One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Configuration</th>
<th>Configuration</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Numbers of "end" entities or sources of data: (e.g. Market Participants)</td>
<td>a. Numbers of "end" entities or sources of data: (e.g. Market Participants)</td>
<td>a. Numbers of "end" entities or sources of data: (e.g. Market Participants)</td>
<td>a. Numbers of "end" entities or sources of data: (e.g. Market Participants)</td>
</tr>
<tr>
<td>One</td>
<td>One</td>
<td>One</td>
<td>One</td>
</tr>
<tr>
<td>Two to a few</td>
<td>Few to a hundred</td>
<td>Hundreds to thousands</td>
<td>Thousands to millions</td>
</tr>
<tr>
<td>Few to a hundred</td>
<td>Hundreds to thousands</td>
<td>Thousands to millions</td>
<td>Significantly varied in different implementations</td>
</tr>
<tr>
<td>Hundreds to thousands</td>
<td>Thousands to millions</td>
<td>Significantly varied in different implementations</td>
<td>Changes frequently</td>
</tr>
<tr>
<td>Thousands to millions</td>
<td>Significantly varied in different implementations</td>
<td>Changes frequently</td>
<td>Other</td>
</tr>
<tr>
<td>b. Numbers of "central" entities or users of data: (e.g. System Operator)</td>
<td>b. Numbers of "central" entities or users of data: (e.g. System Operator)</td>
<td>b. Numbers of "central" entities or users of data: (e.g. System Operator)</td>
<td>b. Numbers of "central" entities or users of data: (e.g. System Operator)</td>
</tr>
<tr>
<td>One</td>
<td>One</td>
<td>One</td>
<td>One</td>
</tr>
<tr>
<td>Few</td>
<td>Few</td>
<td>Few</td>
<td>Few</td>
</tr>
<tr>
<td>Hundreds</td>
<td>Hundreds</td>
<td>Hundreds</td>
<td>Hundreds</td>
</tr>
<tr>
<td>Thousands</td>
<td>Thousands</td>
<td>Thousands</td>
<td>Thousands</td>
</tr>
<tr>
<td>Millions</td>
<td>Millions</td>
<td>Millions</td>
<td>Millions</td>
</tr>
<tr>
<td>Significantly varied in different implementations</td>
</tr>
<tr>
<td>Changes frequently</td>
<td>Changes frequently</td>
<td>Changes frequently</td>
<td>Changes frequently</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
<tr>
<td>c. Distance between entities:</td>
<td>c. Distance between entities:</td>
<td>c. Distance between entities:</td>
<td>c. Distance between entities:</td>
</tr>
<tr>
<td>A few feet</td>
<td>A few feet</td>
<td>A few feet</td>
<td>A few feet</td>
</tr>
<tr>
<td>A few miles</td>
<td>A few miles</td>
<td>A few miles</td>
<td>A few miles</td>
</tr>
<tr>
<td>Many miles</td>
<td>Many miles</td>
<td>Many miles</td>
<td>Many miles</td>
</tr>
<tr>
<td>Many hundreds of miles</td>
<td>Many hundreds of miles</td>
<td>Many hundreds of miles</td>
<td>Many hundreds of miles</td>
</tr>
<tr>
<td>Varies and/or is not relevant</td>
</tr>
<tr>
<td>d. Location of information producer (source of data):</td>
</tr>
<tr>
<td>Operations center (System Operator)</td>
<td>Operations center (System Operator)</td>
<td>Operations center (System Operator)</td>
<td>Operations center (System Operator)</td>
</tr>
<tr>
<td>Corporate building</td>
<td>Corporate building</td>
<td>Corporate building</td>
<td>Corporate building</td>
</tr>
<tr>
<td>Building</td>
<td>Building</td>
<td>Building</td>
<td>Building</td>
</tr>
<tr>
<td>Substation</td>
<td>Substation</td>
<td>Substation</td>
<td>Substation</td>
</tr>
<tr>
<td>Field outside substation</td>
<td>Field outside substation</td>
<td>Field outside substation</td>
<td>Field outside substation</td>
</tr>
<tr>
<td>Customer site (Market Participant)</td>
<td>Customer site (Market Participant)</td>
<td>Customer site (Market Participant)</td>
<td>Customer site (Market Participant)</td>
</tr>
<tr>
<td>Another corporation</td>
<td>Another corporation</td>
<td>Another corporation</td>
<td>Another corporation</td>
</tr>
<tr>
<td>Mobile</td>
<td>Mobile</td>
<td>Mobile</td>
<td>Mobile</td>
</tr>
<tr>
<td>Changes frequently</td>
<td>Changes frequently</td>
<td>Changes frequently</td>
<td>Changes frequently</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

<table>
<thead>
<tr>
<th>e. Location of information receiver (user of data):</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Operations center (System Operator)</td>
</tr>
<tr>
<td>- Corporate building</td>
</tr>
<tr>
<td>- Building</td>
</tr>
<tr>
<td>- Substation</td>
</tr>
<tr>
<td>- Field outside substation</td>
</tr>
<tr>
<td>- Customer site (Market Participant)</td>
</tr>
<tr>
<td>- Another corporation</td>
</tr>
<tr>
<td>- Mobile</td>
</tr>
<tr>
<td>- Changes frequently</td>
</tr>
<tr>
<td>- Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f. Communications configuration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- WAN</td>
</tr>
<tr>
<td>- LAN</td>
</tr>
<tr>
<td>- One-on-one</td>
</tr>
<tr>
<td>- One-to-many</td>
</tr>
<tr>
<td>- Many-to-many</td>
</tr>
<tr>
<td>- Multi-drop</td>
</tr>
<tr>
<td>- Ad hoc</td>
</tr>
<tr>
<td>- Other (e.g. email/fax/snail mail, telephone)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g. Communications media:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Any</td>
</tr>
<tr>
<td>- Landline preferred</td>
</tr>
<tr>
<td>- Wireless possible</td>
</tr>
<tr>
<td>- Wireless required</td>
</tr>
<tr>
<td>- Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h. Communications ownership:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Any</td>
</tr>
<tr>
<td>- Utility-owned</td>
</tr>
<tr>
<td>- Jointly-owned</td>
</tr>
<tr>
<td>- Commercially provided</td>
</tr>
<tr>
<td>- Internet</td>
</tr>
<tr>
<td>- Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i. Communication bandwidth:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- <2400 bps</td>
</tr>
<tr>
<td>- 2.4-56 kbps</td>
</tr>
<tr>
<td>- 10 Mbps-100Mbps</td>
</tr>
<tr>
<td>- >1 Gbps</td>
</tr>
<tr>
<td>- Other</td>
</tr>
</tbody>
</table>

Legend:
Rows in gray represent areas that have been proposed and reviewed internally
Rows with gray text represent areas that have been proposed, but to reviewed internally
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

<table>
<thead>
<tr>
<th>1.0</th>
<th>2.1</th>
<th>2.2</th>
<th>3.1</th>
<th>3.2</th>
<th>4.1 & 4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollment &</td>
<td>Scheduling &</td>
<td>Scheduling &</td>
<td>Deployment & Real-Time</td>
<td>Deployment &</td>
<td>Measurement &</td>
</tr>
<tr>
<td>1.0.1a</td>
<td>1.0.1b</td>
<td>1.0.1c</td>
<td>1.0.2 - 11.0.16</td>
<td>2.1.1</td>
<td>2.1.2</td>
</tr>
<tr>
<td>Service Location / Asset Group / Resource Enrollment Request / Enrollment Detail / Rejection</td>
<td>Offer Parameters</td>
<td>Award</td>
<td>Schedule</td>
<td>Availability Parameters</td>
<td>Advanced Notification</td>
</tr>
<tr>
<td>1.0.1a</td>
<td>1.0.1b</td>
<td>1.0.1c</td>
<td>1.0.2 - 11.0.16</td>
<td>2.1.1</td>
<td>2.1.2</td>
</tr>
</tbody>
</table>

Legend:
- Rows in gray represent areas that have been proposed and reviewed internally.
- Rows with gray text represent areas that have been proposed, but not reviewed internally.

Data exchange methods:
- Any
- Master-slave
- Peer-to-peer
- Client-server
- Publish-subscribe
- Through database
- Ad hoc
- Other

Communication access services requirements:
- Any or all
- Request-response
- Periodic reporting
- Report-by-exception
- Control command
- Select-before-operate
- Set parameter values
- Query for data by name
- Subscribe
- Broadcast
- Multi-cast
- Data discovery
- Use of data sets
- Query to find location of data
- Query to determine what data is available (discovery)
- Execute application
- Establish and end association
- Logging
- Journaling
- Remote restart
- Remote reconfiguration
- Remote diagnosis
- Other

Data exchange pattern:
- Data flow is <10% of bandwidth available
- Data flow is 10% but less than 50% of bandwidth available
- Data flow is 50% of bandwidth available
- Data flow is >50% of bandwidth available
- Data flows patterns basically even
- Data flows include high volume bursts
- Other

Growth:
- 2x number of participating devices - Over the next 5 years
- 10x number of participating devices - Over the next 5 years
- 100x number of participating devices - Over the next 5 years
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

<table>
<thead>
<tr>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rows in gray represent areas that have been proposed and reviewed internally</td>
</tr>
<tr>
<td>Rows with gray text represent areas that have been proposed, but to reviewed internally</td>
</tr>
</tbody>
</table>

n. Commonly used data exchange technologies

- **Public Internet as communications media**
 - ✔
- **Internet-based protocols (e.g. HTML, XML)**
 - ✔
- **Computer Industry Component Technology Standards (e.g. CORBA, EJB, .Net, Web Services)**
 - ✔
- **Transaction Technologies (e.g. Corba, EJB, .NET, Web Services)**
 - ✔
- **Database Access Services (SQL, OQL, object browsing)**
 - ✔
- **Methodologies for process management (e.g. EDI, ebXML)**
 - ✔
- **NAESB protocols (OASIS, E-tagging, RTO (TBD))**
 - ✔
- **IEC 61970 Common Information Model (CIM) Standard**
 - ✔
- **IEC 61970 Generic Interface Definition (GID) Standard**
 - ✔
- **IEC 61968 Interface Exchange Model (IEM) Message Definition Standards**
 - ✔
- **IEC 61850 (UCA) Standard**
 - ✔
- **IEC 60870-5 TASE.2 (ICCP)**
 - ✔
- **IEC 60870-5 and/or DNP**
 - ✔
- **Other legacy SCADA protocols**
 - ✔
- **Building Automation Protocols SSPC135**
 - ✔
- **Other Building Automation Protocols**
 - ✔
 - ✔
- **Graphics data exchange standards**
 - ✔
- **Through a database using proprietary database interfaces**
 - ✔
- **Flat files or CSV files**
 - ✔
- **Other standard technologies**
 - ✔
- **Vendor proprietary technologies**
 - ✔
- **Other non-standard technologies**
 - ✔
- **None since interface has never been implemented**
 - ✔
- **None of the above/ not relevant/ don't know**
 - ✔

o. Relative maturity of current implementation

- **Very mature and widely implemented**
 - ✔
- **Moderately mature**
 - ✔
- **Fairly new**
 - ✔
- **Future, no systems, no interactions**
 - ✔

p. Existence of legacy systems

- **Many legacy systems**
 - ✔
- **Some legacy systems**
 - ✔
- **Few legacy systems**
 - ✔
- **Extensive changes will be needed for full system functionality**
 - ✔
- **Moderate changes will be needed**
 - ✔
- **Few changes will be needed**
 - ✔
- **No changes will be needed**
 - ✔
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

Quality of Service

a. Elapsed time response requirements for exchanging data:
- 1-4 milliseconds
- 4-10 milliseconds
- Less than 1 second
- 1-2 seconds
- 10 seconds
- More than 10 seconds
- No specific response requirements
- Other

b. Contractual timeliness for exchanging data is required:
- Within 1 second
- Within 1 minute
- Within 5 minute
- Within some longer time:
- No specific contractual timeliness is required
- Other

c. Availability of information flows:
- 99.9999% + availability ~ 1/2 second per year
- 99.999% + availability ~ 5 minutes per year
- 99.99% + availability ~ 1 hour per year
- 99.9% + availability ~ 9 hours per year
- 99% + availability ~ 3.5 days per year
- 90% + availability ~ 1 month per year
- Less than 90%
- Continuous availability not required so long as downtime is scheduled
- Continuous availability not required but must be available at specific times or under specific conditions
- No specific availability is required
- Other

d. Precision of data requirements (normally relevant only for conversions, e.g. analog to digital):
- 100% accurate
- > 5% variance
- > 1%
- > 5%
- Not relevant
- Other

e. Accuracy of data requirements:
- Requires quality flag indicating at least normal and not normal
- Age of data needs to be knowable
- Time skew of data must be known
- Adequate accuracy can be assumed
- Accuracy of data not an issue
- Other
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

<table>
<thead>
<tr>
<th>1.0</th>
<th>2.1</th>
<th>2.2</th>
<th>3.1</th>
<th>3.2</th>
<th>4.1 & 4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollments &</td>
<td>Scheduling &</td>
<td>Scheduling &</td>
<td>Deployment & Real-Time</td>
<td>Deployment &</td>
<td>Measurement &</td>
</tr>
<tr>
<td>1.0.1a</td>
<td>1.0.1b</td>
<td>1.0.1c</td>
<td>2.1.1</td>
<td>2.1.2</td>
<td>2.1.3</td>
</tr>
<tr>
<td>Service Location</td>
<td>Asset Group</td>
<td>Resource Enrollments Request</td>
<td>Offer Parameters</td>
<td>Award</td>
<td>Schedule</td>
</tr>
<tr>
<td>Enrollments &</td>
<td>Verification</td>
<td>Details</td>
<td>Rejection</td>
<td>Status</td>
<td>Offer Parameters</td>
</tr>
<tr>
<td>Offer Parameters</td>
<td>Award</td>
<td>Schedule</td>
<td>Availability Parameters</td>
<td>Advanced Notification</td>
<td>Regulation Signal</td>
</tr>
<tr>
<td>Availability Parameters</td>
<td>Advanced Notification</td>
<td>Regulation Signal</td>
<td>Dispatch Instructions</td>
<td>Real-Time Response</td>
<td>Deployment Instructions</td>
</tr>
<tr>
<td>Advanced Notification</td>
<td>Regulation Signal</td>
<td>Dispatch Instructions</td>
<td>Real-Time Response</td>
<td>Deployment Instructions</td>
<td>Event Response</td>
</tr>
<tr>
<td>Regulation Signal</td>
<td>Dispatch Instructions</td>
<td>Real-Time Response</td>
<td>Deployment Instructions</td>
<td>Event Response</td>
<td>Meter Data</td>
</tr>
<tr>
<td>Dispatch Instructions</td>
<td>Real-Time Response</td>
<td>Deployment Instructions</td>
<td>Event Response</td>
<td>Meter Data</td>
<td>Meter Data Rejection</td>
</tr>
<tr>
<td>Real-Time Response</td>
<td>Deployment Instructions</td>
<td>Event Response</td>
<td>Meter Data</td>
<td>Meter Data Rejection</td>
<td>Calculated & Meter Data</td>
</tr>
<tr>
<td>Deployment Instructions</td>
<td>Event Response</td>
<td>Meter Data</td>
<td>Meter Data Rejection</td>
<td>Calculated & Meter Data</td>
<td></td>
</tr>
<tr>
<td>Event Response</td>
<td>Meter Data</td>
<td>Meter Data Rejection</td>
<td>Calculated & Meter Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meter Data</td>
<td>Meter Data Rejection</td>
<td>Calculated & Meter Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meter Data Rejection</td>
<td>Calculated & Meter Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated & Meter Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Frequency of data exchanges:
- Essentially continuous
- Every few milliseconds
- Every few seconds
- Periodicity greater than a few seconds
- Upon event
- Upon request
- Random
- Sparse
- Other

2. Commonly used techniques for meeting quality of service requirements of this data exchange
- Failure detection
- Automatic restart
- Automatic failover to second source of data or function
- Automatic failover of communication channels to secondary channel
- Backup of data
- Transaction rollback
- QoS monitoring
- Alarming on QoS failure
- None
- Not needed or not relevant
- Other

Security
a. Eavesdropping: Ensuring confidentiality, avoiding illegitimate use of data, and preventing unauthorized reading of data, is:
- Crucial
- Quite important
- Not particularly important
- Detection that a security violation was attempted is crucial
- Other

b. Information integrity violation: Ensuring that data is not changed or destroyed is:
- Crucial
- Quite important
- Not particularly important
- Detection that a security violation was attempted is crucial
- Other

c. Authentication: Masquerade and/or spoofing: Ensuring that data comes from the stated source or goes to authenticated receiver is:
- Crucial
- Quite important
- Not particularly important
- Detection that a security violation was attempted is crucial
- Other
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

<table>
<thead>
<tr>
<th>1.0</th>
<th>2.1</th>
<th>2.2</th>
<th>3.1</th>
<th>3.2</th>
<th>4.1 & 4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollment &</td>
<td>Scheduling &</td>
<td>Scheduling &</td>
<td>Deployment & Real-Time</td>
<td>Deployment &</td>
<td>Measurement &</td>
</tr>
<tr>
<td>1.0.1a</td>
<td>1.0.1b</td>
<td>1.0.1c</td>
<td>1.0.2 - 11.0.16</td>
<td>2.1.1</td>
<td>2.1.2</td>
</tr>
</tbody>
</table>

Legend
- Rows in gray represent areas that have been proposed and reviewed internally.
- Rows with gray text represent areas that have been proposed, but to reviewed internally.

<table>
<thead>
<tr>
<th>Service Group / Resource</th>
<th>Offer Parameters</th>
<th>Award</th>
<th>Schedule</th>
<th>Availability Parameters</th>
<th>Advanced Notification</th>
<th>Regulation Signal</th>
<th>Dispatch Instruction</th>
<th>Real-Time Response</th>
<th>Deployment Instructions</th>
<th>Event Response</th>
<th>Meter Data</th>
<th>Meter Data Rejection</th>
<th>Calculated Performance and Meter Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollment &</td>
<td></td>
</tr>
</tbody>
</table>

d. Repudiation: Ensuring that the source cannot deny sending the data or that the receiver cannot deny receiving the data is:
- Crucial
- Quite important
- Not particularly important
- Detection that a security violation was attempted is crucial
- Other

e. Replay: Ensuring that data cannot be resent by an unauthorized source is:
- Crucial
- Quite important
- Not particularly important
- Detection that a security violation was attempted is crucial
- Other

f. Information theft: Ensuring that data cannot be stolen or deleted by an unauthorized entity is:
- Crucial
- Quite important
- Not particularly important
- Detection that a security violation was attempted is crucial
- Other

g. Denial of Service: Ensuring unimpeded access to data is:
- Crucial
- Quite important
- Not particularly important
- Detection that a security violation was attempted is crucial
- Other

h. This data exchange has the following requirements with respect to proof of conformance and/or non-repudiation with contractual agreements
- Logging of all information exchanged during this interaction is required
- Logging of only key information is required
- Logging of the source, destination, requesting application, and requesting user of information exchanges is required, but not the data itself
- Logging is not required
- Other logging
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

Security measures commonly used with this data exchange

- Access control through passwords
- Access control through database security mechanisms
- Virtual Private Networks (VPNs)
- Private (secret) key encryption
- Public key encryption (e.g. SSL/TLS)
- Firewalls with Access Control Lists and/or proxy servers
- Dial-back modems
- Bilateral data access control tables
- Time stamping, logging, and data records
- Non-repudiation techniques
- Kerberos
- Network management such as SNMP or CMIP
- Physical isolation
- Backup
- Security policies with procedures to follow
- Trusted parties so no cyber security needed
- None, but needed
- None, and not needed
- Other

Confidentiality

- High
- Medium
- Low

Integrity

- High
- Medium
- Low

Availability

- High
- Medium
- Low

Data Management

a. Type of source data

- Source data was directly measured
- Source data was previously automatically stored in a database
- Source data was previously manually entered in a database
- Source data was calculated or output by an application
- Other

Legend

- **Rows in gray represent areas that have been proposed and reviewed internally**
- **Rows with gray text represent areas that have been proposed, but to reviewed internally**

1.0.1a 1.0.1b 1.0.1c 1.0.2 - 11.0.16 2.1.1 2.1.2 2.1.3 2.2.1 2.2.2 3.1.1 3.1.2 3.1.3 3.2.1 3.2.2 4.1 & 4.2 4.x.1 4.x.2 4.x.3 4.x.4

| Service Location / Asset Group / Resource | Enroll Location Request | Enrollment Parameters | Award Schedule | Availability Parameters | Advanced Notification | Regulation Signal | Dispatch Instruction | Real-Time Response | Deployment Instructions | Event Response | Meter Data | Meter Data Rejection | Performance and Meter Data | 4.x.1 | 4.x.2 | 4.x.3 | 4.x.4 | 4.x.4 |
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

Legend
- **Rows in gray** represent areas that have been proposed and reviewed internally
- **Rows with gray text** represent areas that have been proposed, but to reviewed internally

<table>
<thead>
<tr>
<th>1.0</th>
<th>2.1</th>
<th>2.2</th>
<th>3.1 Deployment & Real-Time</th>
<th>3.2 Deployment & Measurement & 4.1 4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enroll & Scheduling &</td>
<td>Scheduling &</td>
<td>Availability Parameters</td>
<td>Offer Parameters</td>
<td>Award</td>
</tr>
<tr>
<td>Service Location / Asset Group / Resource</td>
<td>Enrollment Request / Sub-Set / Modification / Detail / Rejection / Status</td>
<td>Other Parameters</td>
<td>Advanced Notification</td>
<td>Offer Parameters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.0.1a</th>
<th>1.0.1b</th>
<th>1.0.1c</th>
<th>1.0.2 - 1.0.16</th>
<th>2.1.1</th>
<th>2.1.2</th>
<th>2.1.3</th>
<th>2.2.1</th>
<th>2.2.2</th>
<th>3.1.1</th>
<th>3.1.2</th>
<th>3.1.3</th>
<th>3.2.1</th>
<th>3.2.2</th>
<th>4.1.x</th>
<th>4.2.x</th>
<th>4.3.x</th>
</tr>
</thead>
</table>

b. Correctness of source data
- **Source data is always correct** (e.g. by definition)
- Source data is usually correct
- Source data is often not correct (incorrectly entered, out of date, not available)
- Source data is rarely correct
- Correctness of source data is not relevant
- Other

c. Up-to-date data management
- Received data must be up-to-date within seconds of source data changing
- Received data must be up-to-date within minutes of source data changing
- Received data must be up-to-date within hours of source data changing
- Received data does not need to be up-to-date if source data changes
- Other

d. Management of large volumes of data that are being exchanged
- Major part of step involves handling large volumes of data
- Some part of step involves handling large volumes of data
- No part of step involves handling large volumes of data
- Other

e. Data consistency and synchronization management across systems
- Second-by-second synchronization: Data being exchanged must be kept consistent and synchronized with other systems within seconds
- Minute-by-minute synchronization: Data being exchanged must be kept consistent and synchronized with other systems within minutes
- Day-by-day synchronization: Data being exchanged must be kept consistent and synchronized with other systems within hours or days
- No synchronization: Data being exchanged does not need to be kept consistent or synchronized with other systems
- Other

f. Management of timely access to data by multiple different users
- Contractual/required time windows for multiple access are less than one second
- Contractual/required time windows for multiple access are within seconds
- Contractual/required time windows for multiple access are within tens of seconds
- Contractual/required time windows for multiple access are within minutes
- Other
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

<table>
<thead>
<tr>
<th>1.0</th>
<th>2.1</th>
<th>2.2</th>
<th>3.1</th>
<th>3.2</th>
<th>4.1 & 4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.1a</td>
<td>Scheduling &</td>
<td>Scheduling &</td>
<td>Deployment & Real-Time</td>
<td>Deployment &</td>
<td>Measurement &</td>
</tr>
<tr>
<td>1.0.1b</td>
<td>2.1.1</td>
<td>2.1.2</td>
<td>2.1.3</td>
<td>2.2.1</td>
<td>2.2.2</td>
</tr>
<tr>
<td>1.0.1c</td>
<td>11.0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Location / Asset Group / Resource Enrollment Request / Subnet / Verification / Details / Rejection Status</td>
<td>Officer Parameters</td>
<td>Award</td>
<td>Schedule</td>
<td>Availability Parameters</td>
<td>Availability Parameters</td>
</tr>
</tbody>
</table>

- Timely access by multiple users is not relevant
- Other

Legend
- Rows in gray represent areas that have been proposed and reviewed internally
- Rows with gray text represent areas that have been proposed, but to reviewed internally
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

g. Validation of data exchanges
- All data must be validated on each data exchange
- Data must include quality codes to indicate its validity
- Data from different sources must be validated against each other
- Data mapping of data item names is required for data from different sources
- Data can be assumed as valid (or validity checking is handled elsewhere)
- Data is usually not validated
- Data cannot be validated
- Validity of data is not relevant
- Other

h. Management of accessing different types of data to be exchanged
- Each data exchange could entail different types of data (e.g. query a database)
- Numbers or types of data being exchanged are changed or updated every few minutes
- Numbers or types of data being exchanged are changed or updated every few hours
- Numbers or types of data being exchanged are rarely changed or updated
- Not relevant
- Other

i. Management of data across organizational boundaries
- Data exchanges go across corporate boundaries
- Data exchanges go across departmental boundaries
- Data exchanges go across boundaries between systems developed by different vendors
- Data exchanges are within one vendor’s system
- Not relevant
- Other

j. Transaction integrity required (backup and rollback capability)
- Data exchanges require the ability to rollback to previous data states
- Data exchanges require full backup for immediate “failover” to a second source of data
- Data exchanges require backup of crucial data for “cold” failover
- Data exchanges do not require rollback or backup
- Other
One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTO products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

k. Data format requirements:
- Standard computer formats (e.g. binary, integers and floating pt, files)
- Standard serial transfer formats (e.g. DNP, Modbus, LonTalk, BACnet)
- Graphics formats
- EDI
- HTML-based
- XML-based
- Standardized data objects
- Exchange of unstructured or special-format data (e.g. text, documents, oscillographic data) must be supported
- Any formats are acceptable
- Other

l. Management of data formats in data exchanges
- The same data exchanged between different applications have different formats that need to be “converted”
- The same data exchanged between different applications have the same formats
- Conversion of data formats is automatically handled by each application
- Other

m. Naming of data items
- Names of data items are different in different applications and must be “mapped” to each other
- Meanings of data items are different in different applications and must be “converted”
- Other

n. Management across different implementations
- Types of data being exchanged can vary significantly in different implementations
- Types of data being exchanged vary very little in different implementations
- Not relevant
- Other

o. Data exchange maintenance in which a human changes or updates what is to be exchanged
- Data exchanges require maintenance every few hours
- Data exchanges require maintenance every few days
- Data exchanges require maintenance every few weeks or months
- Data exchanges rarely require maintenance
- Not relevant
- Other
Rows in gray represent areas that have been proposed and reviewed internally.
Rows with gray text represent areas that have been proposed, but to reviewed internally.

One of the deliverables from the IRC Smart Grid Project is to provide recommendations for data exchange standards and APIs supportive of Smart Grid technologies and corresponding ISO/RTI products or services based on the Demand Response Information Models. These recommendations are inclusive of key functional areas, diverse markets and NERC Cyber Security and other relevant reliability standards.

Database maintenance in which a human changes or updates what is in the database
- Database requires maintenance every few hours
- Database requires maintenance every few days
- Database requires maintenance every weeks or months
- Database rarely requires maintenance
- Database rarely requires maintenance
- Not relevant
- Other

Data maintenance effort: human versus automation
- Data maintenance involves significant human time and manual data entries
- Data maintenance is partially automated but involves some human time and manual data entries
- Data maintenance is mostly automated but requires occasional intervention
- Data maintenance is (or can be if so authorized) completely automated (e.g. Live Update of virus definitions or Microsoft updates)
- Not relevant
- Other

Commonly used data formats and management techniques for this data
- Standard computer formats (e.g. integers and floating pt, files)
- Standard serial transfer formats (e.g. analog points, status points, control points, such as used in DNP, Modbus, LonTalk)
- Graphics formats
- EDI formats
- HTML-based formats
- XML-based formats
- Comma separated variables (CSV) in a file
- Proprietary data format
- Data updates are done manually by a database administrator or maintenance personnel
- Data is validated automatically
- Data objects have well-known names (e.g. CIM and IEC61850)
- Transaction and data exchanges "discovery" is handled automatically (e.g. ebXML)
- Mechanisms are in place to ensure consistency of data
- Transaction rollback capabilities are used
- Not relevant
- Other

Legend
- 1.0.1a
- 1.0.1b
- 1.0.1c
- 1.0.2
- 1.0.16
- 2.1.1
- 2.1.2
- 2.1.3
- 2.2.1
- 2.2.2
- 3.1.1
- 3.1.2
- 3.1.3
- 3.2.1
- 3.2.2
- 4.1 & 4.2
- 4.1
- 4.2
- 4.3
- 4.x.1
- 4.x.2
- 4.x.3
- 4.x.4
- 4.x.5
- 4.x.6

Columns
- Enrollment & Scheduling & Availability Parameters & Advanced Notification & Offer Parameters
- Deployment & Real-Time & Regulation Signal & Dispatch Instruction & Award & Schedule
- Deployment & Event Response & Deployment Instructions & Meter Data & Meter Data Rejection & Meter Data Rejection & Calculated and Meter Data