

wd-xacml-wspl-use-cases-04.pdf

1

 1

Web-services policy language use-2

cases and requirements 3

Working draft 04, 16 April 2003 4

Document identifier: wd-xacml-wspl-use-cases-04.pdf 5

Location: http://www.oasis-open.org/committees/documents.php?wg_abbrev=xacml 6

Send comments to: xacml-comment@lists.oasis-open.org 7

Editors: 8
Tim Moses, Entrust (tim.moses@entrust.com) 9

Contributors: 10
Anne Anderson, Sun Microsystems 11
Frank Siebenlist, Argonne National Labs 12
Frederick Hirsch, Nokia Mobile Phone 13
Ron Monzillo, Sun Microsystems 14
Simon Godik, Overxeer 15

Abstract: 16

This working draft defines use-cases and requirements for negotiating a variety of forms of 17
policy in the Web-services architecture. 18

Status: 19

This version of the specification is a working draft of the committee. As such, it is expected 20
to change prior to adoption as an OASIS standard. 21

If you are on the xacml@lists.oasis-open.org list for committee members, send comments 22
there. If you are not on that list, subscribe to the xacml-comment@lists.oasis-open.org list 23
and send comments there. To subscribe, send an email message to xacml-comment-24
request@lists.oasis-open.org with the word "subscribe" as the body of the message. 25
 26

Copyright (C) OASIS Open 2003 All Rights Reserved.27

wd-xacml-wspl-use-cases-03.pdf 2

Table of contents 28

1. Introduction 4 29

2. Use-cases 4 30

2.1. Use-case 1: Submit request 4 31

2.2. Use-case 2: Return response 5 32

2.3. Use-case 3: Construct request 6 33

2.4. Use-case 4: Construct response 8 34

2.5. Use-case 5: Control usage 9 35

2.6. Use-case 6: Intermediary proxies 10 36

2.7. Use-case 7: Intermediary intercepts 13 37

2.8. Use-case 8: Multiple sources 15 38

2.9. Use-case 9: Second party combines 16 39

2.10. Use-case 10: Third party combines 17 40

2.11. Use-case 11: Third-party translates 18 41

3. Policy communication 19 42

4. Language support 19 43

5. Requirements 19 44

5.1. Three-value logic 19 45

5.2. Amenable to combining 20 46

5.3. Interpretation as instructions 20 47

5.4. Common data-types 20 48

5.5. Extensible data-types 20 49

5.6. Common operators 20 50

5.7. Extensible operators 20 51

5.8. Multiple enforcement points 20 52

5.9. Multiple bindings 20 53

5.10. Preferences 21 54

5.11. Suppressed disclosure 21 55

5.12. Supported functions 21 56

5.13. Specified order 21 57

5.14. Policy identified by name 21 58

5.15. Attributes identified by name 21 59

5.16. Attributes identified by location 21 60

5.17. Behaviour in event attributes are unavailable 21 61

5.18. Version control 21 62

6. References 22 63

wd-xacml-wspl-use-cases-03.pdf 3

Appendix A. Notices 23 64

 65

66

wd-xacml-wspl-use-cases-03.pdf 4

 66

1. Introduction 67

This document explores the requirements for policy expression in the Web-services application 68
domain. 69

Several applications of policy were considered in preparing this analysis, including: cryptographic-70
security policy, authentication policy, authorization policy, privacy policy, reliable-messaging policy 71
transaction-processing policy and trust policy. 72

2. Use-cases 73

2.1. Use-case 1: Submit request 74

Use-case 1 is shown in Figure 1. In this case, Consumer submits a servi ce request to Provider. If 75
the service request conforms with Provider’s policy for requests, then Provider accepts the request. 76
Otherwise, it returns a fault status. Optionally, in the fault case, it returns its policy for requests of 77
the type. 78

Consumer may not wish to disclose information in a genuine service request until it can be certain 79
that its request will ba acceptable to Provider, by virtue of the fact that it conforms with Provider’s 80
policy. 81

This use-case applies to situations in which Provider imposes requirements on the form of 82
acceptable service requests and/or is willing to accept service requests of a certain form. This 83
situation exists, for instance, where Provider requires Consumer to assign a unique identifier to its 84
request, in accordance with WS-Reliability [WS-Rel]. If it receives a request with no suitable 85
identifier, then it will return a fault status. 86

Consumer Provider

1 1

Submit request

1 1

 87

Figure 1 - Use-case 1 88

wd-xacml-wspl-use-cases-03.pdf 5

The corresponding sequence diagram is shown in Figure 2. 89

Consumer Provider

Submit request()

Return response()

Evaluate request()

Form request()

 90

Figure 2 - Use-case 1 sequence 91

1. Consumer forms a service request in compliance with its own policy for the request type. 92

2. Consumer sends the request to Provider. 93

3. Provider tests the request against its policy for the request type. 94

4. If the request satisfies Provider’s policy, then Provider accepts the request and (optionally) 95
returns a response. If the request does not satisfy Provider’s policy, then Provider returns a 96
fault status and, optionally, its policy for requests of the type. 97

Note: Consumer may send an empty service request so that it can obtain Provider’s policy without 98
disclosing information. 99

2.2. Use-case 2: Return response 100

Use-case 2 is shown in Figure 3. In this case, Provider returns a service response to Consumer. If 101
the service response conforms with Consumer’s policy for responses, then it accepts the response. 102
Otherwise, it discards the response. 103

This use-case applies to situations in which Consumer imposes requirements on the form of 104
acceptable service responses and/or is willing to accept service responses of a certain form. This 105
situation exists, for instance, where Consumer requires Provider to certify certain contents of the 106
response by signing them. 107

Consumer Provider

1 1

Return response

1 1

 108

wd-xacml-wspl-use-cases-03.pdf 6

Figure 3 - Use-case 2 109

The corresponding sequence diagram is shown in Figure 4. 110

Consumer Provider

Return response()

Evaluate response()

Form response()

 111

Figure 4 - Use-case 2 sequence 112

1. Provider forms a service response in compliance with its own policy for the response type. 113

2. Provider returns the response. 114

3. Consumer tests the response against its policy for responses of the type. If the response 115
satisfies its policy, then it accepts the response. Otherwise, Consumer discards the response. 116

2.3. Use-case 3: Construct request 117

Use-case 3 is shown in Figure 5. In this case, Consumer forms a request that it knows will be 118
accepted by Provider because it conforms with Provider’s policy for requests of the type. 119

This use-case applies to situations in which Consumer cannot form an acceptable service request 120
by repeatedly submitting and modifying requests until one is accepted. Rather it must form a 121
service request that it can be certain is acceptable to Provider. Therefore, Provider describes in its 122
policy the functions that it insists on performing and the functions that it is willing and able to 123
perform. This description may include acceptable alternative functions. There may be differential 124
costs associated with the alternative functions. Therefore, Provider may wish to indicate which of 125
the alternative functions it prefers to perform. Likewise, Consumer may have preferences amongst 126
the alternative functions. Consumer’s preferences may not necessarily align with Provider’s 127
preferences. 128

Consumer may construct the request directly, by examining Provider’s policy, or by testing 129
candidate requests against Provider’s policy. 130

This situation exists, for instance, where Provider imposes an upper limit on the “time to live” of a 131
WS-Reliability [WS-Rel] message. In the event that Consumer chooses a value that exceeds this 132
upper limit, its request will be rejected. 133

wd-xacml-wspl-use-cases-03.pdf 7

Consumer Provider

1 1

Construct request

1 1

 134

Figure 5 - Use-case 3 135

The corresponding sequence diagram is shown in Figure 6. 136

Consumer Provider

Submit request()

Return response()

Form request()

Request policy for requests()

Policy for requests()

Combine policies()

Evaluate request()

 137

Figure 6 - Use-case 3 sequence 138

1. Consumer requests Provider’s policy for requests. 139

2. Consumer obtains Provider’s policy for requests. 140

3. Consumer combines Provider’s policy for requests with its own. 141

4. Consumer forms the request in conformance with the combined policy for requests. 142

5. Consumer sends the request for service to Provider. 143

6. Provider verifies that the request satisfies its policy for requests. 144

7. If it does, then it accepts the request and (optionally) returns a response. Otherwise, it returns 145
a fault status. 146

Note: Steps 3 and 4 may be accomplished by trial and error. 147

wd-xacml-wspl-use-cases-03.pdf 8

2.4. Use-case 4: Construct response 148

Use-case 4 is shown in Figure 7. In this case, Provider forms a response that it knows will be 149
accepted by Consumer, because it conforms with Consumer’s policy for responses. 150

This use-case applies to situations in which Provider cannot form an acceptable response by 151
repeatedly returning and modifying responses until one is accepted. Rather it must form a service 152
response that it can be certain is acceptable to Consumer. Therefore, Consumer describes in its 153
policy the functions that it insists on performing and the functions that it is willing and able to 154
perform. As in use-case 4, the description may include acceptable alternative functions. There 155
may be differential costs associated with the alternative functions. Therefore, Consumer may wish 156
to indicate which of the alternative functions it prefers to perform. Likewise, Provider may have 157
preferences amongst the alternative functions. Provider’s preferences may not necessarily align 158
with Consumer’s preferences. 159

Provider may construct the response directly, by examining Consumer’s policy, or by testing 160
candidate responses against Consumer’s policy. 161

This situation exists, for instance, where Provider’s policy requires that certain contents be 162
encrypted, while Consumer‘s policy requires that certain other contents be “in the clear”. Provider 163
is able to form a response in which information that is required to be encrypted is encrypted, and 164
information that is required to be “in the clear” is “in the clear”. 165

Consumer Provider

1 1

Construct response

1 1

 166

Figure 7 - Use-case 4 167

The corresponding sequence diagram is shown in Figure 8. 168

Consumer Provider

Return response()

Obtain policy for response()

Form response()

Combine policies()

 169

Figure 8 - Use-case 4 sequence 170

1. Provider obtains Consumer’s policy for responses. 171

wd-xacml-wspl-use-cases-03.pdf 9

2. Provider combines Consumer’s policy for responses with its own. 172

3. Provider forms a response in conformance with the combined policy for responses. 173

4. Provider returns the response to Consumer. 174

Note: Steps 2 and 3 may be accomplished by trial and error. 175

2.5. Use-case 5: Control usage 176

Use-case 5 is shown in Figure 9. In this case, Consumer’s policy places limits on Intermediary’s 177
use of Consumer’s request. Intermediary forwards Consumer’s modified request to Provider, only 178
in conformance with its own and with Consumer’s usage policy. Intermediary may also forward 179
Consumer’s usage policy to Provider. 180

This use-case applies, for instance, when Consumer provides confidential information, including 181
(but not limited to) personal information, and Intermediary has to pass certain parts of the 182
confidential information to Provider, an actor not governed by Intermediary. 183

Consumer

Provider

Intermediary

Control usage

1

1

1 1

1

1

 184

Figure 9 - Use-case 5 185

wd-xacml-wspl-use-cases-03.pdf 10

The corresponding sequence diagram is shown in Figure 10. 186

Consumer Intermediary

Submit request()

Obtain Consumer usage policy()

Evaluate policy()

Provider

Forward modified request()

Combine policies()

Forward usage policy()

Modify request()

 187

Figure 10 - Use-case 5 sequence 188

1. Consumer submits request to Intermediary. 189

2. Intermediary obtains Consumer’s usage policy. 190

3. Intermediary processes Consumer’s request. 191

4. Intermediary combines Consumer’s usage policy with its own. 192

5. Intermediary evaluates its own and Consumer’s usage policy. 193

6. If the combined policy is satisfied, then Intermediary sends the modified request to Provider. 194
Otherwise, it does not. 195

7. Optionally, Provider obtains the usage policy for the modified request. 196

2.6. Use-case 6: Intermediary proxies 197

Use–case 6 is shown in Figure 11. In this case, Intermediary acts as a proxy for Provider. 198
Intermediary combines Provider’s policy for requests with its own to express the effective policy for 199
Consumer’s request. There may be a chain of intermediaries in the path between Consumer and 200
Provider; each outputs its own policy as a modified version of the policy obtained from the next 201
“upstream” actor. Consumer sends a service request to Intermediary. Intermediary forwards a 202
modified request to Provider. 203

In this use case, an intermediary serves as a proxy for a single service provider. 204

wd-xacml-wspl-use-cases-03.pdf 11

This use-case applies when Provider imposes policy requirements that affect the request submitted 205
by Consumer, although Consumer is unaware of the role played by Provider in the request. A 206
firewall that performs address translation may act in this way: taking a Provider’s policy and 207
modifying it to include its own requirements. 208

Consumer

Provider

Intermediary

Intermediary
proxies

1

1

1 *

1

1

 209

Figure 11 - Use-case 6 210

wd-xacml-wspl-use-cases-03.pdf 12

The corresponding sequence diagram is shown in Figure 12. 211

Consumer Intermediary

Request Intermediary policy for request()

Combine policies()

Provider

Request Provider policy for request()

Provider policy for request()

Return Intermediary policy for request()

Submit request()

Form request()

Modify request()

Forward request()

 212

Figure 12 - Use-case 6 sequence 213

1. Intermediary requests policy for requests from Provider. 214

2. Provider returns policy for requests to Intermediary. 215

3. Intermediary combines Provider’s policy with its own. 216

4. Consumer requests policy from Intermediary. 217

5. Intermediary returns policy to Consumer. 218

6. Consumer forms a request in conformance with policy. 219

7. Consumer submits a conformant request to Intermediary. 220

8. Intermediary modifies the request. 221

9. Intermediary forwards the request to Provider. 222

Note: Consumer does not have to be aware that the policy provided by Intermediary is the result of 223
combining Intermediary’s policy with that of Provider. 224

wd-xacml-wspl-use-cases-03.pdf 13

There is a corresponding use-case for responses, in which Consumer sends its policy for 225
responses to Intermediary, Intermediary combines it with its own and passes the result to Provider. 226
Provider then forms the response in conformance with the combined policy. 227

2.7. Use-case 7: Intermediary intercepts 228

Use-case 7 is shown in Figure 13. In this case, an Intermediary places itself in the path between 229
Consumer and Provider, without the knowledge of either actor. There may be a chain of 230
intermediaries in the path between Consumer and Provider; each outputs its own policy as a 231
modified version of the policy obtained from the next “upstream” actor. Intermediary imposes policy 232
requirements on rquests and responses exchanged between Consumer and Provider. 233

This use-case applies for instance when security functions are performed by an interceptor. 234

Consumer

Provider

Intermediary

Intermediary
intercepts

1

1

1 *

1

1

 235

Figure 13 - Use-case 7 236

wd-xacml-wspl-use-cases-03.pdf 14

The corresponding sequence diagram is shown in Figure 14. 237

Consumer Intermediary

Request policy for request()

Combine policies()

Provider

Request policy for request()

Return policy for request()

Return combined policy()

Form request()

Submit request()

Modify request()

Forward request()

 238

Figure 14 - Use-case 7 sequence 239

1. Consumer requests policy for requests from Provider. The request is intercepted by 240
Intermediary. 241

2. Intermediary requests policy for requests from Provider. 242

3. Provider returns policy for requests to Intermediary. 243

4. Intermediary combines Provider’s policy with its own. 244

5. Intermediary returns combined policy to Consumer. 245

6. Consumer forms a request in conformance with policy. 246

7. Consumer submits the request to Provider. The request is intercepted by Intermediary. 247

8. Intermediary modifies the request. 248

9. Intermediary forwards the modified request to Provider. 249

There is a corresponding use-case for responses, in which Consumer sends its policy for 250
responses to Intermediary, Intermediary combines it with its own and passes the result to Provider. 251
Provider then forms the response in conformance with the combined policy. 252

wd-xacml-wspl-use-cases-03.pdf 15

2.8. Use-case 8: Multiple sources 253

Use-case 8 is shown in Figure 15. In this case, the complete policy associated with a particular 254
operation (whether request or response) is formed by combining policies from a number of sources. 255

This use-case applies, for instance, when the policy applicable to a request is defined at both the 256
departmental and corporate levels of an enterprise. Either the policies may be combined or the 257
evaluation results may be combined. Combination may be performed by the policy user or by 258
another actor. 259

Policy fragments may be referenced by name for the purpose of location and retrieval. 260

Policy writer Policy user

* 1

Multiple sources

1 1

 261

Figure 15 - Use-case 8 262

The corresponding sequence diagram is shown in Figure 16. 263

Policy writer 1 Policy writer 2 Policy user

Write policy fragment 1() Write policy fragment 2()

Obtain policy fragment 1()

Obtain policy fragment 2()

Combine policy fragments()

 264

Figure 16 - Use-case 8 sequence 265

1. Policy writer 1 prepares policy fragment 1. 266

2. Policy writer 2 prepares policy fragment 2. 267

3. Policy user obtains policy fragment 1. 268

4. Policy user obtains policy fragment 2. 269

5. Policy user combines policy fragment 1 and policy fragment 2. 270

wd-xacml-wspl-use-cases-03.pdf 16

2.9. Use-case 9: Second party combines 271

Use-case 9 is shown in Figure 17. In this case, the combined policy associated with a service 272
request is formed by Provider and then returned to Consumer. 273

This use-case applies when Provider is unwilling to reveal its policy, for instance, if it wishes to 274
ensure that Consumer uses Provider’s preferred options, rather than its own preferred options. 275

Consumer Provider

1 1

Second-party
combines

1 1

 276

Figure 17 - Use-case 9 277

The corresponding sequence diagram is shown in Figure 18. 278

Consumer Provider

Submit policy for request()

Combine policies()

Return combined policy for request()

Submit request()

Form request()

 279

Figure 18 - Use-case 9 sequence 280

1. Consumer sends policy for request to Provider. 281

2. Provider combines Consumer’s policy for request with its own. 282

3. Provider returns the combined policy to Consumer. 283

4. Consumer forms a request in conformance with the combined policy. 284

5. Consumer submits a request that conforms with the combined policy. 285

There is a corresponding use-case for responses, in which Provider sends its policy for responses 286
to Consumer, Consumer combines it with its own and returns the result to Provider. Provider then 287
forms the response in conformance with the combined policy. 288

wd-xacml-wspl-use-cases-03.pdf 17

2.10. Use-case 10: Third party combines 289

Use-case 10 is shown in Figure 19. In this case, the combined policy associated with a service 290
request is formed by a third party and then returned to Consumer. 291

This situation exists when neither Consumer nor Provider wishes to reveal its policy to the other. 292

Consumer

Provider

1

1

Third-party combin
es

1

1 Third party

1 1

 293

Figure 19 - Use-case 10 294

The corresponding sequence diagram is shown in Figure 20. 295

Consumer Provider

Submit Consumer policy for request()

Combine policies()

Return combined policy for request()

Third party

Submit Provider policy for request()

Submit request()

 296

Figure 20 - Use-case 10 sequence 297

1. Consumer sends policy for request to Third party. 298

2. Provider sends policy for request to Third party. 299

3. Third party combines Consumer’s policy for request with Provider’s policy for request. 300

4. Third party returns the combined policy to Consumer. 301

wd-xacml-wspl-use-cases-03.pdf 18

5. Consumer submits a request that conforms with the combined policy. 302

There is a corresponding use-case for responses, in which Third party returns the combined policy 303
to Provider in step 4, and, in step 5, Provider returns the response to Consumer. 304

2.11. Use-case 11: Third-party translates 305

Use-case 11 is shown in Figure 21. In this case, the Provider policy associated with a service 306
request is translated into a form that is acceptable to Consumer by a third party. 307

This situation exists when there is no single policy syntax understood by both Consumer and 308
Provider. 309

Consumer

Provider

1

1

Third-party transl
ates

1

1
Third party

1 1

 310

Figure 21 - Use-case 11 311

The corresponding sequence diagram is shown in Figure 22. 312

Consumer Provider

Request Provider policy for request()

Translate policy()

Return Provider policy for request()

Third party

Request Provider policy for request()

Return Provider policy for requests()

 313

Figure 22 - Use-case 11 sequence 314

1. Consumer requests Provider’s policy for requests from Third party. 315

wd-xacml-wspl-use-cases-03.pdf 19

2. Third party requests the policy for requests from Provider. 316

3. Provider returns its policy for requests to Third party in its chosen syntax. 317

4. Third party translates the policy to the syntax chosen by Consumer. 318

5. Third party returns the policy to Consumer. 319

There is a corresponding use-case for responses, in which Third party translates Consumer policy 320
in step 4 and returns it to Provider in step 5. 321

3. Policy communication 322

In all use-cases, policy instances may be communicated in any one of a number of ways. For 323
instance: 324

In the case of simple service provision, where Consumer sends an isolated service request to 325
Provider, Provider may publish its policy in one or more of a number of ways, including: UDDI, 326
WSDL, HTTP, LDAP, DNS or in SQL or SAML request/response messages. 327

In the case of complex service provision, the Provider and Consumer may communicate their 328
policies to one another in-band, for instance, by including them as SOAP headers. 329

4. Language support 330

The policy language has to support alternative combinations of requirements, which gives rise to 331
the need for logical combining operations, such as OR and AND. Support for reliable-messaging 332
requirements gives rise to the need for integer comparison operations, such as greater-than and 333
less-than, and support for cryptographic-security requirements gives rise to the need for set 334
operations, such as subset and superset, over XML nodes and resource identifiers. 335

It must also be possible to indicate operations that must not be performed. 336

In some application domains, policies may be expressed as a set of independent objectives, each 337
of which may be achieved by any one of a number of alternative strategies. Each strategy 338
comprises a number of mandatory predicates. There should be a suitable way of expressing 339
policies of this form. 340

5. Requirements 341

5.1. Three-value logic 342

In order to support use-cases 1,2 and 6, it must be possible to evaluate an instance of policy to 343
produce a Boolean result. A “True” result indicates that the requested action conforms with policy. 344
A “False” result indicates that it does not. In the case that necessary information is unavailable, an 345
“Indeterminate” result should be returned. 346

wd-xacml-wspl-use-cases-03.pdf 20

5.2. Amenable to combining 347

In order to support use-case 6, it must be possible to combine the results of evaluation of two or 348
more policies. In order to support use-cases 4, 5, 7, 8, 9, 10 and 11, it must be possible to combine 349
and reduce two or more policies to derive a set of instructions (see Section 5.3). 350

Note: an acceptable approach is to evaluate the candidate service messages, in turn, against each 351
of the policies, until one is found to conform. 352

5.3. Interpretation as instructions 353

In order to support use-cases 4 and 5, it must be possible to derive from a policy instance a set of 354
instructions for producing a request that conforms with the policy. 355

5.4. Common data-types 356

In order to support multiple policy types in an efficient and interoperable manner, a common set of 357
data-types must be defined. This must include integers, XML nodes and resource identifiers. 358

5.5. Extensible data-types 359

In order to address unforeseen applications, it must be possible to extend the set of built-in data-360
types. 361

5.6. Common operators 362

In order to support multiple policy types in an efficient and interoperable manner, a common set of 363
operators must be defined. These must include logical operators (including NOT), integer 364
comparison operators and set operators. 365

5.7. Extensible operators 366

In order to address unforeseen applications, it must be possible to extend the set of built-in 367
operators. 368

5.8. Multiple enforcement points 369

In order to support multiple policy types, each with a distinct enforcement point, it must be possible 370
to target a policy instance at a specific enforcement point and message type, and for that 371
enforcement point to be able to identify and extract the piece of a policy instance that is appropriate 372
to it. Enforcement points must, at least, include: cryptographic-security, authentication, 373
authorization, privacy, reliable-messaging, transaction-processing and trust. Likewise, actors 374
responsible for particular aspects of message preparation must be able to identify and extract the 375
components of policy that are applicable to that aspect. 376

5.9. Multiple bindings 377

It must be possible to convey policy instances in a number of different protocols, including: UDDI, 378
WSDL, SOAP, LDAP, DNS, HTTP and in SQL and SAML attribute request/response messages. 379

wd-xacml-wspl-use-cases-03.pdf 21

5.10. Preferences 380

It must be possible for a Web-services end-point to indicate its order of preference amongst a 381
mutually-acceptable set of optional functions. 382

Note: consideration should be given to the practicality of identifying the preferred option when the 383
parties’ preferences fail to align. 384

5.11. Suppressed disclosure 385

End-points must be able to defer disclosure of message payload data until such time as they know 386
that their request will be accepted by the destination end-point. 387

5.12. Supported functions 388

It must be possible for a Web-services end-point to indicate operations that it is capable of 389
performing, as well as operations that it insists upon performing. 390

5.13. Specified order 391

It must be possible for a Web-services end-point to indicate the order in which it will perform 392
operations, and thereby, the order in which operations must be performed on a message intended 393
to conform with that end-point’s policy. 394

5.14. Policy identified by name 395

It must be possible to reference a policy instance by an identifier of various types. 396

5.15. Attributes identified by name 397

It must be possible to reference attributes in a policy instance by an identifier of various types. 398

5.16. Attributes identified by location 399

It must be possible to reference attributes in a policy instance by their location within a message. 400

5.17. Behaviour in event attributes are unavailable 401

It must be possible to specify in a policy instance behaviour in the event that referenced attributes 402
cannot be evaluated. 403

5.18. Version control 404

From time to time, policy instances may have to be withdrawn and replaced. Mechanisms are 405
required to identify the version of a policy that is currently in effect. 406

wd-xacml-wspl-use-cases-03.pdf 22

6. References 407

WS-Rel: Web Services Reliability (WS-Reliability) Ver1.0, January 8, 2003. http://www.oasis-408
open.org/committees/tc_home.php?wg_abbrev=wsrm 409

wd-xacml-wspl-use-cases-03.pdf 23

Appendix A. Notices 410

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 411
that might be claimed to pertain to the implementation or use of the technology described in this 412
document or the extent to which any license under such rights might or might not be available; 413
neither does it represent that it has made any effort to identify any such rights. Information on 414
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 415
website. Copies of claims of rights made available for publication and any assurances of licenses to 416
be made available, or the result of an attempt made to obtain a general license or permission for 417
the use of such proprietary rights by implementors or users of this specification, can be obtained 418
from the OASIS Executive Director. 419

OASIS has been notified of intellectual property rights claimed in regard to some or all of the 420
contents of this specification. For more information consult the online list of claimed rights. 421

OASIS invites any interested party to bring to its attention any copyrights, patents or patent 422
applications, or other proprietary rights which may cover technology that may be required to 423
implement this specification. Please address the information to the OASIS Executive Director. 424

Copyright (C) OASIS Open 2003. All Rights Reserved. 425

This document and translations of it may be copied and furnished to others, and derivative works 426
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 427
published and distributed, in whole or in part, without restriction of any kind, provided that the above 428
copyright notice and this paragraph are included on all such copies and derivative works. However, 429
this document itself may not be modified in any way, such as by removing the copyright notice or 430
references to OASIS, except as needed for the purpose of developing OASIS specifications, in 431
which case the procedures for copyrights defined in the OASIS Intellectual Property Rights 432
document must be followed, or as required to translate it into languages other than English. 433

The limited permissions granted above are perpetual and will not be revoked by OASIS or its 434
successors or assigns. 435

This document and the information contained herein is provided on an “AS IS” basis and OASIS 436
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 437
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 438
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 439
PARTICULAR PURPOSE. 440

