

The Role of BPM in Service Oriented Architecture

Charlton Barreto

Adobe Senior Computer Scientist/Architect charltonb@adobe.com

Agenda

- Introduction
- Convergence of BPM and SOA
- Modeling
- Composition and refinement
- Service constraints/semantics
- Wiring applications together
- Transaction models

Why SOA?

- SOA = an architectural principle for structuring systems
- SOA emphasizes the de-coupling of system components
- New services are created from existing ones in a synergistic fashion
- Strong service definitions are critical
- Services can be subsequently recomposed in response to changing business requirements

Why composite applications?

- Composite applications are...applications!
 - Build on loosely coupled services
 - Service sets Services of services ☺
- Comprised of heterogeneous parts
 - Existing services
 - New services
- Composite applications != SOA
- Composite applications employ SOA principles
 - Features exposed as Web services
 - Standards-based interaction between services
 - Described by standards-based artifacts
 - Are themselves composable

Why BPM?

- BPM describes how systems perform their business processes
- SOAs require understanding of roles, business expectations, interoperability
 - BPM serves these functions in a SOA
- With BPM, it is straightforward to let your business partners and customers directly participate in your business processes
- For BPM, services can be associated with business processes, which act on the behalf of activities

Business-level modeling

- Business-level modeling comes with a set of methodologies
- Different methodologies compete
 - BPBM
 - BPMN
 - Semantic Web
 - UMM
- Large number of business-level methodologies
 - Chances to unify them is very low
- Very likely, there will always be different business-level modeling tools

Business processes need to

- Co-ordinate asynchronous communication between services
- Correlate message exchanges between parties
- Implement parallel processing of activities
- Implement compensation logic ("Undo" operations)

- Manipulate/transform data between partner interactions
- Support long running business transactions and activities
- Provide exception handling
- Provide universal data model for message exchange

Roles of modeling

- Enterprise Information Systems (EIS) are developed to automate or support business processes
 - Need to be modeled, verified and validated before
- EIS manages enactment
 - Model is the configuration parameter
- Components of an EIS cooperate by means of middleware
 - Models are the configuration parameters of orchestration and choreography

Types of models

- BPMN
- ebBP
- CDL
- BPEL
- BPEL4People
- UML Activity Diagramme
- UML State Chart

BPMN

- Standard Business Process Modeling Notation
- Addresses graphical elements
 - Flow Objects
 - Connecting Objects
 - Swimlanes
 - Artifacts
- No formal interaction model
- Mapping to BPEL 1.1

ebBP

- Basis of eBusiness collaboration
- Defines interoperable business processes through document-based message exchange
 - Standard and extensible business transaction patterns
 - Support for multiple role bindings
 - Flexibility for complex transaction activities
 - Business quality of services for services
 - State alignment using business signals and business

CDL

- Peer-to-peer global model operating between loosely coupled components
 - Established global behavioural contract
 - Based on formalised description of external observable behaviour
- Describes collaboration protocols
 - Services act as peers
 - Interactions may be long-lived and stateful

BPEL

- Orchestrating interaction between Web services in a business process
- Recursive aggregation model
 - Aggregation: A set of Web services can be tied into one or more new Web service by means of a business process model
 - Recursive: These new Web services can again be tied into other new Web services

BPEL4People

- Extension of BPEL
- Work toward representing human tasks in a BPEL process – *People activity*
- 5 process-task patterns
 - Inline tasks
 - People activity
 - BPEL process
 - Standalone tasks: External to BPEL process
 - People activity direct
 - People activity WSDL portType
 - Invoke activity WSDL portType

Interaction patterns

- Document common problems and approaches related to the design and implementation of processes and services
- Special emphasis on situations that arise when processes and services engage in concurrent and interrelated interactions

Interaction protocol

- Processing behaviour
- Interaction flow
- Interaction role
- Interaction bindings
- Interactive parts i.e. activities
- Interactive part bindings

Model - Verification

- Services
- Activity & sequence diagrammes
- Interaction protocol

Validation - Correctness

- Proper completion: services should always be able to terminate with an end event, and they should not leave any unfinished work
- Invariants: constraints on case and base objects should be valid as soon as a service has finished
- Formalisms
 - Pi-calculus
 - Petri nets
- Business-level
 - BPDM Meta model (OMG)
 - UMM Meta model (UN/CEFACT)

Conversation = Series of Related Messages

- Can span seconds, hours, days
- Multiple concurrent conversation instances
- Messages belonging to one conversation are correlated

Describing Conversations

- Message Exchange Patterns
- Business Transaction Patterns
- Collaboration
- Choreography
- Orchestration
- Temporal Logic

Observable behaviour definition

- Interleaves with conversation patterns
- Definitions
 - ebBP
 - CDL
 - BPEL Abstract Processes
 - UML 2.0 Sequence Diagrammes

Conversation Patterns

- Message Exchange Patterns
- Dynamic Discovery
- Renewing Interest
- Reaching Consensus
- Business Exception Handling
- Fault/Signal Handling

Business process complexity

Complexity

- Activity
- Control-flow
- Data-flow
- Resource
- Event

- Metrics: Several fields apply
 - Information complexity
 - Cyclomatic complexity
 - Kolmogorov complexity
 - Cognitive complexity
 - Computational complexity

Service constraints/semantics

- Service component architecture
 - Assembly of individual services into larger applications
 - Defining format for configuring a module for deployment
 - Components that are composed into modules can be
 - Custom programs
 - BPEL processes
 - WS-A endpoints
 - Anything else conforming to the interface specification
- SCA and JBI are applications

Service Bus

- Dynamic connection, mediation and control of services and interactions,
- Spans services via a consistent model
- Enables changing processes and relationships between applications via configuration
- Provides management and monitoring facilities without requiring instrumentation
- OpenESB and Apache ServiceMix are applications

Transactions – Service-level

- Web Services Transaction 1.1 (WS-TX)
 - Three specifications
 - Web Services Coordination
 - Web Services AtomicTransaction
 - Web Services BusinessActivity
- Specifics of transaction and compensation management is outside the scope of WS-TX

Transactions – Business-level

ebBP

- Business transaction protocols
- CDL
 - Choreographies
- BPEL
 - Compensation

Role of BPM in SOA

- BPM provides abstraction for defining business processes
- Services provide the functions to support business processes
- SOA provides capabilities for combining services in an agile, flexible manner