
Developing High Availability
Features to Address Failure
Recovery of the RNIF
April 2004

2 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

AuthorsAuthors

• Suresh DAMODARAN, RosettaNet/Sterling Commerce

• Takashi TOKAE, RosettaNet Japan/Fujitsu

• Kenji NAGAHASHI, RosettaNet Japan/Fujitsu

• Shigenori NOMURA, RosettaNet Japan/Sony EMCS

• Hiroaki ISAKA, RosettaNet Japan/NTT Communications

• Kazuto KIMURA, RosettaNet Japan/Intel

3 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

ContentsContents

• Business Case

• Communication Failures and responses

• Server Overload related Failures

• Why Retry Algorithm wouldn’t do

• Pacing Algorithm

• Permanent Failure and Response

4 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Business CaseBusiness Case

• RNIF implemented in production in 100s of sites
• Some of them require high volume (upwards of

50K messages per hour)
• Consistently supporting high volume (rate)

requires highly available RNIF implementations
• In high volume, RNIF implementations get

communication failures
• Problem not unique to RNIF implementations –

SOAP based messaging specifications (EbXML
Messaging, WS-I BP), and pure MIME based
(EDIINT AS2)

• This problem is a symptom of RNIF success☺

5 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Communication Failures
The many ways to fail
Communication Failures
The many ways to fail

COMMUNICATION FAILURES
While communicating RNIF messages with trading partners (TP) failure
in communication can occur between two RNIF implementations

• Transfer Protocol failure (e.g., HTTP)
• (RNIF) message failure (e.g., absence of an expected Receipt

Acknowledgement)
• (RNIF) implementation failure (e.g., a server hosting the RNIF

implementation fails)

6 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Communication Failures
Attributes

Communication Failures
Attributes

FAILURES ARE RELATIVE to a TP
• While TP A may perceive a failure at TP B, TP C may not perceive a

failure at TP B in the same time period!

ANTICIPATED or UNANTICIPATED
• Anticipated system shutdowns or system reconfigurations at TP A can

create (unanticipated) failures when TP B communicates to TP A

BEFORE or DURING
• Failures may exist prior to creating a PIP® (Partner Interface

Process®) based business transaction (PIP Instance), or may occur
during the execution of a PIP Instance

ONE or BOTH
• One or both of sender and receiver may fail during a PIP message

exchange

7 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

PERMANENT FAILURE
Recovery is possible only by using “out-of-band” communication.
We focus on Temporary Communication failures today.

Communication Failures
Detecting Permanent Failures
Communication Failures
Detecting Permanent Failures

Checkpoint &
RecoveryPacing

Checkpoint &
RecoveryPacing

Pe
rm

an
en

t
Te

m
po

ra
ry

Communication Server

Abort &
Out-of-band Communication

8 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Transfer Protocol Failure
Only HTTP Considered

Transfer Protocol Failure
Only HTTP Considered

HTTP Response Codes 200 and 202
• In RNIF2.0 [2], two HTTP response codes, 200 or 202 (Section

2.4.2.2 “Processing Inbound HTTP Posts”) MUST be returned for a
successful HTTP communication. Response code 200 is used for
synchronous HTTP requests and 202 is used for asynchronous HTTP
requests.

HTTP Response Codes 3XX, 4XX, and 5XX
• RNIF 2.0 states that “3xx, 4xx and 5xx error conditions must be

dealt with in the usual way, governed by the local policy.”

Focus on HTTP Responses 502, and 503
• This presentation focuses on how to deal with in a standard way

when 502(Service Temporarily Overloaded), and 503 (Service
Unavailable) are received.

9 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Current Potential Behavior
HTTP Response Code 502, 503

Current Potential Behavior
HTTP Response Code 502, 503

Message Receiver
• Free to discard the received message (implications of sending

502/503!)

Message Sender
• Ignore 502/503 from Receiver. Pretend nothing happened

(WRONG!)

OR

• Assume a permanent communication failure has occurred, and send
a Notification of Failure (PIP 0A1), and a human reinitiates the same
PIP Instance (Untrue assumption, many times!), OR

• Assume a temporary communication failure has occurred, and
initiate a retry using retry algorithm.

10 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

N
um

be
r o

f P
IP

 tr
an

sa
ct

io
n

Receiver B: Unprocessed PIP Transactions

Sender A: Transmitted PIP Transactions ("Busy" unsupported)

Planned PIP Transactions

Receiver B sends 502/503 but Sender A
ignores
Sender A should wait to restard PIP
transmission for "Time to Acknowladge"
(120 min.) because Recweiver B can send

no Ack signal.

Receiver B
throughput: 800 PIPs/min.

Sender A
throughput :1.000 PIPs/min.

Pacing Algorithm Unsupported

PIP

Sender A: Transmitted PIP
120min After Restarted by RNIF Spec.

Wait 2 hrs!

Using Retry AlgorithmUsing Retry Algorithm

1 21 41 61 81 101 121 141 161 181
Elapsed Time (min.)

11 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Retry Algorithm is not EnoughRetry Algorithm is not Enough

• Retry Algorithm not intended for HTTP failures, rather for non-
receipt of Receipt Acknowledgement or RNIF Exceptions

• When the HTTP Server is busy, or unavailable, no Receipt
Acknowledgement can be sent!

So, we need a “Pacing Algorithm” mainly to work
between consecutive retries

12 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Retry Algorithm vs. Pacing AlgorithmRetry Algorithm vs. Pacing Algorithm
Sender A Receiver B

2. HTTP Response “Busy”

(502 or 503)
The Pacing Interval.

1. PIP Request on HTTP

↓
Discard

PIP Request…
Execute Pacing Algorithm

If Pacing Algorithm terminates
concluding “permanent failure,” fall back

on Retry algorithm.

Busy ?

Yes

Normal
Process

No

4. HTTP Response “OK”

(200 or 202)

Normal
Process

3. Resend message

13 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Retry Algorithm vs. Pacing AlgorithmRetry Algorithm vs. Pacing Algorithm

Pacing Count = 10 (typically)Retry Count = 3

Pacing Interval = 5 min
(typically)

Retry Interval = Time-to-
Acknowledge = 2hrs

For Action and Signal
messages

Only for Action message

For server overloadFor non-receipt of Receipt
Acknowledgement or RNIF
Exceptions

Pacing AlgorithmRetry Algorithm

Pacing Interval * (Pacing Count +1) < Time-to-Acknowledge

14 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Pacing Algorithm
Context
Pacing Algorithm
Context

PACING ALGORITHM
To recover from HTTP failures of 502 or 503 kinds, Pacing Algorithm is
executed after an Action or Signal message is sent.

PACING INTERVAL & PACING COUNT
Pacing Interval: Interval between two consecutive resend of
messages during Pacing Algorithm execution

Pacing Count: Maximum number of times a message is resent during
Pacing Algorithm execution

15 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Pacing Algorithm
Execution
Pacing Algorithm
Execution

Preconditions
1. TP A has defined Pacing Interval and Pace Count
2. TP A receives HTTP error code 502 or 503 from TP B.
3. TP A is the Sender and TP B is the Receiver

16 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Pacing Algorithm
Execution
Pacing Algorithm
Execution

STEPS
1. TP A resends the message (action or signal) “Pace Count” times,

every such resend happening after the elapse of a “Pacing Interval”
Thus, the last message resend will happen at (Pace Interval * Pace
Count) period after the initial receipt of the error code at TP A.

2. If TP A continues to receive either HTTP error code 502 or 503 for
all resends during this instance of the Pacing Algorithm, or receives
no responses to the resends, TP A concludes that TP B has a
permanent failure. On the other hand, may TP B responds with a
normal reaction (a Receipt Acknowledge, Exception, or a Response
message). In either case, the Pacing Algorithm is concluded.

3. If a Notification of Failure (PIP 0A1) arrives from TP B during step 1,
then the Pacing Algorithm is concluded.

4. While this algorithm is executing, no new PIP Instances must be
initiated by TP A to send to TP B. However, pending action
messages (only Response Action messages) and signals may be
sent to TP B.

17 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Pacing Algorithm
Execution
Pacing Algorithm
Execution

Post Condition
TP A concludes TP B has a communication failure, and whether it is
permanent or temporary, OR

TP A concludes TP B has no communication failure (with a signal or PIP
0A1)

Notes
It is possible that both TP A and TP B are executing a Pacing Algorithm
at the same time. Since a Pacing Algorithm is guaranteed to conclude,
the end result can be either a successful conclusion of the PIP Instance,
or a failure at one or both TP from the other TP’s perspective.

If Pacing Algorithm executes during sending PIP 0A1, then do not send
another PIP 0A1 to the same TP right after!

If the Pacing Algorithm concludes a permanent communication failure,
retry based on Retry message is to be started 2hrs after the send prior
to invoking Pacing Algorithm

Pacing Interval and Pacing Count must be agreed between partners

Pacing Algorithm is only for Asynchronous (HTTP) Messages

18 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Pacing Algorithm Implemented by SenderPacing Algorithm Implemented by Sender

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

N
um

be
r o

f P
IP

 tr
an

sa
ct

io
n

Receiver B: Unprocessed PIP Transactions

Sender A: Transmitted PIP Transactions ("Busy" supported)

Planed PIP Transactions

Threshold Level of Receiver B

Receiver B sends "Busy" signals
when number of unprocessed PIP
transaction exceed threshold level.

"Busy" Supported Case (To-Be)
Sender A stops PIP transmission for preset
interval (5 min.) when "Busy" signals are
received.

Receiver B
throughput: 800 PIPs/min.

Sender A
throughput :1.000 PIPs/min.

Pacing Algorithm implemented

PIP

If Pacing Algorithm unsupported, (Sender A) must
wait for 2 hours to resend, now it waits only in
increments of Pacing intervals (say, 5min)

1 21 41 61 81 101 121 141 161 181
Elapsed Time (min.)

19 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Permanent Failure
Reaction
Permanent Failure
Reaction

Out-of-band communication for Notification of Failure
– To “reset/abort” the PIP Instance unilaterally
– PIP 0A1, Phone/fax/…
– The communication (PIP 0A1, phone, fax,…) must be processed by

the receiver to be successful – just receiving is not enough!

20 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Implementation of Pacing AlgorithmImplementation of Pacing Algorithm
B

ac
k-

en
d

Pr
oc

es
s RNIF

Process

RNIF
Process

B
ac

k-
en

d
Pr

oc
es

s

Pa
ci

ng
 A

lg
or

ith
m

 Im
pl

em
en

ta
tio

n
(p

ro
ce

ss
 re

ce
iv

ed
 5

02
/5

03
)

Se
nd

 5
02

/5
03

 a
s

ap
pr

op
ria

tehttp Request

http Response

http
connection

×

PIP
message
is not
accepted
when over
loaded

Receiver BSender A

21 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Comparing Protocols
Retry and Pacing
Comparing Protocols
Retry and Pacing

RNIF 2.0

eBMS 2.0

WS-I BP

AS2

Yes Yes

Yes No

? No

Basic No

Retry Pacing

22 Developing High Availability Features to Address Failure Recovery of the RNIF
© COPYRIGHT 2004 ROSETTANET. ALL RIGHTS RESERVED.

Future ImprovementsFuture Improvements

• Variable Pacing Interval
– Exponential back off

• Pacing Interval communicated in HTTP Response
Header/Signal

Thank you!

Questions?

	Developing High Availability Features to Address Failure Recovery of the RNIF
	Authors
	Contents
	Business Case
	Communication FailuresThe many ways to fail
	Communication Failures Attributes
	Communication FailuresDetecting Permanent Failures
	Transfer Protocol Failure Only HTTP Considered
	Current Potential Behavior HTTP Response Code 502, 503
	Using Retry Algorithm
	Retry Algorithm is not Enough
	Retry Algorithm vs. Pacing Algorithm
	Retry Algorithm vs. Pacing Algorithm
	Pacing AlgorithmContext
	Pacing AlgorithmExecution
	Pacing AlgorithmExecution
	Pacing AlgorithmExecution
	Pacing Algorithm Implemented by Sender
	Permanent FailureReaction
	Implementation of Pacing Algorithm
	Comparing ProtocolsRetry and Pacing
	Future Improvements
	Thank you!

