Open Document Format for Office Applications (OpenDocument) Version 1.2

Part 3: Packages – ENCRYPTION ONLY

Committee Draft 05 - ENCRYPTION ONLY

CHANGES
Table of Contents

1 Introduction ... 4
 1.1 Introduction [no changes] ... 4
 1.2 Terminology [no changes] ... 4
 1.3 Normative References ... 4
 1.4 Non Normative References [no change] .. 5
 1.5 Namespaces [no change] .. 5
2 Packages, Package Consumers and Package Producers [no changes] 6
3 Packages .. 7
 3.1 General [no change] .. 7
 3.2 Manifest [no change] ... 7
 3.3 MIME Media Type [no change] ... 7
 3.4 Encryption .. 7
 3.4.1 General .. 7
 3.4.2 Encryption Process using default algorithms ... 7
4 Manifest File ... 8
 4.1 Introduction ... 8
 4.2 <manifest:manifest> [no change] ... 8
 4.3 <manifest:file-entry> [no change] .. 8
 4.4 <manifest:encryption-data> .. 8
 4.5 <manifest:algorithm> ... 8
 4.6 <manifest:start-key-generation> ... 9
 4.7 <manifest:key-derivation> ... 9
 4.8 Manifest Attributes .. 9
 4.8.1 manifest:algorithm-name ... 9
 4.8.2 manifest:checksum .. 10
 4.8.3 manifest:checksum-type ... 10
 4.8.4 manifest:full-path [no change] ... 11
 4.8.5 manifest:initialisation-vector ... 11
 4.8.6 manifest:start-key-generation-name ... 11
 4.8.7 manifest:key-size .. 12
 4.8.8 manifest:iteration-count .. 12
 4.8.9 manifest:key-derivation-name .. 12
5 Digital Signatures File [no change] ... 13
6 Metadata Manifest Files [no change] ... 14
7 Datatypes.. 15
 7.1 Introduction.. 15
 7.2 W3C Schema Datatypes.. 15
 7.3 Other Datatypes.. 15
 7.3.1 namespacedToken.. 15
Appendix A. Schemas [no changes].. 16
Appendix B. [no changes]... 17
Appendix C. [no changes]... 18
Appendix D. Changes From “Open Document Format for Office Applications (OpenDocument) v1.1” (Non Normative).. 19
1 Introduction

1.1 Introduction [no changes]

1.2 Terminology [no changes]

1.3 Normative References

1.4 Non Normative References [no change]

1.5 Namespaces [no change]
2 Packages, Package Consumers and Package Producers [no changes]
3 Packages

3.1 General [no change]

3.2 Manifest [no change]

3.3 MIME Media Type [no change]

3.4 Encryption

3.4.1 General

OpenDocument packages may be encrypted by encrypting some or all files within the package. The encryption process takes place in the following stages:

• The A single start key is generated and used for all of the keys that will be derived.
• The derived key is generated based on the start key.
• The files are encrypted based on the derived key and the encryption algorithm.

Package consumers and producers that support encryption shall support the digest and encryption algorithms defined in 3.4.2. They may support additional algorithms. Information regarding the algorithms that were used to encrypt a file and required parameters are contained in the manifest. The manifest shall not be encrypted.

Each file entry that is encrypted shall be compressed with the “deflate” algorithm before being encrypted. Encrypted file entries shall be flagged as 'STORED' rather than 'DEFLATED' in the Zip file's central directory. The size of the encrypted file should replace the real size value in the file entry's central directory records, its local file header and the data descriptor, if any. The original uncompressed, unencrypted size shall be contained in the manifest:size Error: Reference source not found attribute of the <manifest:file-entry> 4.3 element for the file entry.

The encrypted form can be of greater size than the DEFLATED file used as the plaintext (e.g., because of padding of plaintext, inclusion of additional information, and other characteristics of the encryption technique. The encryption method shall be such that the exact size and value of the plaintext DEFLATED file is exactly recovered by the corresponding decryption process.

3.4.2 Encryption Process using default algorithms

The three stages of the encryption process proceed as follows, using the legacy algorithms to illustrate each stage. The encryption process for file entries using the default digest and encryption algorithms has three steps:

1. The start key is generated. The byte sequence representing the password in UTF-8 is used to generate a 20-byte SHA1 digest (see [RFC3174]).

2. For each file to be encrypted, a separate derived key is generated from the start key. The derived key is generated from the start key. PBKDF2 algorithm based on the HMAC-SHA-1 function (see [RFC2898]) is used for the key derivation. For each file, a 16-byte salt is generated
by a random generator. The salt is used together with the start key to derive a unique 128-bit key for each file. The default iteration count for the algorithm is 1024.

3. The files are encrypted: The random number generator is used to generate the 8-byte initialization vector for the algorithm. The derived key is used together with the initialization vector to encrypt the file using the Blowfish algorithm in cipher feedback (8-bit) mode (see [Blowfish]).
4 Manifest File

4.1 Introduction

The format of the manifest file is defined by the OpenDocument manifest Relax-NG [RNG] schema. See appendix A. This chapter describes the semantics of the elements and attributes defined by this schema.

4.2 <manifest:manifest> [no change]

4.3 <manifest:file-entry> [no change]

4.4 <manifest:encryption-data>

The <manifest:encryption-data> element contains information required to decrypt a file entry.

The <manifest:encryption-data> element is usable with the following element:
<manifest:file-entry> 4.3.

The <manifest:encryption-data> element has the following attributes:
manifest:checksum 4.8.2 and manifest:checksum-type 4.8.3.

The <manifest:encryption-data> element has the following child elements:
<manifest:algorithm> 4.5, <manifest:key-derivation> 4.7 and <manifest:start-key-generation> 4.6.

4.5 <manifest:algorithm>

The <manifest:algorithm> element specifies the algorithm used to encrypt data.

Depending on the algorithm specified by the manifest:algorithm-name attribute 4.8.1, the <manifest:algorithm> element may have further child elements.

When the manifest:algorithm-name attribute value matches one of those defined in section §3.2 of [xmlenc-core], does not have the value Blowfish CFB or urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#blowfish, the <manifest:algorithm> element shall not have only child elements except those that are permitted as child elements of the [xmlenc-core] EncryptionMethod element, as defined in §3.2 of [xmlenc-core] whose Algorithm attribute value is the same as the manifest:algorithm-name attribute value.

When the value of the manifest:algorithm-name attribute is Blowfish CFB or urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#blowfish identifies the legacy Blowfish algorithm, the <manifest:algorithm> element shall not have child elements, shall be an empty element.
The `<manifest:algorithm>` element is usable with the following element:
`<manifest:encryption-data>` 4.4.

The `<manifest:algorithm>` element has the following attributes: `manifest:algorithm-name` 4.8.1 and `manifest:initialisation-vector` 4.8.5.

The `<manifest:algorithm>` element has no child elements.

4.6 `<manifest:start-key-generation>`

The optional `<manifest:start-key-generation>` element specifies how the encryption start key was calculated from the user specified password. The password shall be provided as a sequence of bytes in UTF-8 encoding to the start key generation algorithm.

When a `<manifest:start-key-generation>` element is absent as a child of a `<manifest:encryption-data>` element, interpretation is the same as if the element is present with default attribute values.

The `<manifest:start-key-generation>` element is usable with the following element: `<manifest:encryption-data>` 4.4.

The `<manifest:start-key-generation>` element has the following attributes: `manifest:key-size` 4.8.7 and `manifest:start-key-generation-name` 4.8.6.

The `<manifest:start-key-generation>` element has no child elements.

4.7 `<manifest:key-derivation>`

The `<manifest:key-derivation>` element specifies how the encryption key was calculated from the encryption start key.

The `<manifest:key-derivation>` element is usable with the following element: `<manifest:encryption-data>` 4.4.

The `<manifest:key-derivation>` element has the following attributes: `manifest:iteration-count` 4.8.8, `manifest:key-derivation-name` 4.8.9, `manifest:key-size` 4.8.7 and `manifest:salt` 4.8.12.

The `<manifest:key-derivation>` element has no child elements.

4.8 Manifest Attributes

4.8.1 `manifest:algorithm-name`

The `manifest:algorithm-name` attribute identifies the name of the algorithm and mode used to encrypt a file entry, and also specifies in which mode this algorithm was used.

The defined values for the `manifest:algorithm-name` attribute are:
An IRI listed in §5.2 of [xmlenc-core]: The algorithm specified in §5.2 of [xmlenc-core] for this IRI.

- Blowfish CFB: The Blowfish algorithm in 8-bit CFB mode. See [Blowfish].
- urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#blowfish: The same algorithm as identified by Blowfish CFB.
- or of [xmlenc-core] for this IRI or §5.3 of [xmlenc-core]: The algorithm specified in §5.2 or §5.3 An IRI listed in §5.2.

The IRI of an alternative algorithm as specified in §5.1 of [xmlenc-core]. Alternative algorithms may be specified by extended conforming packages only. They shall not be specified by conforming packages.

Package producers and consumers shall support the AES-128 CBC algorithm and mode identified by value http://www.w3.org/2001/04/xmlenc#aes128-cbc. The legacy Blowfish algorithm need not be supported. [Note: Support of the Blowfish algorithm by package consumers provides compatibility with existing applications and documents conforming to earlier versions of this specification.] That support encryption shall support the value Blowfish CFB.

Package consumers that support encryption shall support the values Blowfish CFB and urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#blowfish.

The manifest:algorithm-name attribute is usable with the following element:

\[
\text{<manifest:algorithm> 4.5.}
\]

The values of the manifest:algorithm-name attribute are Blowfish CFB or a value of type anyURI 7.2.

4.8.2 manifest:checksum

The manifest:checksum attribute specifies a digest in BASE64 encoding that can be used to detect password correctness as specified by a manifest:checksum-type attribute 4.8.3.

The manifest:checksum attribute is usable with the following element:

\[
\text{<manifest:encryption-data> 4.4.}
\]

The manifest:checksum attribute has the data type base64Binary 7.2.

4.8.3 manifest:checksum-type

The manifest:checksum-type attribute specifies the name of a digest algorithm that can be used to check password correctness. The digest is build from the compressed unencrypted file.

The defined values for the manifest:checksum-type attribute are:

- SHA1/1K: SHA1 algorithm (see [RFC3174]) applied to first 1024 bytes of the compressed unencrypted file.
- SHA1: The same as http://www.w3.org/2000/09/xmldsig#sha1.
- urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#sha1-1k: The same as SHA1/1K.
• `urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#sha256-k`: SHA256 algorithm (see [RFC3174]) applied to first 1024 bytes of the compressed unencrypted file.

• An IRI listed in §5.7 of [xmlenc-core]: The algorithm specified in §5.7 of [xmlenc-core] for this IRI.

• The IRI of an alternative algorithm as specified in §5.1 of [xmlenc-core]. Alternative algorithms may be specified by extended conforming packages only. They shall not be specified by conforming packages.

Package producers that support encryption should use the `urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#sha256-k` algorithm.

Package consumers that support encryption shall support the values SHA1/1K, `urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#sha1-k` and `urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#sha256-k`.

4.8.4 manifest:full-path [no change]

4.8.5 manifest:initialisation-vector

The optional `manifest:initialisation-vector` attribute value provides specified the byte-sequence for the used as an initialization vector to be used by the encryption algorithm when delivery of a required initialization vector is not specified as part of the encryption algorithm definition. Initialization vector is a BASE64 encoded binary sequence.

The format and length of the initialization vector, in bytes, shall be as required by the encryption algorithm specification.

4.8.6 manifest:start-key-generation-name

The `manifest:start-key-generation-name` attribute specifies the algorithm used to generate a start key from the user password.

The defined values for the `manifest:start-key-generation-name` attribute are:

• SHA1: The SHA1 algorithm (see [RFC3174]).

• An IRI listed in §5.7 of [xmlenc-core]: The algorithm specified in §5.7 of [xmlenc-core] for this IRI.
The IRI of an alternative algorithm as specified in §5.1 of [xmlenc-core] Alternative algorithms may be specified by extended conforming packages only. They shall not be specified by conforming packages.

The default value for this attribute is SHA1.

Package producers that support encryption should use the http://www.w3.org/2000/09/xmldsig#sha256 algorithm. Package consumers that support encryption shall support the values SHA1, and http://www.w3.org/2000/09/xmldsig#sha1 and http://www.w3.org/2000/09/xmldsig#sha256.

The manifest:start-key-generation-name attribute is usable with the following element:
<manifest:start-key-generation> 4.6.

The values of the manifest:start-key-generation-name attribute are SHA1 or a value of type anyURI 7.2.

The manifest:start-key-generation-name attribute has the value SHA1 or a value of data type anyURI.

4.8.7 manifest:key-size

The manifest:key-size attribute specifies the length of a key.

For a <manifest:start-key-generation> element, the default value for this attribute is 20 [Note: the value used will need to be compatible with the result obtained from the start-key-generation algorithm and the input requirements of the key derivation algorithm.]

For a <manifest:key-derivation> element, the default value for this attribute is 16. [Note: the value used will need to be one obtainable from the key-derivation algorithm and acceptable for the encryption algorithm being used.]

The manifest:key-size attribute is usable with the following elements: <manifest:key-derivation> 4.7 and <manifest:start-key-generation> 4.6.

The manifest:key-size attribute has the data type nonNegativeInteger 7.2.

4.8.8 manifest:iteration-count

The manifest:iteration-count attribute specifies the number of iterations used by the key derivation algorithm to derive a key.

The manifest:iteration-count attribute is usable with the following element:
<manifest:key-derivation> 4.7.

The manifest:iteration-count attribute has the data type nonNegativeInteger 7.2.
4.8.9 manifest: key-derivation-name

The manifest: key-derivation-name attribute specifies the name of the algorithm used to derive a name. The password-based key-derivation algorithm used to derive a cryptographic key for use in encryption and decryption of the file.

The defined values for the manifest: key-derivation-name attribute are:

- **PBKDF2**: The PBKDF2 key derivation method with HMAC-SHA-1 Pseudo-Random Function (PRF) [RFC2898] section 5.2 and B.1.1.
- **urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#pbkdf2**: The same algorithms as identified by PBKDF2.
- **An IRI listed in §5.7 of [xmlenc-core]**. The algorithm specified in §5.7 of [xmlenc-core] for this IRI.
- **The IRI of an implementation-defined alternative algorithm specified in §5.1 of [xmlenc-core]**. Alternative algorithms may be specified by extended conforming packages only. They shall be specified by conforming packages.

Package producers that support encryption shall support the value PBKDF2. Package consumers that support encryption shall support the values PBKDF2 and **urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#pbkdf2**.

If the value of this attribute is PBKDF2 or **urn:oasis:names:tc:opendocument:xmlns:manifest:1.0#pbkdf2** the `<manifest:encryption-data>` 4.4 shall contain a `<manifest:start-key-generation>` 4.6 child element that specifies the start key for the PBKDF2 algorithm.

The manifest: key-derivation-name attribute is usable with the following element: `<manifest:key-derivation>` 4.7.

The values of the manifest: key-derivation-name attribute are PBKDF2 or a value of type anyURI 7.2.

4.8.10 manifest: media-type [no change]

4.8.11 manifest: preferred-view-mode [no change]

4.8.12 manifest: salt

The manifest: salt attribute carries the value of a cryptographically-random binary value designed to mitigate certain cryptographic attacks on the password and the encrypted file. There is no maximum length to the salt. See [RFC2898] for further considerations in the use of salts with key-derivation and other cryptographic functions. The salt is encoded in the attribute value as base64Binary. This specifies the sequence used as the ‘salt’ by a key derivation algorithm. The salt is a BASE64 encoded binary sequence.

The manifest: salt attribute is usable with the following element: `<manifest:key-derivation>` 4.7.
The `manifest:salt` attribute has the data type `base64Binary`.
5 Digital Signatures File [no change]
6 Metadata Manifest Files [no change]
7 Datatypes

7.1 Introduction

The values of attributes and elements are often described as having datatypes. These datatypes either are datatypes defined within [xmlschema-2], or are defined by this specification. Datatypes for which no [xmlschema-2] datatype exists are expressed in the schema by [xmlschema-2] datatypes. Some of these datatypes have additional constraints.

7.2 W3C Schema Datatypes

The following [xmlschema-2] datatypes are used in this specification:

- anyURI
- base64Binary
- nonNegativeInteger
- string

datatype-anyURI
datatype-base64Binary
datatype-nonNegativeInteger
datatype-string

7.3 Other Datatypes

7.3.1 namespacedToken

A namespaced token is an [xmlschema-2] QName that matches the definition of PrefixedName in §4 of [xml-names].

datatype-namespacedToken
Appendix A. Schemas [no changes]
Appendix B. [no changes]
Appendix C. [no changes]
Appendix D. Changes From “Open Document Format for Office Applications (OpenDocument) v1.1” (Non Normative)

The OpenDocument specification has been divided into three parts and has been restructured. This appendix describes changes that are related to part 3 of this specification.

The following is a list of major features that have been added. For minor features please see the lists of new and changed elements and attributes.

- Digital Signatures Error: Reference source not found
- RDF based metadata Error: Reference source not found
- Support for additional encryption algorithms 3.4

The following element is new for manifest files:

- `<manifest:start-key-generation>` 4.6

The following attributes are new for manifest files:

- `manifest:key-size` 4.8.7
- `manifest:preferred-view-mode` 4.8.11
- `manifest:start-key-generation-name` 4.8.6
- `manifest:version` Error: Reference source not found

The value types of the following attributes changed:

- `manifest:algorithm-name` 4.8.1 of `<manifest:algorithm>` 4.5
- `manifest:checksum-type` 4.8.3 of `<manifest:encryption-data>` 4.4
- `manifest:key-derivation-name` 4.8.9 of `<manifest:key-derivation>` 4.7