XML, Web Services & SOA: Data Protection and Privacy Opportunities and Challenges in the Government Sector

Rich Salz
STSM, Senior Security Architect
IBM
Agenda

- XML and Web Services Impact on Security
- Security Underlies Government SOA Success
- Why SOA Security is a Concern
- Major Categories of SOA Security Functions
- Web Services Security and SOA
- WS-Trust, SAML, Access Control
- The Need for Hardware-based XML Security
- XML Hardware Encourages Interoperability
- IBM SOA Appliances Overview
- Summary
XML and Web Services can Impact Security

They help form the foundation of SOA, but bring new security obstacles:

- Scalability: XML is bandwidth, CPU and memory intensive
- Performance: some XML apps literally grind to a halt
- Privacy: connecting systems never before connected
- Data Protection: clear text over HTTP with no inherent security
- Integration: exposing Web services to legacy applications
- Standards are still in flux
- Financial, technical and organizational challenge
Government SOA

- IP-based network data flow
- Internal access moving to external access
- Federal Enterprise Architecture (FEA) composed of interrelated ‘reference models’
- eGov Initiatives built upon XML, Web services
 - Procurement, Supply Chain, etc.
 - Promote services re-use and consolidation
 - Increased integration and communication
- Cross-domain services, information, identity sharing
- DOD Net-Centricity transformation
Security Underlies Government’s SOA Success

- Shift to Message-Level Security
- SAML & Federation - eAuthentication & eAuthorization certificates
- COTS products that support standards
- DHS integration
- Netcentricity Phase II: Service-oriented Fusion
- Privacy, Integrity, ID management
- PKI
- Right information to right people in timely fashion
- Ubiquitous access vs. control, policy enforcement
Why SOA Security is a Concern

- Any new technology has new security implications
- XML and SOAP easily connect to backend systems
- For a business-centric SOA, the exposed systems are critical business systems
- Traditional packet-level security devices do not secure XML/SOAP
- New compliance and regulatory requirements
- In addition to application developers, many other parts of the organization need to be involved
Roles of Different Protocol Layers

SSL is not enough
- XML-level threats and XML-aware security
- securing stored or spooled messages
- multi-party transactions, multi-hop networks
Major categories of SOA Security Functions

- XML threat protection
 - Concerned with keeping out malicious XML
 - Sometimes called XML firewall or XML intrusion prevention
- Message confidentiality & tamper-protection
- Secure enablement
 - Concerned with allowing in only XML compliant with access policy
 - Example: access control policy enforcement
 - Some vendors may call this “trust management”
- Identity management
- Misc. web services management functions
 - Example: service level management
XML/SOAP Firewall

- Integrated multi-layer filters
 - IP-layer params (e.g., client IP address)
 - SSL params (e.g., client certificate)
 - Any part of HTTP header
 - XPath or XML configuration files for any part of SOAP header
 - XPath or XML configuration files on any part of XML payload
 - First-level filter select based on service, URL, etc.

- Easy “point and click” XPath Filtering
- Enable/Disable each SOAP method using WSDL wizard
- Can be applied at any point in message processing
Multiple Level of Defense for SOA

- First Level: XML Security Gateway for enhanced security, scalability, and simplicity
- Second level: Application server for additional processing
XML Threat Protection

- XML Entity Expansion and Recursion Attacks
- XML Document Size Attacks
- XML Document Width Attacks
- XML Document Depth Attacks
- XML Wellformedness-based Parser Attacks
- Jumbo Payloads
- Recursive Elements
- MegaTags – aka Jumbo Tag Names
- Public Key DoS
- XML Flood
- Resource Hijack
- Dictionary Attack
- Message Tampering
- Data Tampering
- Message Snooping
- XPath Injection
- SQL injection
- WSDL Enumeration
- Routing Detour
- Schema Poisoning
- Malicious Morphing
- Malicious Include – also called XML External Entity (XXE) Attack
- Memory Space Breach
- XML Encapsulation
- XML Virus
- Falsified Message
- Replay Attack
XML/SOAP Data Validation

- Raw XML and SOAP message inspection **(inbound and outbound)**
- XML well-formedness checks
- SOAP protocol checks
- XML Schema validation options:
 - Explicitly set XSD in validate step
 - Fetch “trusted” copy of XSD based on XSD self-declared by incoming XML document
 - Validate from WSDL for SOAP web services
- Streaming schema and well-formedness processing
 - Errors can be detected before the entire message is read in
- Business logic and other arbitrary validation
 - XSLT transformations to extract or validate business-level information contained in XML/SOAP payload
Enforcing Access Control

- High-speed Security Hardware access policy enforcement point
- Modular authentication/authorization architecture

 \[
 \begin{align*}
 x &= \text{extract-identity()} \\
 z &= \text{extract-resource()} \\
 zm &= \text{map-resource}(z) \\
 y &= \text{authenticate}(x); \text{if}\ (y = \text{null}) \text{reject} \\
 ym &= \text{map-credentials-attributes}(y) \\
 \text{allowed} &= \text{authorize}(ym, zm); \text{if}\ (!\text{allowed}) \text{reject} \\
 \text{audit-and-post-processing}();
 \end{align*}
 \]

- Identity examples include:
 - WS-Security user/pass token
 - SSL client certificate
 - SAML assertion
 - HTTP basic-auth
 - Proprietary SSO cookie/token

- Resource examples:
 - URL
 - SOAP method
Web Services and SOA Security

- WS-Security
- WS-Coordination
- WS-Transactions
- WSDL
- WS-Policy
- UDDI
- SOAP, SOAP Attachments
- XML, XML Infoset
- Transports

Quality of Service

Description and Discovery

OASIS Secure eXchange TC

WS-Security

- WS-Secure Conversation
- WS-Transactions
- WS-Trust
- WS-Federation
- WS-Authorization
- WS-Privacy

OASIS 1.0 WS-Security (framework)

- Kerberos profile
- X.509 profile
- REL profile
- Mobile profile
- Username profile
- SAML profile

SAML
Liberty
What “supports SAML” can mean

- SAML browser artifacts
 - Support for exchange of several interoperable token information via HTTP (without XML) for web single-sign-on
- Consume SAML assertions
 - Ability to accept a SAML in an incoming web service request or web service transaction, use it to enable access to some protect service
- Produce SAML assertions
 - Generating a SAML assertion based on AAA processing that took place for subsequent access control purposes
- Make SAML queries
 - Make web service calls to a SAML server for AAA decisions
- Accept SAML queries
 - Respond to authentication, authorization or audit request via web service protocol defined by SAML
WS-Trust

- Extends WS-* and WS-Security directly
- Security tokens:
 - Issue
 - Renew
 - Validate
- Trust relationships
 - Establish
 - Assess the presence of
 - Broker trust relationships

Figure courtesy of WS-Trust specification
The Need for Hardware Based XML Security

- Hardware XML Security Reduces Complexity
- Hardware XML Provides Hardened Security
- Hardware XML Security Delivers superior Performance
- Hardware XML Security Encourages Interoperability
Hardware provides Hardened Security

- **Accountability:**
 - OS upgrades
 - Security software upgrades
 - Hardware upgrades

- **Hardened OS**
 - Eliminate generic processes, daemons or listeners.

- **Hardware-based crypto Algorithms**
 - Prevent application developers from using weak crypto implementations

- **Separation of Security Policies from Applications**
XML Cryptography & Security Performance

- Crypto operations are resource-intensive
- Public-key crypto operations are very expensive
- Familiar example SSL
 - A couple RSA ops per connection, bulk encryption
 - Today, SSL hardware acceleration is well-accepted practice
- XML example: WS-Security based XML message
 - Signed header(s)
 - Public-key encrypted symmetric key
 - Encrypted payload sections
 - Signed payload sections
 - 10+ public-key ops per message is quite likely
- Multiple messages per connection
- XML processing also significant
XML hardware encourages interoperability

- Coupled to the other systems by Ethernet jack, not custom code

- Separation of concerns

- Network gear business model based on “out-of-the-box” interop

- Large software vendors focused on creating XML-enabled platforms
 - Functionality and development tools benefit
 - Interop is necessarily secondary, standards wars looming

- Network vendors architecturally unable to achieve “lock-in”

- Focused on a concrete set of challenges
 - XML security performance
 - Interoperability.
Interoperability promoted through Standards Bodies

- Interoperability is hard work, but much more likely
 - WSI promotes webServices Interoperability.
 - The WS-I testing tools are designed to help developers determine whether their Web services are conformant with Profile Guidelines.
 - “SOAP Specifications Assertions and Test Collection”
 - A SOAP 1.2 implementation that passes all of the tests specified in this document may claim to conform to the SOAP 1.2

- Baseline Standards have matured, for example:
 - SOAP 1.1 – May 2000
 - XML DSIG – Feb 2002
 - SAML 1.0 – November 2002
 - WS-Security – April 2002

- Integration with CA’s, policy stores, schema repositories, service repository registries

- Interoperability in a heterogeneous environment with application servers, in-house software, hardware devices from other vendors
SOA Appliances Fit with FEA

- **Performance Reference Model (PRM)**
 - Government-Wide, LOB-Specific Performance Measures & Outcomes

- **Business Reference Model (BRM)**
 - Lines of Business, Agencies, Customers, Partners

- **Service Component Reference Model (SRM)**
 - Service Domains, Service Types, Components, Access, Delivery Channels

- **Data and Information Reference Model (DRM)**
 - Business-Focused Data Standardization, Cross-Agency Exchange

- **Technical Reference Model (TRM)**
 - Technologies, Standards, Specifications, Component Framework

- Hardware approach provides price/performance & manageability

- Hardware security gateway enables higher security assurance for cross-agency exchange

- Hardware approach fits well within the Component Framework
Example of other SOA appliance use: XML Routers

- Content-based routing based on dynamic XPath tables
- SOAP protocol routing and load balancing
- Message enrichment via headers
- Publish-Subscribe based on content in messages
- Message duplication & relay
- QoS and QoP based on message content
- Routing and delivery independent of producers or consumers
Thank You