WS-Reliability/WS-Security
Interoperability Test Specification

Working Draft 01, April 11 2005

Location:

Editors:
Hamid Ben Malek (hmalek@us.fujitsu.com)
Jacques Durand (jdurand@us.fujitsu.com)

Contributors:

Abstract:
This document describes the test cases as well as the tools (applications and APIs) used for interoperability tests about the composition of WS-Reliability and WSS profiles. This document does not prescribe a conformance test suite.
Introduction

This document provides a documentation about the various test cases involved, as well as the web service applications, its APIs, and its tools, and on how to deploy the service application and hook up a client application with the client API of the test suite. The test suite can be downloaded from http://www.standards-oss.org

Basic security features that translate into specific message processing fall into four main areas identified in "Handbook of Applied Cryptography" (by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996: www.cacr.math.uwaterloo.ca/hac) , from which other features can be derived:

- Authentication
- Data integrity
- Confidentiality
- Non-repudiation

The objectives of this test plan is to verify composability of the Reliability function (as defined in WS-Reliability) with the most popular ways the above security functions are implemented in an WS-Security compliant manner.

The test suite designed here will require that the implementations of WS-Security and WS-Reliability are composed in a particular way. This architecture should not need be modified from one test case to the other. Each candidate implementation (supporting both security and reliability) must be such that it can execute all test cases. These test cases are not symmetric: in order to demonstrate that end-points A and B have equivalent capability regarding composition of reliability and security, the same test suite must be executed twice, once driven from A, once driven from B.

1.1 Authentication

Authentication may apply to an entity (e.g. a person) or to data. In our context, it can be verified by:

- username / password (e.g. involving wsse:UsernameToken)
- digital (XML) signature, involving a private key on sender side (e.g. involving SAML:Assertion token, and/or x509 token)

Composability of these authentication use cases with reliability should be verified. We distinguish two scopes: payload (SOAP body) and entire message (SOAP headers + body, including Reliability headers)

The test cases will restrict to the practice recommended by WS-Security and WS-I BSP 1.0.

1.2 Data Integrity

At minimum, this involves a signed digest of the data (e.g. HMAC). As the XML Signature (SignatureMethod) used will include computation of such a digest and its signing (e.g.
http://www.w3.org/2000/09/xmldsig#hmac-sha1), composability of this use case with reliability will require verifying composability of the signing method involved. We distinguish the same scopes as for authentication.

The test cases will restrict to the practice recommended by WS-Security and WS-I BSP 1.0.

1.3 Confidentiality

Involves encryption of the private sections, using XML Encryption. We distinguish the same scopes as for authentication.

The test cases will restrict to the practice recommended by WS-Security and WS-I BSP 1.0 (with the exception of enveloped signatures in the latter).

1.4 Non-repudiation

Two cases are usually considered: non-repudiation of origin and non-repudiation of receipt.

Non-repudiation of origin typically involves the same techniques as authentication of sent data above, and therefore no new test case will be provided.

Non-repudiation of receipt usually gives to the “receipt” some application-level semantics, such as schema validation, etc. In this case, a signed receipt message is sent back to the initial sender. The security pattern involved here is no different from the authentication use case above (besides the fact it applies to an application-level receipt). No test case need be provided here, that would verify composability aspects not verified by the authentication test cases.

There is another option for Non-repudiation of receipt: since in WS-Reliability the acknowledgement is sent “on delivery”, we could consider that in some cases a delivery semantics (from the reliability module) is sufficient for a receipt. In this case a signed RM Reply would be sufficient. However, since it is not required from WS-Reliability that the reception of RM Replies (signed or not) be notified to the application (Producer) layer, no test case will be proposed for this option.

In summary, the composability of non-repudiation use cases with reliability will either involve similar patterns as verified by previous test cases, or will involve a specific case (signed RM Replies) that would require a security-aware implementation of the Reliability module – which will not be required in this test suite.
2 Test Suite

This document provides a documentation about the various test cases involved, as well as the web service applications, its APIs, and its tools, and on how to deploy the service application and hook up a client application with the client API of the test suite.

2.1 Components

The components of the test suite, described by this specification, are the following:

- **A web service application**: this application is represented by a sample Purchase Order e-commerce application.

- **Database Server**: this is the database server used by the purchase order application to persists the request messages.

- **Audit Application**: this is a web-based application that provide a view of the contents of the database. Through this application, a user can find out whether a certain purchase order request has been received by the web service application or not.

- **Payload Files**: these are XML files representing various SOAP messages to be used by the test cases.

- **Configuration File**: this is an XML file that will reside on the client side, and prescribes WS-Reliability agreement to be used in each test case.

2.2 The web service application

This is a sample purchase order application. The binaries of this application as well as a documentation on how to deploy it will be provided with this specification.

2.3 Audit Application

This is a web-based application that will be deployed on the server side with the purchase order application. Its purpose is to provide a view to remote users of what messages have been received by the purchase order.

2.4 Database Server

This will be a MySQL Database Server, used by the purchase order application to persists all the request messages it receives. The installation of this database server and its database will be provided.
2.5 Payloads and Configuration files

The payload will be represented by a set of XML files containing the SOAP messages that will be used by the test cases when calling the “Document-Based” purchase order application. These XML files are not used if the client applications are calling the “RPC-based” purchase order.

2.6 TestSuite Client API

Utility classes together with a documentation on their API will be provided with this specification. The purpose of these utility classes is to ease the integration of client applications with the test suite. These utility classes perform the following tasks:

- **Provide a proxy for the web service.** The client application won't have to compile the WSDL file to generate a proxy. All what the client application will have to do is simply use the utility classes to send the SOAP messages.

- **Load the payload data:** the utility classes can pre-load the payload data from the xml files, and provide the client application with a SOAP message ready to send. All what the client application will have to do is only append the WS-Reliability headers to the SOAP message and then send it to the endpoint web service.

- **Load the WS-Reliability Agreement:** the utility classes can load a WS-Reliability agreement, represented in the form of an XML file. The client application can ask the utility classes for the different parameters to use, and accordingly will populate the SOAP message with the WS-Reliability headers and then send it. In other words, the client application won't have to be able to parse the WS-Reliability agreement file.
3 Test Cases

There will be a minimum of ten test cases for combining WS-Reliability and WSS. These test cases are not a substitute for WS-Reliability interoperability tests. It is assumed that the SOAP processors involved in this interoperability test have already passed the WS-Reliability interoperability test.

In all the ten test cases described below, from the point of view of reliability, all the SOAP message requests are to have guaranteed delivery with duplicate elimination and a "Callback" reply pattern. This combination is enough, because the goal of this test suite is not about WS-Reliability interoperability, but about the composition of security and reliability. Furthermore, the reliability interoperability tests are assumed to have been passed prior to this composition test suite.

All signatures and encryptions in this composition test suite, are accomplished using an X.509 certificate store, and the signatures are always detached.

3.1 Username Security Token Test (T1)

This the first test case (Test #1) and it consists in sending a "login" SOAP message request with username/password in the WSS headers. The web service would response by sending a boolean value indicating whether the login request succeeded or not.

3.2 SAML Security Token Test (T2)

This the second test case (Test #2) and it consists in sending a "login" SOAP message request with a SAML security token for authentication. The web service would response by sending a boolean value indicating whether the login request succeeded or not.

3.3 X509 Security Token Test (T3)

This the third test case (Test # 3) and it consists in sending a "login" SOAP message request with an X.509 security token for authentication. The web service would response by sending a boolean value indicating whether the login request succeeded or not.

3.4 Sign Body Test (T4)

This is the fourth test case (Test # 4) and it consists in sending a purchase order SOAP message request with the SOAP body being signed. The signature is a detached signature using an X.509 certificate store.
3.5 Sign Body and Reliability headers Test (T5)

This the fifth test case (Test # 5) and it consists in sending a purchase order SOAP message request with the SOAP body and reliability headers being signed. The signature would be a detached signature using X.509.

3.6 Body Encryption Test (T6)

This is test case # 6 and it consists in sending a purchase order SOAP message request with the SOAP body being encrypted with X.509.

3.7 Encryption of body and reliability headers Test (T7)

This is test case # 7 and it consists in sending a purchase order SOAP message request where both the SOAP body and reliability headers being encrypted with X.509.

3.8 First Test and Fourth Test combined (T8)

This is test case # 8 and it consists in sending a purchase order SOAP message request with the SOAP body being signed, and the WSS header containing a username security token. The signature is a detached one using X.509.

3.9 Third Test and Seventh Test combined (T9)

This is test case # 9 and it consists in sending a purchase order SOAP message request with the SOAP body and reliability headers being encrypted with X.509, and the WSS header containing an X.509 for authentication.

3.10 First, Fifth, and Sixth Test combined (T10)

This is test case # 10 and it consists in sending a purchase order SOAP message request with the SOAP body and reliability headers being signed, the SOAP body being encrypted, and the WSS header containing a security username token for authentication. The signature is detached, and both the signature and encryption are using X.509.
A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS’s procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not need to be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.