tc.kind() = tkalias then
 DeAlias(tc.content_type())
 else
 tc
 endif

9.5.9.13 IdOfObject

This helper returns the locally unique identifier for an object if it is in the inventory of
objects. Otherwise, it returns the empty string.

9-242 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

IdOfObject(obj : RefObject) : Sequence(string)
 if Sequence{ 1..(self.objectInventory->size) }->select(i |
 self.objectInventory->at(i) = obj)->isEmpty then
 if InScope(obj) then
 NewObjectId(obj)
 else
 ’’
 endif
 else
 self.objectIds.at(Sequence{ 1..(self.objectInventory->size) }->select(i |
 self.objectInventory->at(i) = obj)->first)
 endif

9.5.9.14 UrlOfObject

This helper returns an URL which links to a representation of the object. This URL
will typically link to an element in another XMI document.

UrlOfObject(obj : Object) : Sequence(string)
 -- not specified in OCL
 -- returns a legal URL which links to a representation of the object

9.5.9.15 DotNotation

Returns a string representation of the sequence of strings defining the qualified name.
elements of the originating sequence are separated with dot (period) characters.

DotNotation(names : Sequence(string)) : string
DotNotation(names) =
 substring(names->iterate(s : string, answer : string = ’’ |
 string.contat(s).concat(’.’)),
 names->iterate(s : string, answer : string = ’’ |
 string.contat(s).concat(’.’)).size)

9.5.9.16 NewObjectId

This helper generates a new object identifier. These identifiers are required to be
locally unique within the XMI document, but they can also be unique in a wider
context; e.g. a UUID.

NewObjectId(obj : RefObject) : string
 -- not specified
 -- any string which is a legal value of the XML ID type, and which
 -- is not currently used in the XML document, nor allocated to an object
 -- in this production
 -- can also be a string representation of a UUID

Producer object Modifications:

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-243

9

self.objectInventory ← self.objectInventory->append(obj)
self.objectIds ← self.objectIds.append(result)

When a new id is created, it must be associated with the object within the state of the
Producer, so the id may be retrieved if any subsequent references to the element
representing that object are desired.

9.5.9.17 InScope

This operation determines whether the provided object is part of the model being
written out as an XML document.

InScope(obj : RefObject) : boolean
InScope(obj) =
 if self.byContainment then
 self.root.allContents->includes(obj)
 else
 AllClassProxies(self.refPkg)->collect(c | c.allObjects(false))->includes(obj)
 endif

9.5.9.18 HexAsString

This helper converts a CORBA octet value into a two character hexadecimal string.
The syntax for the string is:

[0-9A-Fa-f][0-9A-Fa-f]

HexAsString(value : octet) : string
 -- not specified

9.5.9.19 IntegralAsString

These six helper operations return the string representation of an integral value. The
resulting string consists of one ore more decimal digits with an optional leading sign.
The syntax for the string is:

[+-]? [0-9]+

IntegralAsString(value : short) : string
IntegralAsString(value : unsigned short) : string
IntegralAsString(value : long) : string
IntegralAsString(value : unsigned long) : string
IntegralAsString(value : long long) : string
IntegralAsString(value : unsigned long long) : string
 -- not specified

9.5.9.20 RealAsString

These three helper operations return a decimal string representation of a floating point value. All sig-

9-244 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

nificant digits in the value should be included. The syntax for the representation is:

[-+]? (([0-9]+ ’.’ [0-9]*) | (’.’ [0-9]+)) ([eE] [+-]? [0-9]+)?

RealAsString(value : float) : string
RealAsString(value : double) : string
RealAsString(value : long double) : string
 -- not specified

9.5.9.21 BooleanAsString

This helper translates a boolean value into a string.

BooleanAsString(value : Any) : string
 BooleanAsString(value) =
 if value.type().kind() = tk_boolean then
 if value.extract_boolean() then
 ’true’
 else
 ’false’
 endif
 else
 -- should not happen
 endif

9.5.9.22 EnumAsString

This helper translates an enumeration value into a string.

EnumAsString(value : Any) : string
EnumValue(value) =
 value.type().element_name(value.create_input_stream().read_long())

9.5.9.23 EncodedString

This helper encodes a string by escaping any embedded XML markup characters.

EncodedString(str : string) : string
 -- each occurance of the less-than character
 -- (<) with the lt entity (<), each
 -- occurance of the greater-than character
 -- (>) with the gt entity (>), and
 -- each occurance of the ampersand character
 -- (&) with the amp entity (&)

9.5.9.24 EncodedCharacter

This helper encodes a character by escaping it if it is a markup character.

10/25/1999 ad/99-10-02: XML Metadata Interchange 9-245

9

EncodedCharacter(str : character) : character
 -- converts a character if it is one of (<>&)
 -- replace the less-than character
 -- (<) with the lt entity (<),
 -- replace the greater-than character
 -- (>) with the gt entity (>), and
 -- replace the ampersand character
 -- (&) with the amp entity (&)
 -- otherwise, returns character unchanged

9.5.10 CORBA-Specific Helpers

The following operations support the CORBA-specific productions and operations.

9.5.10.1 CorrespondingDataType

Finds a DataType in the metamodel that corresponds to the given TypeCode, returning
the fully qualified name of the DataType in dot notation. If no such DataType exists, an
empty string is returned. If multiple DataTypes using the same TypeCode exist in the
metamodel, any one is allowed.

CorrespondingDataType(tc : TypeCode) : string
DotNotation(self.metamodel.allElements>select(e |
 e.oclIsOfType(DataType))->select(dt |
 dt.typeCode = tc)->first.qualifiedName)

9.5.10.2 CorbaTypeName

This helper produces a textual name for a TcKind value. For primitive types, this name
is sufficient to fully describe the corresponding type.

CorbaTypeName(kind : TcKind) : string)
CorbaTypeName(kind) =
 if kind = tk_objref then
 ’objref’
 else
 if kind = tk_short then
 ’short’
 else
 -- the other cases omitted (deduce from pattern above)
 endif
 endif

9.5.10.3 IdOfTypeDefinition

This operation returns the URL pointing to the type definition element corresponding
to the typecode.

9-246 ad/99-10-02: XML Metadata Interchange 10/25/1999

9

IdOfTypeDefinition(tc : TypeCode) : Sequence(string)
IdOfTypeDefinition(tc) =
if Sequence{ 1..(self.tcInventory->size) }->select(i |
 self.tcInventory->at(i) = tc)->isEmpty then
 NewTcId(tc)
 else
 self.tcIds.at(Sequence{ 1..(self.tcInventory->size) }->select(i |
 self.tcInventory->at(i) = tc)->first)
 endif

9.5.10.4 NewTcId

This helper finds all TypeCode values in a metaobject. This includes TypeCode values
embedded in Anys.

NewTcId(tc : TypeCode) : string
 -- not specified
 -- any string which is a legal value of the XML ID type, and which
 -- is not currently used in the XML document, nor allocated to an object
 -- in this production

Producer object Modifications:

self.tcInventory ← self.tcInventory->append(tc)
self.tcIds ← self.tcIds->append(result)
self.typeDefinitions ←
 self.typeDefinitions.append(TypeCodeValue(tc), result)

When a new id is created, it must be associated with the object within the state of the
Producer, so the id may be retrieved if any subsequent references to the element
representing that object are desired.

9.5.10.5 TcDistance

This operation measures the distance from a TypeCode, provided in the first argument,
to an enclosing struct TypeCode equal to the second argument.

TcDistance(outer : TypeCode, inner : TypeCode, len : integer) : integer
TcDistance(outer, inner, len) =
 if outer.kind() = tk_struct or outer.kind() = tk_union then
 Sequence{ 0..outer.member_count-1 }->collect(i |
 TcDistance(outer.member_type(i), inner, len+1))->
 iterate(e; mx : Integer = 0 | max(e, mx))
 else
 if outer = inner then
 len
 else
 0
 endif
 endif

10/25/1999 ad/99-10-02: XML Metadata Interchange 10-247

Compatibility with Other Standards 10

10.1 Introduction

The XMI specification addresses the metadata interchange requirement of the OMG
repository architecture which is described in the OMG MOF specification (ad/97-10-
02, Section 1.3) and corresponds to the ’Data Interchange’ component of the
architecture. The XMI specification conforms to the following standards:

• XML, the Extensible Markup Language, is a new data format for electronic
interchange designed to bring structured information to the web. XML is an open
technology standard of the W3C (www.w3c.org), the standards group responsible
for maintaining and advancing HTML. XML is used as the concrete syntax and
transfer format for OMG MOF compliant metadata.

There are several benefits of basing metamodel interchange on XML. XML is an
open standard, platform and vendor independent. XML supports the international
character set standards of extended ISO Unicode. XML is metamodel-neutral and
can represent metamodels compliant with OMG’s meta-metamodel, the MOF. XML
is programming language-neutral and API-neutral. XML APIs are provided in
additional standards, giving the user an open choice of several access methods to
create, view, and integrate XML information. Leading XML APIs include DOM,
SAX, and WEB-DAV.

• MOF, the Meta Object Facility is an OMG (www.omg.org) metadata interface
standard that can be used to define and manipulate a set of interoperable
metamodels and their instances (models). The MOF also defines a simple meta-
metamodel (based on the OMG UML - Unified Modeling Language) with sufficient
semantics to describe metamodels in various domains starting with the domain of
object analysis and design. The XMI specification uses MOF as the meta-
metamodel to ensure transfer of any MOF compliant metamodel (such as UML) and
instances of these metamodels - the models themselves.

10-248 ad/99-10-02: XML Metadata Interchange 10/25/1999

10

• UML, the Unified Modeling Language is an OMG (www.omg.org) standard
modeling language for specification, construction, visualization and documentation
of the artifacts of a software system. The XMI can be used to exchange UML
models between tools and between tools and repositories.

• The CORBA interfaces specified in the MOF (ad/97-10-02, ad/97-10-03) can be
used to internalize and externalize XML streams of MOF based metamodels. (See
the interface MOF::Package in ad/97-10-02) for more details. In this sense, the XMI
together with the MOF conforms to the OMA and can be used as the foundation for
developing web based distributed development environments.

In summary the XMI supports W3C XML, OMG MOF, UML and OMA standards.
There are no dependencies on any other standards.

10.2 XMI and W3C DCD

IBM and Microsoft have collaborated and proposed a new W3C proposal based on
XML - Document Content Definition (DCD). DCD is richer than DTD and has better
data structuring and data typing capabilities, thus making it an attractive target for
XMI in the future. The XMI submitters anticipate that when the DCD specification
solidifies, mappings from XMI to DCD will be produced as an evolution of XMI.
Another W3C initiative that could influence future XMI direction is XML-Schema
work that is getting underway.

10.3 XMI and CDIF

EIA CDIF (Electronic Industry Associates - Case Data Interchange Format) was
proposed as one of the initial submissions to the SMIF RFP. The CDIF submitters have
collaborated with the XMI submitters to incorporate key aspects of CDIF such as the
use of unique IDs into the XMI final submission. Preliminary work on providing a
migration path from CDIF to XMI has begun and technical feasibility has been
assessed.

It is anticipated that additional work is required to provide a migration path from
existing metadata interchange standards (such as EIA CDIF - Electronics Industry
Associates Case Data Interchange Format) to XMI should such a market requirement
exist. The submitters believe that such a migration path is possible based on

1. Implementation experience on CDIF

2. The MOF meta-metamodel has all the modeling concepts needed to represent the
CDIF meta-metamodel and provide appropriate transformation algorithms from
CDIF to MOF and vice-versa. This analysis has been made by CDIF and MOF
experts between the times of initial and final submission. The experience of CDIF
designers in metamodeling architectures as well as the experience in the unique ID
for meta information has been worked into the current XMI proposal. The work on
a migration path from CDIF Transfer Format to XMI is expected to be done in the
by the OMG Object Analysis and Design Task Force.

10/25/1999 ad/99-10-02: XML Metadata Interchange 10-249

10

The co-submitters and supporters of the CDIF proposal have helped improve the XMI
submission and are now part of the final submission team for this XMI proposal

10-250 ad/99-10-02: XML Metadata Interchange 10/25/1999

10

10/25/1999 ad/99-10-02: XML Metadata Interchange 11-251

Conformance Issues 11

11.1 Introduction

This section describes the required and optional points of compliance with the XMI
specification. The term “XML recommendation” refers to technical recommendations
by the W3C for XML version 1.0 and later [XML reference] [W3C reference].

11.2 Required Compliance

11.2.1 XMI DTD Compliance

XMI DTDs are required to conform to the following points:

• The XMI DTD(s), both internal and external, must be “valid” and “well-formed” as
defined by the XML recommendation. [XMI reference]

• The determination of compliance on a DTD is made in the “expanded form” where
all entity information is expanded out. Many variations of entity declarations result
in the same “expanded form” DTD, each variation having have identical
compliance.

• The expanded form of an XMI DTD must follow the processing and fixed element
declarations of Section 6.2.2, Requirements for XMI DTDs, Section 6.4, XMI DTD
and Document Structure, and Section 6.5, Necessary XMI DTD Declarations.

• An expanded form XMI DTD must have the “same” set of elements as those which
are created in expanded form using one of the rule sets from Chapter 6. The
definition of “same” for two DTDs is that there is an exact one to one
correspondence between the elements in each DTD, each correspondence identical
in terms of element name, element attributes (name, type, and default actions),
element content specification, content grammar, and content multiplicities.

11-252 ad/99-10-02: XML Metadata Interchange 10/25/1999

11

11.2.2 XMI Document Compliance

XMI Documents are required to conform to the following points:

• The XMI document must be “valid” and “well-formed” as defined by the XML
recommendation [XMI reference], whether used with or without the document’s
corresponding XMI DTD(s). Although it is optional not to transmit and/or validate
a document with its XMI DTD(s), the document must still conform as if the check
had been made.

• The XMI document must contain the XML declarations and processing instructions
as defined in Section 6.4, XMI DTD and Document Structure.

• The XMI document must contain one or more XMI root elements that together
contain all other XMI information within the document as defined in Section 6.5,
Necessary XMI DTD Declarations.

• The XMI document must be the “same” as a document following the document
production rules of Section 9. The definition of “same” for two documents is that
there is an exact one to one correspondence between the elements in each
document, each correspondence identical in terms of element name, element
attributes (name and value), and contained elements. Elements declared within the
XMI.documentation, XMI.extension, and XMI.extensions elements are excepted.

11.2.3 Usage Compliance

The XMI documents must be used under the following conditions:

• The XML parsers, browsers, or other tools used to input and/or output XMI
information must conform to the XML recommendation [XMI reference]. Note that
early releases of many tools are not fully XML version 1.0 compliant.

11.3 Optional Compliance Points

11.3.1 XMI MOF Subset

• XMI support for MOF meta-models (at the M2 level only) beyond the following
subset is optional:

1. Data types not contained explicitly within the metamodel.

2. Metamodels having different names for MOF reference ends as association ends.

3. Metamodels having association ends without references.

4. Metamodels containing static attributes.

5. Metamodels with nested classes.

10/25/1999 ad/99-10-02: XML Metadata Interchange 11-253

11

11.3.2 XMI DTD Compliance

XMI DTDs optionally conform to the following points:

• The definition of XML entities within DTDs are suggested to follow the design
rules in Section 6.2, Section 6.3, Section 6.5, Section 6.6, Section 7.3, and
Section .

• Incomplete model DTD generation rules (Section 6.7) may be used to support
transmission of incomplete models. Either all incomplete rules or no incomplete
rules should be supported. The incomplete model DTD is a different DTD than the
complete model DTD. Support for incomplete models is an optional addition to the
mandatory support for complete models.

• DTDs may support the CORBA typecode mapping (6.5.17) or the general data type
mapping (6.11).

• Contained elements may optionally have a role for their container with lower bound
multiplicity of zero.

11.3.3 XMI Document Compliance

XMI Documents optionally conform to the following points:

• The guidelines for using the XMI.extension and XMI.extensions elements are
suggested in Section 6.5 and Section 6.10. Tools should place their extended
information within the designated extension areas, declare the nature of the
extension using the standard XMI elements where applicable, and preserve the
extensions of other tools where appropriate.

• Processing of XMI differencing elements (Section 6.9) is an optional compliance
point. Either all differencing elements are produced and processed, or no
differencing elements are produced and processed.

• Documents may support the incomplete model DTD (Section 6.7) or the complete
model DTD.

• Documents may support the CORBA typecode mapping (6.5.17) or the general data
type mapping (6.11).

• Contained elements may optionally have a role for their container with lower bound
multiplicity of zero.

11.3.4 Usage Compliance

The XMI documents are optionally used under the following conditions:

• The XML parsers, browsers, or other tools used to input and/or output XMI
information should conform to standard APIs for the XML recommendation [XMI
reference]. These APIs include, but are not limited to, DOM [DOM reference],
SAX [SAX reference], and Web-DAV [Web-DAV reference].

11-254 ad/99-10-02: XML Metadata Interchange 10/25/1999

11

• Note that the early releases of many tools are not fully XML version 1.0 compliant.
Check for updated versions of the tools or use the references as a guide for locating
compliant tools.

10/25/1999 ad/99-10-02: XML Metadata Interchange Reference-255

References

[HTML40] "HyperText Markup Language Specification Version 3.0", Dave Raggett, September 1995.

[XML] XML, a technical recommendation standard of the W3C. http://www.w3.org/TR/REC-xml

[NAMESP] Namespaces, a working draft of the W3C. http://www.w3.org/TR/WD-xml-names

[XLINK] XLinks, a working draft of the W3C. http://www.w3.org/TR/WD-xlink and
http://www.w3.org/TR/NOTE-xlink-principles

[XPointer] XPointer, working draft of the W3C. http://www.w3.org/TR/WD-xptr

[RDF] RDF, a working draft of the W3C. http://w3c.org/RDF/

[RDFSCHEM] RDF-Schema, a working draft of the W3C. http://www.w3.org/TR/WD-rdf-schema

[XMLDATA] XML-Data, a note for discussion purposes to the W3C. http://www.w3.org/TR/1998/NOTE-XML-
data. DCD supercedes XML-Data.

[DCD] Document Content Description, an XML submission to the W3C for data types and element
dclarations. http://w3c.org/TR/NOTE-dcd DCD, by Texuality, Microsoft, and IBM,
supercedes XML-Data.

[XSL] XSL, a working draft of the W3C. http://www.w3.org/Style/XSL/

[DOM] DOM, a working draft of the W3C. http://www.w3.org/DOM/

[SAX] SAX, a standard of the XML-DEV mailing list. http://www.microstar.com/XML/SAX/

[WEBDAV] Web-DAV, a working draft of the IETF. http://www.ietf.org/html.charters/webdav-charter.html

[UML] UML, an adopted standard of the OMG. http://www.omg.org

[MOF] MOF, an adopted standard of the OMG. http://www.omg.org

[XMLJAVA] XML for Java, a free, complete, commercial XML parser written in Java by IBM.
http://www.alphaworks.ibm.com/formula/xml

Reference-256 ad/99-10-02: XML Metadata Interchange 10/25/1999

The following is the XML specification’s reference to its character set standards:

[ISO10646] ISO (International Organization for Standardization). ISO/IEC 10646-1993 (E). Information
technology -- Universal Multiple-Octet Coded Character Set (UCS) – Part 1: Architecture
and Basic Multilingual Plane. [Geneva]: International Organization for Standardization,
1993 (plus amendments AM 1 through AM 7).

[ISO8601] “Data elements and interchange formats -- Information interchange -- Representation of dates
and times”, ISO 8601:1988

The following is the XML specification’s reference to its character set standards:

[Unicode] The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.: Addison-
Wesley Developers Press, 1996.

The following is the Open Group DCE standard on UUIDs.

[UUID] CAE Specification
DCE 1.1: Remote Procedure Call
Document Number: C706
http://www.opengroup.org/onlinepubs/9629399/toc.htm
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm (Definition/creation of UUIDs).

10/25/1999 ad/99-10-02: XML Metadata Interchange Glossary-257

Glossary

This glossary defines the terms that are used to describe the XMI specification. The
glossary includes concepts from the Meta Object Facility (MOF) as well as key
concepts of the Unified Modeling Language (UML) for completeness. The rationale
for including key MOF and UML terms is to be consistent in the definition and usage
of fundamental object modeling as well as meta modeling constructs and to provide a
baseline for creating a common glossary for all OMG OA&DTF modeling and
metadata related technologies. This glossary builds on the UML 1.1 and MOF 1.1
glossaries.

In addition to MOF and UML specific terminology it includes related terms from
OMG standards, W3C standards, object-oriented analysis and design methods as well
as the domain of object repositories and meta data managers. Glossary entries are
listed alphabetically. The new glossary entries have been marked (XMI) and mainly
consist of Extensible Markup Language (XML) related terminology. For a more
comprehensive description of XML, please refer to www.w3c.org.

Scope

This glossary includes terms from the following sources:

• Meta Object Facility 1.1 specification

• Appendix M1 of the UML 1.1 specification

• Object Management Architecture object model [OMA]

• CORBA 2.0 [CORBA]

• Object Analysis & Design RFP-1 [OA&D RFP]

• W3C XML 1.0 specification [XML]

Glossary-258 ad/99-10-02: XML Metadata Interchange 10/25/1999

Notation Conventions

The entries in the glossary usually begin with a lowercase letter. An initial uppercase
letter is used when a word is usually capitalized in standard practice. Acronyms are all
capitalized, unless they traditionally appear in all lowercase.

When brackets enclose one or more words in a multi-word term, it indicates that those
words are optional when referring to the term. For example, aggregate [class] may be
referred to as simply aggregate.

The following conventions are used in this glossary:

• Contrast: <term>. Refers to a term that has an opposed or substantively different
meaning.

• See: <term>. Refers to a related term that has a similar, but not synonymous
meaning.

• Synonym: <term>. Indicates that the term has the same meaning as another term,
which is referenced.

• Acronym: <term>. This indicates that the term is an acronym. The reader is usually
referred to the spelled-out term for the definition, unless the spelled-out term is
rarely used.

The glossary is extensively cross-referenced to assist in the location of terms that may
be found in multiple places.

Terms

abstract class A class that cannot be instantiated.

abstraction A group of essential characteristics of an entity that distinguish it from other entities.
An abstraction defines a boundary relative to the perspective of the viewer.

abstract language A system of expression for expressing information that is independent of any particular
human readable notation. Constrast: concrete language or notation. (MOF)

actual parameter Synonym: argument.

aggregate [class] A class that represents the "whole" in an aggregation (whole-part) relationship. See:
aggregation. (UML)

aggregation A special form of association that specifies a whole-part relationship between the
aggregate (whole) and a component part. See: composition.

analysis A phase of the software development process whose primary purpose is to formulate a
model of the problem domain. Analysis focuses on what to do, design focuses on how
to do it.

analysis time Refers to something that occurs during an analysis phase of the software development
process.

annotation Synonym: note. (MOF)

10/25/1999 ad/99-10-02: XML Metadata Interchange Glossary-259

any A CORBA primitive data type. A strongly typed “universal union” type that can
contain any value whose type is a CORBA data type. This data type is typically used
in CORBA IDL when it is not possible to choose an appropriate type at the time the
interface is defined. Use of CORBA anys entails dynamic type checking, and extra
overheads in value transmission. See strong typing, dynamic typing, TypeCode.
(CORBA)

architecture The organizational structure of a system. An architecture can be recursively
decomposed into parts that interact through interfaces, relationships that connect parts,
and constraints on the way that parts can be assembled.

argument A specific value corresponding to a parameter. Synonym: actual parameter.

array 1. A CORBA constructed data type.
2. A collection (1) whose type fixes the number of elements. The ordering and
uniqueness properties of an array are indeterminate. (MOF)

artifact A piece of information that is used or produced by a software development process. An
artifact can be a model, a description or a piece of software.

association 1. A semantic relationship two or more types describes a set of connections between
their respective instances. (UML)
2. An association (1) between classes. (MOF)

Association A model element that defines an association (2) in a MOF metamodel. (MOF)

association end See: association role.

AssociationEnd A model element that defines an association end in a MOF metamodel. (MOF)

association class A modeling element that has both association and class properties. An association class
can be seen as an association that also has class, or as a class that also has association
properties. (UML)

association role The role that a type or class plays in an association. Synonym: association end.

attribute 1. An attribute of an object is an identifiable association between the object and some
other entity or entities. (OMA)
2. An attribute is a named property of a type. (UML)
3. An attribute is a named property of a class. (MOF)

Attribute A model element that defines an attribute in a MOF metamodel. (MOF)

bag An unordered collection in which duplicate members are allowed. (MOF)

base type The base type of a collection (1) is the type (1) of its elements.

behavior The observable effects of an operation, including its results (MOF). Synonym:
behavior (OMA)

binary association An association between two classes. The degenerate case of an n-ary association
where “n” is two.

boolean 1. A UML enumeration type whose values are true and false. (UML)
2. A CORBA primitive data type whose values are true and false. (CORBA)

Glossary-260 ad/99-10-02: XML Metadata Interchange 10/25/1999

builtin type A type in a type system which is available as a predefined type in all instantiations of
the type system; e.g. “short” and “string” are builtin types in CORBA IDL. Constrast:
primitive type.

boolean expression An expression that evaluates to a boolean value.

CDATA section A part of an XML Document in which any markup (e.g. tags) is not interpreted, but is
passed to the application as is. (W3C)

cardinality The number of elements in a collection. Constrast: multiplicity.

class 1. A type (3) that characterizes objects that share the same attributes, operations,
methods, relationships, and semantics. (UML)
2. An implementation that can be instantiated to create multiple objects with the same
behavior. Types classify objects according to a common interface; classes classify
objects according to a common implementation. (OMA)

Class A model element that defines an class (1) in a MOF metamodel. (MOF)

classifier 1. A category of UML model elements that roughly correspond to types in
programming languages. The category includes association classes, classes (1), data
types (2), interfaces, subsystems and use cases. (UML)
2. The category of MOF model elements analogous to classifier (1):

classifier level In MOF metamodels and UML models, this label indicates that the labelled feature is
common to all instances of its classifier. For example, a classifier level attribute of a
class is common to all instances of the class. Synonym: static. Contrast: instance level.
(UML, MOF)

class diagram A UML diagram that shows a collection of declarative (static) model elements, such as
classes, types, and their contents and relationships. (UML)

class proxy A MOF metaobject that carries the classifier level attributes and operations for an
instance of a MOF class. (MOF)

client A type, class, or component that requests a service from another type, class or
component. (UML)

closure The transitive closure of some object under some relationship or relationships.

collection 1. A group of values or objects. The values in a collection are often refered to as
members or elements of the collection.
2. A collection (1) in which the members are instances of the same base type. The type
of a collection is defined by the base type and a multiplicity. See: array, sequence, bag,
set, list and unique list. (MOF)

compile time Indicates something that occurs during the compilation of a software module.

component An executable software module with an identity and a well-defined interface.

composite [class] A class that is related to one or more classes by a composition relationship. See:
composition.

composite aggregation Synonym: composition.

10/25/1999 ad/99-10-02: XML Metadata Interchange Glossary-261

composition A form of aggregation with strong ownership and coincident lifetime as part of the
whole. Parts with non-fixed multiplicity may be created after the composite itself, but
once created they live and die with it (i.e. they share lifetimes). Such parts can also be
explicitly removed before the death of the composite. Composition may be recursive.
Synonym: composite aggregation. (UML)

concrete class A class that can be directly instantiated. Contrast: abstract class.

concrete language Synonym: notation.

constraint A semantic condition or restriction. Certain constraints are predefined, others may be
user defined. Constraints may be expressed in natural language or a formal language.
(UML, MOF)

Constraint A model element that defines a constraint on another element in a MOF metamodel.
(MOF)

container 1. An entity that exists to contain other entities. See containment.
2. An entity’s container is the entity that contains it.

containment A form of aggregation that is similar to composition. The fundamental properties of
containment are:

• an entity can have at most one container at any given time, and

• an entity cannot directly or indirectly contain itself.

containment hierarchy A containment hierarchy is a tree-shaped graph of entities, consisting of a root entity
and all other entities that are directly or indirectly contained by it.

containment matrix A set of constraints on a containment relationship (expressible as a matrix of boolean
values) that determine what other kinds of entities a given kind of entity can contain.
For example, the MOF Model definition includes such a matrix to specify which
concrete subclasses of ModelElement can be contained by each concrete subclass of
Namespace. (MOF)

CORBA Acronym: The Common Object Request Broker Architecture.

CORBA IDL Synonym: IDL.

data A representation of information.

data type A type whose values have no identity. The data types in a type system are typically
into the primitive built-in types, and constructed types such as enumerations and so on.

DataType A model element that defines a data type on another element in a MOF metamodel.
(MOF)

dependency 1. A relationship between two entities in which a change to an aspect of one entity
affects the other (dependent) entity in some way.
2. A dependency (1) between two modeling elements such that a change to an element
changes the meaning of the dependent element. (UML, MOF)

Glossary-262 ad/99-10-02: XML Metadata Interchange 10/25/1999

derived attribute An pseudo-attribute whose value is not stored explicitly as part of an object, but is
calculated from other state when required. Derived attributes can also be updated.
(MOF)

derived association A pseudo-association whose component links are not stored explicity, but are
calculated from other state when queried. Derived associations can also be updated.
(MOF)

derived element 1. A model element whose value can be computed from another element, but that is
shown for clarity or that is included for design purposes even though it adds no
semantic information. (UML)
2. An element in a metamodel that is derived from other metamodel elements, and yet
is visible in the interfaces produced by an object mapping. See derived attribute,
derived association. (MOF)

design The phase of the software development process whose primary purpose is to decide
how the system will be implemented. During the design phase, strategic and tactical
decisions are made to meet the required functional and quality requirements of a
system.

design time Refers to something that occurs during a design phase of the software development
process. Contrast: analysis time.

development process A set of partially ordered steps performed for a given purpose during software
development, such as constructing models or implementing models.

diagram A graphical presentation of a collection of model elements, most often rendered as a
connected graph of arcs (relationships) and vertices (other model elements).

document element See root element. (XML)

Document Type Definition See DTD (XML)

domain An area of knowledge or activity characterized by a set of concepts and terminology
understood by practitioners in that area.

dynamic typing A category of type safety that can only be enforced by dynamic type checking. Type
systems with dynamic typing are more expressive than those with static typing only. at
the cost of run time overheads and potential type errors. Contrast: static typing.

dynamic type checking A type checking activity that occurs at run time. Contrast: static type checking.

DTD A set of rules governing the element types that are allowed within an XML document
and rules specifying the allowed content and attributes of each element type. The DTD
also declares all the external entities referenced within the document and the notations
that can be used. (XML)

EBNF Acronym: Extended Backus-Naur Form. A widely used notation for expressing
grammars.

element 1. An atomic constituent of a model. Synonym: model element. (MOF, UML)
2. A logical unit of information in a XML document. An XML element consists of a
start tag, an element content and a matching end tag. (XML)

10/25/1999 ad/99-10-02: XML Metadata Interchange Glossary-263

element attributes The name-value pairs that can appear within the start tag of an element (2). (XML)

element content The elements or text that is contained between the start tag and end tag of an element.
(XML)

element type A particular type of element, such as a paragraph in a document or a class in an XMI
encoded metamodel. The element type is indicated by the name that occurs in its start-
tag and end-tag. (XML)

empty string A string with zero characters.

end tag A tag that marks the end of an element, such as </Model>. See start tag. (XML)

entity 1. A “thing”.
2. An item of interest in a system being modelled.

enumeration 1. A type that is defined as a finite list of named values. For example, Color = {Red,
Green, Blue}. (UML)
2. A kind of constructed data type in the CORBA type system. (CORBA)

export 1. To transmit a description of an object to an external entity. (OMA)
2. In the context of packages, to make an element visible outside of its enclosing
namespace. See: visibility, import (2). (UML)

expression A formula in some language that can be evaluated in some context to give a value. For
example, the expression (7 + 5 * 3) evaluates to 22.

extent The set of objects that belong to a MOF package instance, class proxy or association
instance. (MOF)

feature A (meta-)model element that defines part of another (meta-)model element. For
example an UML class has attributes and operations as features. (UML, MOF)

formal language A language with a specified syntax and meaning.

formal parameter Synonym: parameter.

framework A micro-architecture that provides an extensible template for applications within a
specific domain. (UML)

frozen Synonym: immutable. (MOF)

grammar A formal specification of the syntax of a language.

generalizable element A model element that may participate in a generalization relationship. See:
generalization. (UML)

generalization A taxonomic relationship between a more general element and a more specific
element. The more specific element is fully consistent with the more general element
and contains additional information. An instance of the more specific element may be
used where the more general element is allowed. See: specialization.

generic interface Interfaces that are shared by all MOF metaobjects. See Reflective. Contrast: specific
interfaces. (MOF)

Glossary-264 ad/99-10-02: XML Metadata Interchange 10/25/1999

HTML Acronym: Hyper Text Markup Language. A language for associating visual markup
and hyperlinks with textual information that is one of the cornerstones of the World
Wide Web. HTML is a particular application of SGML. (W3C)

identifier A value that denotes an instance with identity. See: name, object reference.

identity “Thingness”. A instance has identity if it can be distinguished from other instances
irrespective of its component values. For example, objects have identity but numbers
do not.

IDL 1. Acronym: Interface Definition Language. The OMG language for specifying
CORBA object interfaces. (OMA)
2. An interface specification in CORBA IDL (1) - colloquial.

IDL mapping 1. A mapping of the design expressed in a model onto CORBA IDL.
2. An IDL mapping (1) defined in the MOF standard that maps a MOF metamodel into
CORBA IDL for metaobjects that represent metadata for the metamodel.

immutable The property of an entity or value that it will never change. For example, the number
42 is immutable. Synonym: frozen. Constrast: read only. (MOF)

implementation 1. An artifact that is the realization of an abstraction in more concrete terms. For
example, a class is an implementation of a type, a method is an implementation of an
operation. (UML)
2. A realization of a design object in engineering technology; e.g. IDL or program
source code.
3. The process of producing an implementation (1)(2).

implementation inheritance The use of inheritance to produce one implementation artifact from another
implementation artifact. Implementation inheritance presupposes interface inheritance.

import 1. To create an object based on a description of an object transmitted from an external
entity. See import (1). (OMA)
2. In the context of package, a dependency that shows the packages whose classes may
be referenced within a given package (including packages recursively embedded within
it). Contrast: export (2). (UML)
3. A relationship between packages in a MOF metamodel that makes the contents of
the imported package visible within the importing package. (MOF)

Import A model element that in a MOF metamodel that specifies that one package imports
another package. (MOF)

information The conjunction of data and structure. For example, facts.

inheritance The mechanism by which more specific elements incorporate structure and behavior of
more general elements related by behavior. See generalization. (UML, MOF)

instance 1. An instance of a type (1) is some value that satisfies the type predicate. (ODP)
2. An object created by instantiating a class. (OMA)
3. An entity to which a set of operations can be applied and which has a state that
stores the effects of the operation. (UML)

10/25/1999 ad/99-10-02: XML Metadata Interchange Glossary-265

instance level In MOF metamodels and UML models, this label indicates that the labelled feature is
common to all instances of its classifier. For example, a classifier level attribute of a
class is common to all instances of the class. Contrast: classifier level. (UML, MOF)

instantiate The act or process of making an instance of something. See: reify.

interface A type (1) that describes the externally visible behavior common to a set of objects. An
interface includes the signatures of any operations common to all of the objects.

interface inheritance The inheritance of the interface of a more specific element. This does not imply
inheritance of behavior.

introspection A style of programming in which a program is able to examine parts of its own
definition. Constrast: reflection (1).

invariant A constraint on an entity or group of entities that must hold at all times.

link A semantic connection between a tuple of objects. An instance of an association. See:
association.

link role An instance of an association role. See: link, role.

list A collection in which the order of the contents is significant, and duplicates are
allowed. An ordered collection. See: Set, Array, Unique list.

knowledge The conjunction of information with some aspect of understanding.

language A means of expression. See abstract language, concrete language, natural language.

markup Information that is intermingled with the text of an XML document to indicate its
logical and physical structure. (XML)

member Synonym: feature.

meta- A prefix that denotes a Describes relationship. For example, “metadata” describes
“data”. (MOF)

metadata 1. Data that describes other data. A constituent of a model. (MOF)
2. An inclusive term for metadata (1), meta-metadata and meta-meta-metadata. (XMI)

meta-level The level of “meta-”ness of a concept in a metadata framework.

meta-metadata Data that describes metadata. A constituent of a metamodel. (MOF)

meta-meta-metadata Data that describes meta-metadata. A constituent of a meta-metamodel. (MOF)

meta-metamodel A model that defines an abstract language for expressing metamodels. The
relationship between a meta-metamodel and a metamodel is analogous to the
relationship between a metamodel and a model. See: MOF Model, the. (MOF)

metamodel A model that defines an abstract language for expressing other models. An instance of
a meta-metamodel. See: MOF metamodel. (MOF)

metamodel elaboration The process of generating a repository type from a published metamodel. Can includes
the generation of interfaces and repository implementations for the metamodel being
elaborated. (MOF)

Glossary-266 ad/99-10-02: XML Metadata Interchange 10/25/1999

metaobject 1. An object that represents metadata (2). (MOF)
2. Often, a MOF metaobject. (MOF)

metaobject protocol A reflection (1) technology in which a program can alter the behavior of the instances
of a class by send a message to its metaclass. This style of reflection is not part of the
MOF specification.

Meta Object Facility, the See: MOF, the.

method The implementation of an operation. The algorithm or procedure that effects the results
of an operation. (UML)

model 1. A semantically closed abstraction of a system. See: system. (UML)
2. A semantically closed collection of metadata described by a single metamodel.
(MOF)

model aspect A dimension of modeling that emphasizes particular qualities of the metamodel. For
example, the structural model aspect emphasizes the structural qualities of the
metamodel. (MOF)

model element Synonym: element. (MOF, UML)

ModelElement The abstract superclass of all model elements in a MOF metamodel. (MOF)

modeling time Refers to something that occurs during a modeling phase of the software development
process. It includes analysis time and design time. Usage note: When discussing object
systems it is often important to distinguish between modeling-time and run-time
concerns.

module A software unit of storage and manipulation. Modules include source code modules,
binary code modules, and executable code modules. See: component.

MODL Acronym: Meta Object Definition Language. A textual language developed by DSTC
that can be used to define MOF metamodels. (MOF)

MOF, the 1. Acronym: Meta Object Facility. The OMG adopted standard for representing and
managing metadata. (MOF)
2. A metadata service that implements the MOF, the (1) specification. (MOF)

MOF-based model Synonym: MOF model.

MOF-based metamodel Synonym: MOF metamodel.

MOF meta-metamodel Synonym: MOF Model, the.

MOF metamodel A metamodel whose meta-metamodel is the MOF Model. (MOF)

MOF model A model (2) whose metamodel is a MOF metamodel. (MOF)

MOF Model, the The MOF Model is the standard meta-metamodel that is used to describe all MOF
metamodels. It is defined in the MOF specification. (MOF)

multiple inheritance A kind of inheritance in which a type may have more than one supertype.

10/25/1999 ad/99-10-02: XML Metadata Interchange Glossary-267

multiplicity 1. A specification of the range of allowable cardinalities that a set may assume.
Multiplicity specifications may be given for roles within associations, parts within
composites, repetitions, and other purposes. Essentially a multiplicity is a (possibly
infinite) subset of the non-negative integers. (UML)
2. A specification of the allowable cardinalities of the values of an attribute, parameter
or association end, along with its uniqueness and orderedness. In the MOF, the
allowable cardinalities of a multiplicity must form a contiguous subrange of the non-
negative integers. (MOF)

multi-valued A ModelElement with multiplicity said to be multi-valued when the ‘upper’ bound of
its multiplicity is greater than one. The term does not the number of values held by an
attribute, parameter, etc., at any point in time, but rather to the number of values that it
can have at one time. Contrast: single-valued. (MOF)

n-ary association An association involving three or more classes. Each link of the association is an n-
tuple of values from the respective classes.

name 1. A human readable identifier. See: identifier.
2. The name (1) of a model element. (MOF, UML)

namespace 1. A mapping from names (1) to entities denoted by those names.
2. An element of a metamodel whose primary purpose is to act as a namespace (1) for
element names. (MOF)

Namespace The abstract class in the MOF model that is the supertype of those classes that act as
namespaces (2). The Namespace class also provides element containment in the MOF
Model. (MOF)

natural language A language that has no specification. A language that has evolved for human to human
communication; e.g. English, Sanskrit, Amercan Sign Language.

nested package A package that is defined as contained by another package in a MOF metamodel. An
instances of a nested package can only exist in the context of an instance of its
enclosing package. (MOF)

node 1. A component in a network. A network consists of nodes connected by edges.
2. A run-time physical object that represents a computational resource, generally
having at least a memory and often processing capability as well. Run-time objects and
components may reside on nodes. (UML)

notation A system of human readable (textual or graphical) symbols and constructs for
expressing information.

note A comment attached to an element or a collection of elements. A note has no
semantics. (UML)

object An entity with a well-defined boundary and identity that encapsulates state and
behavior. State is represented by attributes and relationships, behavior is represented
by operations and methods. An object is an instance of a class. (MOF, UML)

object reference An identifier for an object, typcally a CORBA object. (OMA)

Glossary-268 ad/99-10-02: XML Metadata Interchange 10/25/1999

OCL Acronym: Object Constraint Language. A pure expression language that is a non-
normative part of the UML specification (ad/97-08-08) that is designed for expressing
constraints. (UML)

operation A service that can be requested from an object to effect behavior. An operation has a
signature, which may restrict the actual parameters that are possible. (MOF, UML)

ordered collection A collection that is ordered. See ordering. (MOF)

ordering A property of collections. A collection is ordered if the sequence in which the elements
appear needs to be preserved. (MOF)

package A mechanism for organizing the elements of a model or metamodel into groups.
Packages may be nested within other packages. (MOF, UML)

Package The class in the MOF Model that describes a package in a metamodel. (MOF)

package cluster A package that groups together a number of packages so that a set of instances of those
packages can form a single extent. A package composition mechanism. (MOF 1.x)

package consolidation Synonym: package cluster. (MOF 1.x)

package importing See: import (3). A package composition mechanism. (MOF)

package inheritance A generalization relationship between packages. Analogous to interface interface
inheritance for classes. A package composition mechanism. (MOF)

package nesting Defining one package inside another. A package composition mechanism. See: nested
package. (MOF)

parameter 1. A place holder for a value that can be changed, passed or returned by a computation.
A parameter typically consists of a parameter name, a type and attributes that specify
the information passing semantics for actual parameters. Synonym: formal parameter.
Constrast: actual parameter, argument.
2. A parameter (1) of an operation or exception. (CORBA, MOF)
3. A parameter (1) of an operation, message or event. (UML)

postcondition An constraint that must be true at the completion of a computation.

precondition An constraint that must be true at the start of a computation.

primitive type A type from which other types may be constructed, but that is not constructed from
other types. See type system.

product The artifacts of development, such as models, code, documentation, work plans.
(UML)

profile A simplified subset of a language or a metamodel.

projection 1. A primitive operation in relational algebra which produces a relation by “slicing”
one or more columns from another relation.
2. The set of MOF class instances that is visible via the reference operations of a class
instance. For a class X, a n-ary association A(X,Y1, ... Yn-1) and an instance x ∈ X
then the expression

10/25/1999 ad/99-10-02: XML Metadata Interchange Glossary-269

PROJECT [Y1, ... Yn-1] (SELECT A WHERE X = x)

defines the set of links. In the binary case, the set is a set of instances. (MOF)
3. A mapping from a set to a subset. (UML)

property 1. A characteristic of an entity.
2. A property (1) that is represented as a mapping from an entity and a property name
to a value for the property. See tagged value. (UML)

pseudo-code An informal description of an algorithm in a language whose meaning is not fully
defined.

published (meta-)model A (meta-)model which has been frozen, and made available for use. For example, a
published metamodel can be used to instantiate repositories and can be safely reused in
other metamodels.

quokka A small scrub-wallaby found on Rottnest Island, Western Australia.

read only Describes an object or attribute for which no explicit update operations are provided.
(MOF)

reference 1. An identifier.
2. A use of a model element. (UML, MOF)
3. A feature of a class that allows a client to navigate from one instance to another via
association links. See projection (2). (MOF)

Reference A model element that defines an reference in a MOF metamodel. (MOF)

reflection 1. A style of programming in which a program is able to alter its own execution model.
A reflective program can create new classes and modify existing ones in its own
execution. Examples of reflection technology are metaobject protocols and callable
compilers.
2. In the MOF, reflection characterizes what happens when a client examines and
updates metadata without compile time knowledge of its metamodel. (MOF)

reflective Describes something that uses or supports reflection.

reflective interfaces Synonym: generic interface. (MOF)

Reflective The name of the CORBA IDL module containing the MOF’s reflective interfaces.
(MOF)

reify To produce an object representation of some information.

relation A collection of relationships (1) with the same roles. A relation is typically pictured as
a two dimensional table with the rows representing relationship tuples, and the
columns representing the roles and their values.

relationship 1. A semantic connection between 2 or more entities where each entity fills a distinct
role. A relationship is typically expressed as a tuple.
2. Colloquially, a relation.
3. A relationship (1) between elements of a model. Examples include associations and
generalizations (MOF, UML).

Glossary-270 ad/99-10-02: XML Metadata Interchange 10/25/1999

repository 1. A logical container for metadata. (MOF)
2. A distributed service that implements a repository (1). (MOF)

requirement A desired feature, property (1), or behavior of a system.

responsibility A contract or obligation of a type or class. (UML)

reuse The act or process of taking a concept or artifact defined in one context and using it
again in another context.

role 1. A position in a relationship or column in a relation.
2. The named specific behavior of an entity participating in a particular context. A role
may be static (e.g., an association role) or dynamic (e.g., a collaboration role). (UML)

root element The single outermost element in an XML Document. Synonym: document element.
(XML)

run time The period of time during which a computer program executes.

scope 1. A region of a specification in which a given identifier or entity may be used.
2. An attribute of some features in the UML metamodel and MOF Model that
determines if the feature is instance level or classifier level. (MOF, UML)

sequence 1. A CORBA constructed data type. (CORBA)
2. A collection whose data type does not specify ordering or uniqueness semantics.
Differs from an array in that the number of elements is not fixed. (MOF)

set An unordered collection in which a given entity may appear at most once.

SGML Acronym: Standard Generalized Markup Language. An International Standard (ISO
8879:1986) that describes a generalized markup scheme for representing the logical
structure of documents in a system-independent and platform independent manner.

signature The name and parameters of an operation. Parameters may include an optional returned
parameter. (MOF)

single inheritance A form of generalization in which a type may have only one supertype.

single-valued A ModelElement with a multiplicity is called single-valued when its upper bound is
equal to one. The term single-valued does not pertain to the number of values held by
the corresponding feature of an instance at any point in time. For example, a single-
valued attribute, with a multiplicity lower bound of zero may have no value. Contrast:
multi-valued.

specialization The reverse of a generalization relationship.

specific interfaces An interface for metadata described by a given metamodel that is tailored to the
abstract syntax of that metamodel. Contrast: generic interface.

specification A precise description that can or should be used to produce things.

Standard Generalized Markup
Language See: SGML

start tag A tag that marks the beginning of an element, such as <Model>. Also see end-tag.
(XMI)

10/25/1999 ad/99-10-02: XML Metadata Interchange Glossary-271

state The state of an object is the group of values that constitute its properties at a given
point in time.

static In C++ or Java, a static attribute or a static member function is shared by all instances
of a class. Synonym: classifier level.

static type checking Contrast: dynamic type checking.

static typing Contrast: dynamic typing.

strong typing A characteristic of a computational system that type failures are guaranteed not to
occur.

stereotype A new type of modeling element that extends the semantics of the metamodel.
Stereotypes must be based on certain existing types or classes in the metamodel.
Stereotypes may extend the semantics, but not the structure of pre-existing types and
classes. Certain stereotypes are predefined in the UML, others may be user defined.
Stereotypes are one of three extendibility mechanisms in UML.

string A sequence of text characters. The details of string representation depends on
implementation, and may include character sets that support international characters
and graphics.

subclass In a generalization relationship the specialization of another class, the superclass. See:
generalization.

subtype In a generalization relationship the specialization of another type, the supertype. See:
generalization.

subsystem A part of a system that it is meaningful to describe in isolation.

superclass In a generalization relationship the generalization of another class, the subclass. See:
generalization.

supertype In a generalization relationship the generalization of another type, the subtype. See:
generalization.

supplier A type, class or component that provides services that can be invoked by others.

system A collection of connected units that are organized to accomplish a specific purpose. A
system can be described by one or more models, possibly from different viewpoints.
(UML)

tagged value A representation of a property as a name-value pair. In a tagged value, the name is
referred as the tag. Certain tags are predefined; others may be user defined. (UML,
MOF)

technology mapping A mapping that transforms a design expressed as a model or metamodel into
implementation artifacts; e.g. CORBA IDL or program source code.

top-level package A package that is not nested in another package. (MOF)

transitive closure 1. The transitive closure of the value v0 in V under the mapping m : V → V is defined
by the following equation:

Glossary-272 ad/99-10-02: XML Metadata Interchange 10/25/1999

TC(v0, m) ≅ { v ∈ V : (v = v0) ∨ (∃ vi ∈ TC(v0, m) : m(vi) = v) }

In other words, the set of all V’s that are “reachable” from v0 via the mapping. (Math)
2. The transitive closure of an initial object under an association is the set of objects
reachable from the initial object via extant links in the association. (MOF, XMI)

type 1. A predicate characterizing a collection of entities. (RM-ODP)
2. A predicate defined over values that can be used to restrict a possible parameter or
characterize a possible result. Synonym: type (1). (OMA)
3. A stereotype of class that is used to specify a domain of instances (objects) together
with the operations applicable to the objects. A type (3) may not contain methods.
(UML)

type checking A process that checks for programs or executions that could lead to type failure.

TypeCode A CORBA primitive data type. The TypeCode type is used in CORBA to pass runtime
descriptions of CORBA types. A CORBA any value contains a TypeCode to describe
the embedded value’s type. See any. (CORBA)

type error An event that is triggered when type checking detects a situation which could lead to
type failure.

type expression An expression that evaluates to a reference to one or more types. (UML)

type failure A type failure occurs when a computation erroneously uses a value thinking it has one
type when it has a different (incompatible) type. The consequences of a type failure are
often completely unpredictable.

type loophole A construct or artifice that allows a program to breach type safety.

type safety A desirable property of a program or computation that type failures are guaranteed not
occur.

type system A language for expressing types (1). A type system is typically defined from a small
set of primitive type and type constructors. See metamodel.

typing Synonym: type checking.

unique list An ordered collection in which no entity may not appear more than once as a
collection member; i.e. a list in which duplicate elements are not allowed. (MOF)

uniqueness A property of collection types that determines whether a given element may appear
more than once in the collection. (MOF)

unordered collection A collection in which the order in which the collection members appear has no
significance. See ordering. (MOF)

UML, the Acronym: The Universal Modeling Language. (UML)

UUID Acronym: Universally Unique IDentifier. An identifier that guaranteed to be unique
across all computer systems and across time, provided certain assumptions hold.

valid XML document An XML Document that conforms to its DTD. (XML)

10/25/1999 ad/99-10-02: XML Metadata Interchange Glossary-273

value 1. An element of a type domain. (UML)
2. An entity that can be a possible actual parameter in a request. (OMA)

view A projection (3) of a model, which is seen from a given perspective or vantage point
and omits entities that are not relevant to this perspective. (UML)

visibility An attribute of a model element whose value (public, protected, private, or
implementation) determines the extent to which the model element may be seen, and
hence used, outside of the namespace in which it is defined.

W3C, the Acronym: the World Wide Web Consortium. The standards body that takes the lead in
developing standards related to the Web; e.g. HTML, HTTP and XML. (XML)

well-formed XML document An XML document that consists of a single element containing properly nested
subelements. All entity references within the document must refer to entities that have
been declared in the DTD, or be one of a small set of default entities. (XML)

XLink An XML construct for representing links to external documents. See Xpointer. (XML)

XMI Acronym: XML-based Metadata Interchange. The proposed OMG specification for a
metadata interchange format that is based on the W3C’s XML specification. (XMI)

XML Acronym: Extensible Markup Language. A profile of SGML. XML is the W3C
standard for representing structured information; e.g. web metadata. (XML)

XML Declaration A processing instruction at the start of an XML document, which asserts that the
document is an XML Document. (XML)

XML Document An XML document consists of an optional XML Declaration, followed by an optional
DTD, followed by a document element. (XML)

XPointer An XML construct for linking to an element, range of elements, or text region within
the same XML document. (XML-Link 6)

Glossary-274 ad/99-10-02: XML Metadata Interchange 10/25/1999

10/25/99 ad/99-10-02: XML Metadata Interchange Index-275

Index

A
abstract class. See class, abstract
abstract language. See language
abstraction Glossary-258
actual parameter. See parameter
aggregate 4-30, Glossary-258
aggregate class. See aggregate
aggregation Glossary-258
analysis Glossary-258
analysis time Glossary-258
annotation Glossary-258
any Glossary-259
architecture Glossary-259
argument Glossary-259
array Glossary-259
artifact Glossary-259
Association 4-30, 4-41, Glossary-259
association Glossary-259

binary Glossary-259
class. See class, association
derived Glossary-262
end. See association end
n-ary Glossary-267
role Glossary-259

association end Glossary-259
AssociationEnd 4-30, 4-41, Glossary-259
Attribute 4-30, Glossary-259
attribute Glossary-259

derived Glossary-262
element. See element, attribute

B
bag Glossary-259
base type. See type, base
behavior Glossary-259
binary association. See association, binary
boolean Glossary-259
builtin type. See type, builtin

C
cardinality 4-30, Glossary-260
CDATA section Glossary-260
CDIF 3-23, 4-32
Class 4-30, Glossary-260
class Glossary-260

abstract Glossary-258
association class Glossary-259
composite Glossary-260, Glossary-261
proxy Glossary-260

class diagram 4-41, Glossary-260
class proxy. See class, proxy
classifier Glossary-260
classifier level. See scope, classifier level
client Glossary-260
closure. See transitive closure
collection Glossary-260

ordered Glossary-268
unordered Glossary-272

Index-276 ad/99-10-02: XML Metadata Interchange 10/25/99

compile time Glossary-260
compliance point

optional 4-41, 4-42
compliance points

optional 4-42
component Glossary-260
composite aggregation. See composition.
composite. See class, composite
composition Glossary-261
concrete class. See class, composite
concrete language. See language, concrete
Constraint 4-30, 4-41, Glossary-261
constraint Glossary-261
container Glossary-261
containment Glossary-261

hierarchy Glossary-261
matrix Glossary-261

CORBA Glossary-261
general language mapping requirements 3-21

CORBA Any 9-215, 9-221
CORBA IDL 4-30
CORBA IDL. See IDL
CORBA TypeCode 9-226

D
data Glossary-261
data type. See type, data
DataType 4-30, Glossary-261
DCD 4-37
DCE 6-54
dependency Glossary-261
derived association. See association derived
derived attribute. See attribute, derived
derived element. See element, derived
descendent 6-74
design Glossary-262
design time Glossary-262
development process. See process, development
diagram Glossary-262
document element. See element, root
Document Type Definition. See DTD
domain Glossary-262
DTD 4-27, 4-35, Glossary-262

automatic generation of 4-39
boilerplate 4-39
responsibility for standardization of 4-43

dynamic type checking. See type checking, dynamic
dynamic typing. See typing, dynamic

E
EBNF 4-27, Glossary-262
element 4-34, Glossary-262

attribute 4-35, Glossary-263
content 4-34, Glossary-263
derived Glossary-262
document. See element, root
ID attribute 4-35
nesting of 4-34
root Glossary-270
type Glossary-263

element attribute. See element, attribute

10/25/99 ad/99-10-02: XML Metadata Interchange Index-277

element content. See element, content
element type. See element, type
elemet

generalizable Glossary-263
end tag. See tag, end
entity Glossary-263
enumeration Glossary-263
export Glossary-263
expression Glossary-263
extensions 4-27
extent Glossary-263

F
feature Glossary-263
formal language. See language, formal
formal parameter. See parameter, formal
framework Glossary-263
frozen Glossary-263

G
generalizable element. See element, generalizable
generalization Glossary-263
generic interface. See interface, generic
grammar Glossary-263

H
HTML 4-32, 4-33, Glossary-264

I
identifier Glossary-264
identity Glossary-264
IDL Glossary-264

mapping. See mapping, IDL
IDL mapping. See IDL, mapping
IDrefs 6-74
immutable Glossary-264
implementation Glossary-264
implementation inheritance. See inheritance, implementation
Import Glossary-264
import Glossary-264
information Glossary-264
inheritance 4-30, Glossary-264

implementation Glossary-264
interface Glossary-265
multiple Glossary-266
single Glossary-270

instance Glossary-264
instance level. See scope, instance level
instantiate Glossary-265
interface

generic Glossary-263
inheritance. See inheritance,interface
reflective Glossary-269
specific Glossary-270

introspection Glossary-265
invariant Glossary-265

K
knowledge Glossary-265

Index-278 ad/99-10-02: XML Metadata Interchange 10/25/99

L
language Glossary-265

abstract Glossary-258
concrete Glossary-261
formal Glossary-263
natural 4-30, Glossary-267

link Glossary-265
role. See role, link

Linking 6-73, 6-74
list Glossary-265

unique Glossary-272

M
mapping

IDL Glossary-264
technology Glossary-271

markup 4-32, Glossary-265
member Glossary-265
meta- 4-29, Glossary-265
Meta Object Facility, the. See MOF, the
metadata Glossary-265

characteristics of 4-28
complete encoding of 4-40
definition 4-28
differential 4-27
examples of 4-28
interchange 4-27

meta-level Glossary-265
number of 4-29

meta-metadata Glossary-265
metamodel 4-29

meta-meta-metadata Glossary-265
meta-metamodel Glossary-265
metamodel Glossary-265

elaboration Glossary-265
interchange 4-27
knowledge of 4-40
published Glossary-269

metamodel elaboration. See metamodel, elaboration
metaobject Glossary-266

protocol Glossary-266
metaobject protocol. See metaobject, protocol
method Glossary-266
model Glossary-266

aspect Glossary-266
definition 4-28
element Glossary-266
fragments 4-41
interchange 4-27
interchange of ill-formed 4-41
published Glossary-269
versions of 4-42

ModelElement Glossary-266
modeling time Glossary-266
MODL 3-24, Glossary-266
module Glossary-266
MOF 4-28

meta-metamodel Glossary-266
metamodel Glossary-266
model Glossary-266

MOF metamodel

10/25/99 ad/99-10-02: XML Metadata Interchange Index-279

XMI requires validity of 4-41
MOF model

definition 4-28
MOF Model, the Glossary-266

MOF metamodel 4-29
UML 4-30

MOF, the Glossary-266
MOF-based metamodel. See MOF metamodel
MOF-based model. See MOF model
multiple inheritance. See inheritance, multiple
multiplicity 4-30, Glossary-267
multi-valued Glossary-267

N
name Glossary-267
name space Glossary-267
Namespace Glossary-267
namespace Glossary-267
n-ary association. See association, n-ary
natural language. See language, natural
navigability 4-30
nested package. See package, nested
node Glossary-267
notation Glossary-267
note Glossary-267

O
object Glossary-267

reference. See object reference
Object Constraint Language (OCL) 9-207
object containment 9-209
object reference Glossary-267
ObjectContents 9-214
Object-Element 9-213
OCL 3-24, 4-30, Glossary-268
Operation 4-30
operation Glossary-268
ordered collection. See collection, ordered
ordering Glossary-268

P
Package 4-30, Glossary-268

import 4-30
inheritance 4-30
nested 4-30

package Glossary-268
cluster Glossary-268
consolidation Glossary-268
importing Glossary-268
inheritance Glossary-268
nested Glossary-267
nesting Glossary-268
typ-level Glossary-271

Parameter 4-30
parameter Glossary-268

actual Glossary-258
formal Glossary-263

postcondition Glossary-268
precondition Glossary-268
primitive type. See type, primitive
process

Index-280 ad/99-10-02: XML Metadata Interchange 10/25/99

development Glossary-262
Producer 9-207, 9-227, 9-229, 9-232, 9-242, 9-243, 9-246
product Glossary-268
Production OCL Operations

NewTcId 9-246
TcDistance 9-246

Production Rules
AnyValue 9-226
AttributeAsElement 9-215
CharacterValue 9-224
ClassAttributes 9-212
CompositeAsElement 9-220
ContentsFromRoot 9-209
EmbeddedObject 9-214
EnumAsElement 9-225
EnumAttribute 9-218
IntegralValue 9-225
MvAttributeContents 9-217
ObjectAsElement 9-213
ObjectContents 9-213
ObjectReference 9-216
ObjRefOrDataValue 9-221
OtherExtentLinks 9-212
OtherLinks 9-210
RealValue 9-226
ReferenceAsElement 9-218
ReferencingElement 9-219
RequiredTypeDefinitions 9-227
SequenceValue 9-223
StringValue 9-224
StructValue 9-222
SvAttributeContents 9-216
TcAlias 9-231
TcArray 9-232
TcEnum 9-233
TcExcept 9-234
TcFixed 9-236
TcObjRef 9-233
TcRecursiveLink 9-238
TcSequence 9-232
TcSimple 9-236
TcString 9-235
TcStruct 9-231
TcUnion 9-234
TypeCodeState 9-229
TypeCodeValue 9-229
TypeId 9-228
TypeRef 9-228
UnionValue 9-223

production rules 9-199
profile Glossary-268
projection Glossary-268
property Glossary-269
prototype 2-19, 2-20
pseudo-code Glossary-269

R
RDF 4-37
read only Glossary-269
Reference Glossary-269
reference Glossary-269

10/25/99 ad/99-10-02: XML Metadata Interchange Index-281

object. See object reference
reflection Glossary-269
Reflective Glossary-269
reflective Glossary-269
reflective interfaces. See interface, reflective
reify Glossary-269
relation Glossary-269
relationship Glossary-269
repository Glossary-270
requirement Glossary-270
responsibility Glossary-270
reuse 4-30, Glossary-270
role Glossary-270

association. See association, role
link Glossary-265

root element. See element, root
run time Glossary-270

S
scope Glossary-270

classifier level Glossary-260
instance level Glossary-265

scrub-wallaby Glossary-269
sequence Glossary-270
set Glossary-270
SGML 4-33, Glossary-270
signature Glossary-270
single inheritance. See inheritance, single
single-valued Glossary-270
specialization Glossary-270
specific interfaces. See interface, specific
specification Glossary-270
start tag. See tag, start
state Glossary-271
static type checking. See type checking, static
static typing. See typing, static
stereotype 4-42, Glossary-271
string Glossary-271

empty Glossary-263
strong typing. See typing, strong
subsystem Glossary-271
subtype Glossary-271
superclass Glossary-271
supertype Glossary-271
supplier Glossary-271
syntax

abstract 4-28
system Glossary-271

T
tag 4-34

balanced pairs of 4-34
end Glossary-263
name 4-34
start Glossary-270

tagged value 4-42, Glossary-271
Tag-Value 6-70
tatic Glossary-271
technology mapping. See mapping, technology
timestamp 6-57
top-level package. See package, top-level

Index-282 ad/99-10-02: XML Metadata Interchange 10/25/99

transitive closure Glossary-271
Transmitting Incomplete Metadata 6-72
Transmitting Metadata Differences 6-76
type Glossary-272

base Glossary-259
builtin Glossary-260
checking. See type checking
data Glossary-261

encoding of 4-39
element. See element, type
error Glossary-272
expression Glossary-272
failure Glossary-272
loophole Glossary-272
primitive Glossary-268
safety Glossary-272
system Glossary-272

type checking Glossary-272
dynamic Glossary-262
static Glossary-271

TypeCode Glossary-272
typeing

static Glossary-271
typing Glossary-272

dynamic Glossary-262
static Glossary-271

U
UML 4-32, 4-42

metamodel for 4-43
UML, the Glossary-272
unique list. See list, unique
uniqueness 4-30, Glossary-272
unordered collection. See collection, unordered
UOL 3-24
URI 4-36
usage scenarios 5-45
UUID 6-54, Glossary-272
UUIDrefs 6-75

V
Value 6-70
value Glossary-273
vendor extensions

support for 4-42
verified 6-57
view Glossary-273
visibility Glossary-273

W
W3C, the 4-27, 4-33, Glossary-273

X
XLink 9-216, 9-221, Glossary-273

XPointer 4-37
XLinks 6-74
XMI 4-27, 9-210, Glossary-273

applicability of 4-38
data interchange using 4-43
design goals for 4-38

10/25/99 ad/99-10-02: XML Metadata Interchange Index-283

document production rules 4-27
DTD production rules 4-27
generation of import/export tools for 4-39
use for data interchange 4-37

xmi
extender 6-58
extenderID 6-58
id 6-53
idref 6-55
label 6-54
name 6-59, 6-60
position 6-61
uuid 6-54
uuidref 6-55
version 6-57, 6-59, 6-60

XMI element 6-56
XMI. 9-210
XMI.add 6-61
XMI.any 9-208, 9-221, 9-226, 9-227, 9-228
XMI.content 6-57, 9-208, 9-209, 9-211
XMI.contents 9-209
XMI.CorbaRecursiveType 9-238
XMI.CorbaTcAlias 9-231
XMI.CorbaTcAny 9-236, 9-237
XMI.CorbaTcArray 9-232, 9-233
XMI.CorbaTcBoolean 9-236, 9-237
XMI.CorbaTcChar 9-236, 9-237
XMI.CorbaTcDouble 9-236
XMI.CorbaTcEnum 9-233
XMI.CorbaTcEnumLabel 9-233
XMI.CorbaTcExcept 9-234
XMI.CorbaTcField 9-231, 9-234, 9-235
XMI.CorbaTcFixed 9-236
XMI.CorbaTcFloat 9-236
XMI.CorbaTcLong 9-236
XMI.CorbaTcLongDouble 9-236, 9-237
XMI.CorbaTcLongLong 9-236, 9-237
XMI.CorbaTcNull 9-236, 9-237
XMI.CorbaTcObjRef 9-233
XMI.CorbaTcOctet 9-236, 9-237
XMI.CorbaTcPrincipal 9-236, 9-237
XMI.CorbaTcSequence 9-232
XMI.CorbaTcShort 9-236
XMI.CorbaTcString 9-235
XMI.CorbaTcStruct 9-231
XMI.CorbaTcTypeCode 9-236, 9-237
XMI.CorbaTcUlong 9-236
XMI.CorbaTcUlongLong 9-237
XMI.CorbaTcUnion 9-234
XMI.CorbaTcUnionMbr 9-234
XMI.CorbaTcUshort 9-236
XMI.CorbaTcVoid 9-236, 9-237
XMI.CorbaTcWchar 9-236, 9-237
XMI.CorbaTcWstring 9-235
XMI.CorbaTypeCode 9-221, 9-227, 9-229
XMI.delete 6-61
XMI.difference 6-60
XMI.documentation 6-58
XMI.element.att 6-53
XMI.enum 9-225
XMI.extension 6-58

Index-284 ad/99-10-02: XML Metadata Interchange 10/25/99

XMI.extensions 6-57
XMI.field 9-222, 9-223
XMI.header 6-57
XMI.link.att 6-54
XMI.metametamodel 6-60
XMI.metamodel 6-59
XMI.model 6-59
XMI.octetStream 9-223
XMI.reference 6-62, 9-216
XMI.replace 6-61
XMI.seqItem 9-217, 9-223
XMI.TypeDefinitions 9-227
XMI.unionDiscrim 9-223, 9-224
XMIDataType 6-70, 6-71
XMIEnumSet 6-71
XML 4-27, 4-33, Glossary-273

APIs 4-33, 4-38
benefits of using 4-33
conformance with style of 4-39
display of 4-33
links 4-37
low cost of entry 4-33
namespaces 4-37
overview of 4-34
uptake of 4-34

XML Declaration Glossary-273
XML Document Glossary-273
XML document

semantic correctness of 4-36
valid 4-36, 4-42, Glossary-272
well-formed 4-36, Glossary-273

XML-Data 4-37, 4-39
XPointer 6-74, Glossary-273
XSL 4-33, 4-37

	Preface
	1.1 Cosubmitting Companies and Supporters
	1.2 Introduction
	1.3 Submission contact points
	1.4 Status of this Document
	1.5 Guide to the Submission
	1.6 Conventions

	Proof of Concept
	2.1 Copyright Waiver
	2.2 Proof of Concept

	Response to RFP Requirements
	3.1 Mandatory Requirements
	3.1.1 Required Meta-metamodel
	3.1.2 Syntax and Encoding
	3.1.3 Referenced Concepts
	3.1.4 UML Support
	3.1.5 International Codesets

	3.2 Optional Requirements
	3.2.1 Compact Data Representation
	3.2.2 Compatibility with other Metamodels and Interchange Formats

	3.3 Issues for discussion
	3.4 Scope of Revision Task Force

	Design Rationale
	4.1 Design Overview
	4.2 XMI and the MOF
	4.2.1 An Overview of the MOF
	The MOF Model
	The MOF IDL Mapping
	The MOF Interfaces

	4.2.2 The relationship between XMI and MOF
	4.2.3 The relationship between XMI, MOF and UML

	4.3 XMI and XML
	4.3.1 The roots of XML
	4.3.2 Benefits of using XML
	4.3.3 XML and the Computer Industry
	4.3.4 How XML works
	XML Structure elements
	XML Example
	XML Attributes
	Document Type Definitions
	XML Document Correctness

	4.3.5 XML and the OMG
	4.3.6 New XML Technologies

	4.4 Major Design Goals and Rationale
	4.4.1 Universally Applicable Solution
	4.4.2 Automatic Generation of Transfer Syntax
	4.4.3 Conformance with XML paradigms
	4.4.4 Knowledge of Metamodels
	4.4.5 Complete Encoding of Metadata
	4.4.6 Correctness of MOF MetaModels
	4.4.7 Model Fragments
	4.4.8 Ill-Formed Models
	4.4.9 Model Versions
	4.4.10 Model Extensibility
	4.4.11 MOF as an Information Model
	4.4.12 Status of MOF and UML DTDs

	Usage Scenarios
	5.1 Purpose
	5.2 Combining tools in a heterogeneous environment
	5.3 Co-operating with common metamodel definitions
	5.4 Working in a distributed and intermittently connected environment
	5.5 Promoting design patterns and reuse

	XMI DTD Design Principles
	6.1 Purpose
	6.2 Use of XML DTDs
	6.2.1 XML Validation of XMI documents
	6.2.2 Requirements for XMI DTDs

	6.3 Basic Principles
	6.3.1 Required XML Declarations
	6.3.2 Metamodel Class Representation
	6.3.3 Metamodel Extension Mechanism

	6.4 XMI DTD and Document Structure
	6.5 Necessary XMI DTD Declarations
	6.5.1 Necessary XMI Attributes
	Element Identification Attributes
	xmi.id
	xmi.label
	xmi.uuid

	Linking Attributes
	Simple XLink Attributes
	xmi.idref
	xmi.uuidref

	6.5.2 Common XMI Elements
	6.5.3 XMI
	6.5.4 XMI.header
	6.5.5 XMI.content
	6.5.6 XMI.extensions
	6.5.7 XMI.extension
	6.5.8 XMI.documentation
	6.5.9 XMI.model
	6.5.10 XMI.metamodel
	6.5.11 XMI.metametamodel
	6.5.12 XMI.import
	6.5.13 XMI.difference
	6.5.14 XMI.delete
	6.5.15 XMI.add
	6.5.16 XMI.replace
	6.5.17 XMI.reference
	6.5.18 XMI Datatype Elements

	6.6 Metamodel Class Specification
	6.6.1 Namespace Qualified XML Element Names
	6.6.2 Metamodel Multiplicities
	6.6.3 Class specification
	6.6.4 Inheritance Specification
	6.6.5 Attribute Specification
	6.6.6 Association Specification
	6.6.7 Containment Specification

	6.7 Transmitting Incomplete Metadata
	6.7.1 Interchange of model fragments
	6.7.2 XMI encoding
	6.7.3 Example

	6.8 Linking
	6.8.1 Design principles:
	6.8.2 Linking
	XLinks
	IDrefs
	UUIDrefs

	6.8.3 Example from UML
	6.8.4 XMI.reference

	6.9 Transmitting Metadata Differences
	6.9.1 Definitions:
	6.9.2 Differences
	6.9.3 XMI encoding
	6.9.4 Example

	6.10 Document exchange with multiple tools
	6.10.1 Definitions:
	6.10.2 Procedures:
	6.10.3 Example

	6.11 UML DTD
	6.12 General datatype mechanism

	XML DTD Production
	7.1 Purpose
	Conformance
	Notation for EBNF

	7.2 Rule Set 1: Simple DTD
	7.2.1 EBNF
	7.2.2 Pseudo-code
	Notation for pseudo-code
	1. DTD
	2. PackageDTD
	3. ClassDTD
	4. AttributeElementDef
	5. ReferenceElementDef
	6. ClassElementDef
	7. CompositionDTD
	8. CompositionElementDef
	9. PackageElementDef
	10. AssociationDTD
	11. AssociationEndDef
	12. AssociationDef

	7.2.3 Auxiliary functions
	GetAllInstanceAttributes
	GetAttributes
	GetAllReferences
	GetReferences
	GetReferenceMultiplicity
	GetContainedClasses
	GetAllComposedRoles
	GetComposedRoles
	GetClasses
	GetClassLevelAttributes
	GetNestedClassLevelAttributes
	GetPackageClasses
	GetContainedPackages
	GetUnreferencedAssociations

	7.3 Rule Set 2: Grouped entities
	7.3.1 EBNF
	7.3.2 Pseudo-code
	7.3.3 Rules
	1. DTD
	2. PackageDTD
	3. ClassDTD
	4. AttributeElementDTD
	5. AttributeEntityDef
	6. AttributeElementDef
	7. ReferenceElementDef
	8. PropertiesEntityDef
	9. RefsEntityDef
	The RefsEntityDef is generated by the OutputEntityDefs2 call (see EntityDTD #15)
	10. CompsEntityDef
	11. ClassElementDef
	12. CompositionDTD
	13. CompositionElementDef
	14. PackageElementDef
	15. EntityDTD
	16. AssociationDTD
	17. AssociationEndDef
	18. AssociationDef

	7.3.4 Auxiliary functions
	OutputEntityDefs2
	OutputPropertiesEntityDef2
	OutputRefsEntityDef2
	OutputCompsEntityDef2
	GetContainedClasses2
	GetPropertiesEntities2
	GetRefsEntities2
	GetCompsEntities2

	7.4 Rule Set 3: Hierarchical Grouped entities
	7.4.1 EBNF
	7.4.2 Pseudo-code
	7.4.3 Rules
	1. DTD
	2. PackageDTD
	3. ClassDTD
	4. AttributeElementDTD
	5. AttributeEntityDef
	6. AttributeElementDef
	7. ReferenceElementDef
	8. PropertiesEntityDef
	9. RefsEntityDef
	10. CompsEntityDef
	11. ClassElementDef
	12. CompositionDTD
	13. CompositionElementDef
	14. PackageElementDef
	15. EntityDTD
	16. AssociationDTD
	17. AssociationEndDef
	18. AssociationDef

	7.4.4 Auxiliary functions
	OutputEntityDefs3
	OutputPropertiesEntityDef3
	OutputRefsEntityDef3
	OutputCompsEntityDef3
	GetAllInstanceAttributes3
	GetAllReferences3
	GetAllComposedRoles3
	GetParentAttributes3
	GetParentReferences3
	GetParentCompositionRoles3

	7.5 Fixed DTD elements

	XML Generation Principles
	8.1 Purpose
	8.2 Introduction
	8.3 Two Model Sources
	8.3.1 Production by Object Containment
	8.3.2 MOF’s Role in XML Production
	8.3.3 Production by Package Extent

	8.4 Distinctions between Approaches in Certain Situations
	8.4.1 External Links
	8.4.2 Links not Represented by References
	8.4.3 Classifier-level Attributes
	8.4.4 Standard Elements

	XML Document Production
	9.1 Purpose
	9.2 Introduction
	9.3 ENBF Rules Representation
	9.4 OCL Rules Representation
	9.4.1 EBNF Productions
	9.4.2 OCL Rules

	9.5 Production Rules
	9.5.1 Production by Object Containment
	9.5.1.1 ContentsFromRoot
	9.5.1.2 OtherLinks

	9.5.2 Production by Package Extent
	9.5.2.1 ContentsFromExtent
	9.5.2.2 ClassAttributes
	9.5.2.3 OtherExtentLinks

	9.5.3 Object Productions
	9.5.3.1 ObjectAsElement
	9.5.3.2 ObjectContents
	9.5.3.3 EmbeddedObject

	9.5.4 Attribute Production
	9.5.4.1 AttributeAsElement
	9.5.4.2 ObjectReference
	9.5.4.3 SvAttributeContents
	9.5.4.4 MvAttributeContents
	9.5.4.5 EnumAttribute

	9.5.5 Reference Productions
	9.5.5.1 ReferenceAsElement
	9.5.5.2 ReferencingElement

	9.5.6 Composition Production
	9.5.6.1 CompositeAsElement

	9.5.7 DataValue Productions
	9.5.7.1 ObjRefOrDataValue
	9.5.7.2 StructValue
	9.5.7.3 SequenceValue
	9.5.7.4 UnionValue
	9.5.7.5 StringValue
	9.5.7.6 CharacterValue
	9.5.7.7 EnumAsElement
	9.5.7.8 IntegralValue
	9.5.7.9 RealValue
	9.5.7.10 AnyValue
	9.5.7.11 RequiredTypeDefinitions
	9.5.7.12 TypeId

	9.5.8 CORBA-Specific Types
	9.5.8.1 TypeRef
	9.5.8.2 TypeCodeValue
	9.5.8.3 TypeCodeState
	9.5.8.4 TcAlias
	9.5.8.5 TcStruct
	9.5.8.6 TcSequence
	9.5.8.7 TcArray
	9.5.8.8 TcObjRef
	9.5.8.9 TcEnum
	9.5.8.10 TcUnion
	9.5.8.11 TcExcept
	9.5.8.12 TcString
	9.5.8.13 TcWstring
	9.5.8.14 TcFixed
	9.5.8.15 TcSimple
	9.5.8.16 TcRecursiveLink

	9.5.9 Helpers
	9.5.9.1 LinksInRoot
	9.5.9.2 UnreferencedAssoc
	9.5.9.3 AllClassProxies
	9.5.9.4 AllUncontainedObjects
	9.5.9.5 CompAssocProxies
	9.5.9.6 End
	9.5.9.7 ExtractSequence
	9.5.9.8 ExtractField
	9.5.9.9 ExtractUnionField
	9.5.9.10 ExtractUnionDiscrim
	9.5.9.11 GetUnionFieldType
	9.5.9.12 DeAlias
	9.5.9.13 IdOfObject
	9.5.9.14 UrlOfObject
	9.5.9.15 DotNotation
	9.5.9.16 NewObjectId
	9.5.9.17 InScope
	9.5.9.18 HexAsString
	9.5.9.19 IntegralAsString
	9.5.9.20 RealAsString
	9.5.9.21 BooleanAsString
	9.5.9.22 EnumAsString
	9.5.9.23 EncodedString
	9.5.9.24 EncodedCharacter

	9.5.10 CORBA-Specific Helpers
	9.5.10.1 CorrespondingDataType
	9.5.10.2 CorbaTypeName
	9.5.10.3 IdOfTypeDefinition
	9.5.10.4 NewTcId
	9.5.10.5 TcDistance

	Compatibility with Other Standards
	10.1 Introduction
	10.2 XMI and W3C DCD
	10.3 XMI and CDIF

	Conformance Issues
	11.1 Introduction
	11.2 Required Compliance
	11.2.1 XMI DTD Compliance
	11.2.2 XMI Document Compliance
	11.2.3 Usage Compliance

	11.3 Optional Compliance Points
	11.3.1 XMI MOF Subset
	11.3.2 XMI DTD Compliance
	11.3.3 XMI Document Compliance
	11.3.4 Usage Compliance

	References
	Glossary

