
Interoperable Document Collaboration
Svante Schubert

Freelancer
Berlin, Germany

Svante.Schubert@gmail.com

Patrick Durusau
Freelancer

Covington, GA., United States
Patrick@durusau.net

ABSTRACT
To provide office applications with an easy interoperable
document merge capability and to enable the usage of document
revision across applications, it is necessary to not only standardize
the representations of a document state, but also of the changes
made to the document during the editing process. Tracking the
changes during editing retains the information usually being
recovered afterwards. This avoids costly and time consuming
processes like document comparison and diff’ heuristics [1].

To this day, file formats such as the OpenDocument file format
(ODF) are only specifying all possible document variations of a
document being the final state of user data. Interoperability is
therefore only given on a document level: One ODF application
saves a document and a different application is able to load and
continue work on the same document state. Common scenarios of
document exchange have been by floppy disc, attached to email
and nowadays exchange across computers via file services such as
Dropbox.

Nowadays, the Internet is ubiquitous and multiple users want to
work simultaneously on the same document. In that context the
transfer of a whole document from user to user is inefficient.
Additionally, finding and merging changes in XML-based
documents appears to be complex and possibly error-prone [2].
For this reason, the OASIS Advanced Document Collaboration
subcommittee has started to simplify collaboration by specifying
the changes applicable to an ODF document and raising ODF
application interoperability from a full document level to a more
fine granular document change level.

In this paper, we present an approach to ODF change
representation called “Merge enabled Change-Tracking” (MCT) ,
which is based on the Operational Transformation approach [3].

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document and Text
Editing;
I.7.2 [XML]: Change Control – merge, change-tracking,
versioning;
C.2.4 [Computer Communication Networks]: Distributed
Systems – Distributed applications.

General Terms
Algorithms, Design, Standardization.

Keywords
Real-time collaboration, Merge, XML, Document Changes,
Versioning, Operational Transformation.

1. INTRODUCTION
1.1 ODF Basics
Although the given approach can be applied to any structured data
collection (e.g. other file formats) where repeated change pattern
(e.g. user actions as resizing an image) are applied, the approach
is focusing on the ongoing development for ODF applications. An
ODF application is any application that is able to load and save a
valid ODF document. The ODF document is in general a set of
XML files within a ZIP container. A saved ODF document
represents the latest state of the user’s document. Existing change
tracking is implemented by saving the state of a changed region
within the XML file before and after the change.

1.2 Three ODF Change-Tracking proposals
There is ongoing work at the OASIS OpenDocument format
(ODF) Technical Committee to improve collaboration. For this
reason, the Advanced Document Collaboration subcommittee
(SC)1 has been created to improve change tracking for the ODF
file format.

This task became important as some ODF application vendors
claimed ODF change-tracking to be underspecified. For this
reason, Microsoft had not implemented ODF change-tracking and
all their Office versions are currently removing any tracked
changes when loading and saving an ODF document.

There have been three different proposals in the OASIS SC:

1.2.1 Generic Change-Tracking (GCT)
In GCT, every change of the XML file is tracked by embracing it
with additional change-annotation XML elements, such as “add”,
“delete”, etc., which can be grouped by IDs. GCT has been
proposed by DeltaXML Ltd.

GCT aims to be a universal XML change-tracking. The
specification is short2. Despite of that, the documents become
large due to high amount of annotation elements resulting from
the generic and inefficient encoding. An additional problem is that
despite the generic change model, the ODF application model
could not benefit from it, as their internal model is in general not
ODF XML based at run-time. As result all the generic XML
changes have to be mapped to a semantic user change during the
load of a document into an application, mapping the groups of
GCT elements to API calls. By this, complexity is moved to the
application developer who has to re-identify user change from the
many change elements.

1 https://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=office-collab
2 https://www.oasis-

open.org/committees/document.php?document_id=41512&wg_
abbrev=office-collab

1.2.2 Extended Change-Tracking (ECT)
ECT has been proposed by Microsoft3 4. In ECT, a change set
representing the previous state of the changed document area is
saved in the document and referenced from the changed area.
When a change is being rejected the prior saved XML replaces the
area again. This semantically black box approach of changed
areas gets problematic in case that multiple changes occur on the
same or overlapping areas: if only one of those changes should be
reverted, the different areas cannot be clearly distinguished and
may influence each other. It is difficult for an application to
identify and remove the dependencies of the rejected change from
the other overlapping areas of change, as they were only treated as
black boxes of ODF XML (same applies for OOXML).

1.2.3 Merge Enabled Change-Tracking (MCT)
In this paper, we present MCT. Its design is based on the idea to
first specify the user changes within ODF which are to be tracked.
Moving the complexity out of the documents into the
specification, thus storing only a list of the applied user changes
within the document. Two open-source early adopters are
currently implementing this approach for real-time editing: OX
Documents5 and WebODF6.
We explain this approach in more detail throughout the document.

A Select Committee voted by the ODF TC resolved in the end the
stale mate between the three proposals. All three proposals have
been compared and MCT has been chosen for the next version of
ODF. The winning factor was its XML coding efficiency for
change-tracking: as any complex XML change pattern triggered
by a user could be mapped to a single pre-defined operation, such
as the move of a row in a large table.
Examples for the different proposals that also exemplify the
efficient design of MCT can be seen in the final report7 of the
Select Committee.

2. SPECIFYING DOCUMENT CHANGES
2.1 Design Evolvement
In order to understand the design decision, one must consider the
history of browser-based document editing. Originally, ODF
documents were transformed on server side to HTML, sent to a
client, edited by user and sent back to the server. The server side
transformation from ODF to HTML did perform well, but the
ability to collaborate on the same document with multiple clients
turns out to be difficult. The change by the user is hard to identify
in the HTML even harder to merge.

Another requirement is that also different ODF applications
should be able to collaborate. Especially the new browser office

3 https://www.oasis-

open.org/committees/document.php?document_id=41699&wg_
abbrev=office-collab

4 https://www.oasis-
open.org/committees/document.php?document_id=41816&wg_
abbrev=office-collab

5 http://www.open-xchange.com/products/ox-documents
6 http://www.webodf.org/
7 https://www.oasis-open.org/committees/document.php?

document_id=46485&wg_abbrev=office-collab

should be able to exchange changes with an existing OpenOffice
application. This collaboration is desired especially for large
documents, making the continuous exchange of the complete
ODF document not an option.

The challenge is to allow two ODF applications with different
run-time models to exchange user changes on a document. Both
applications have to be able to apply the same user changes to a
document, even if not created from the same application.
After any collaboration round, all users have to be able to save the
same document. All application models have to provide the same
document state. Therefore, the application models have to be kept
in sync during collaboration.
To accomplish this, a simplified abstraction layer of ODF has to
be used among the applications; state changes are dispatched
based upon that high-level unified document model.

2.2 The unified Document Model
To have a high probability to find the model in many applications,
we chose an abstraction model aligned to the human abstraction of
a document. For instance, we describe a position of a change
among each other such as: “I have deleted the 3rd character of the
2nd paragraph.” This position we refer to as “/2/3”. The logical
components of a document known by all users are being counted
and referenced. A component is for instance: an image, paragraph,
table (also every contained row and cell) and each character as
most fine granular unit.

To refer to a change of a component in an ODF document the
position of the ODF XML representing the component is
authoritative. A component consists of one or more ODF XML,
there is always one single starting element defined for this
component – for instance <text:p> for a paragraph or
<table:table> for a table. The position of the component is the
position of the start element within the ODF document, which is
initially being loaded.

2.3 The standardized Change
The ODF standard makes no assumption on the run-time model of
an ODF application. Therefore the application model has to be
treated as a black box. It is still sufficient to know that any ODF
application is able to load an ODF document, apply a single user
changes and save the new state as an ODF document.

A certain type of user change is now being defined in the ODF
specification by describing the change pattern of the ODF XML
that occurred between loading and saving the document. Although
there is no ODF XML involved at run-time for ODF applications,
the applications are able to test their internal state change by
comparing the ODF XML input and output.

There are three basic changes types: “add”, “delete” and
“modify”. The additional “move” and “replace” operations are
being derived from them. The “add” moves any existing
component at this position (and all that follow) one to the back,
increasing the position by one.

2.4 Transforming Changes
Any document can be seen as a sequence of changes that has
created the document. For instance, systems such as OX
Documents map every ODF file on the server to a list of
operations, which are sent to their browser office. In return every
user action within the browser office results into a change
operation.

It is important to realize that different user actions and therefore
operations may result into the same document, as a user has
different options to create the same document:

The user might type in a sequence of two letters “AB”. But the
same document might as well be created by inserting first “B” at
position 1 and after moving the cursor back to position 1 inserting
“A” at the beginning. As both documents are equal their queues of
changes should be able to be transformed into another.
The elemental change is to swap two adjacent operations of the
list. Logically this replacement is equal to swap the order of the
operations in time.
For example, if someone modified the 3rd paragraph and added
afterwards a new 2nd paragraph, swapping the order result into an
earlier addition of the 2nd paragraph. Therefore the modification
will no longer be on the 3rd as the new 2nd was just inserted. The
3rd was moved back and became the 4th.

This position adoption of an operation is the transformation
known as Operational Transformation (OT) [3].

2.5 Relation of Changes
The same change operations can be used for real-time
collaboration, change-tracking and undo-redo. Usually the real-
time is most fine granular, while undo/redo for instance already
combines text on word level and change-tracking the changes to
component, dropping intermediate changes of the author.

2.6 Inverse Operation
Every operation changing the document from one state to another
has also an inverse operation that is able to bring the document
back to its original state.

While for real-time collaboration the changes of the users are of
importance to be dispatched to other clients, for change-tracking
the inverse operation is of importance and will be saved within the
document. The combination of both allows history functionality.

2.7 Normalization of Operations
The normalization of operations is important to remove redundant
data to efficiently compare documents and changes. The idea is to
remove all redundant operations and compress the remaining. To
load a document, no prior delete operations are required, the
addition & deletion of a component is not changing the document
state and can be removed. Operations are sorted in document
order and a sequence of multiple text insertions may for instance
be combined to one.

Normalization would make the usage of hash algorithms to
identify a possible change.
The exact normalization is still under discussion.

2.8 Versioning
There are parallels in versioning of source code in distributed
version control systems (DVCS) as via Git8 or Mercurial and the
collaboration on documents. When two users work on the same
document without syncing (like offline over the week-end), they
work on two branches, which have the last document state as the
starting point of their branches. They need to merge their work,
before they are able to continue a joint work (on the same branch).
Another parallel might be that every document editor might create
milestone of their work similar as doing a commit/version in
version control systems.

2.9 Merging of Changes
The collaboration of any number of users can be scaled down to
the merge of the changes of two users at the same time.

Two users started their work on the same document, the same
queue of operations and added an additional stack of operations to
the document.

Merging is similar to DVCS: One of the users (A) is pulling the
latest changes from the other (B). The B stack is moved through
the A stack as each operation would have been applied earlier
than A. The A stack is being adopted by OT becoming A’.
Afterwards the end state of user B is equal to the starting state of
A’, and A’ can be simply put upon the operations of B and pushed
to B.

2.10 Merge Conflicts
Even the most efficient merge is no prevention from merge
conflicts that might occur during asynchronous editing on the
same document.

For instance, a user might work on a table cell while the other
removes the table. The work on the document might continue
while the user decide, which of the two options is applicable.

More dangerous are the semantic errors that cannot be detected
without a semantic aware control:

• Two users add new first and a new last paragraph,
which have no word in common, but still might be
semantically identical, therefore redundant.

• The collaboration on a love letter might result into using
different names of the target person. A merge conflict
would be in the end the smallest problem.

MCT cannot prevent this type of merge errors, but the high-level
change representation within the user context may help to identify
these errors early.

3. ADVANTAGES
3.1 Interoperability of Changes
The change does not have to be identified by diff’ heuristics
between two documents, as they will be standardized on
OASIS/ISO level and provided as a list. Up to now, ODF
applications have sent files. With MCT, the defined changes can
be dispatched, making a merge and versioning and therefore
collaboration far easier across platforms and applications.

3.2 History Function
The ability to keep track of inverse operations allows the ability to
go back and forth through the history of a document. It is

8 http://git-scm.com/book/en/Git-Branching

Figure 1. Change Relations.

.

sufficient to save the final state and all normalized “undo
operations” between milestones.

3.3 Accept, Reject and now Postpone
Currently a change can only be rejected or accepted. MCT allows
to postpone a change. This is possible by the ability to move a
single or a group of changes through the list of changes
representing the document. Making it possible to move changes
outside the scope of the final state pointer in the list. This group
would be marked similar to a feature branch that has not yet been
merged with the main document.

3.4 Merge Efficiency
Aside of the missing identification step of a change, the duration
of the merge of operations - representing changes on file
documents - is only related to the number of operations, but no
longer of the size of the changed document.

3.5 Changing Read-only Documents
As no additional identifiers have to be added to the document to
locate the position of a change, but instead the position is being
counted by predefined marking elements (the start elements of the
components), even changes of remote or read-only (signed)
documents can be sent to the owner (similar as in pull-request
with DVCS systems as in GitHub).

3.6 Conformance Testing
Every ODF application will be able to be tested for the feature it
supports by loading a document, applying the specified change
and saving back the document.
Also the ODF documents of a user can be tested on the used
feature set. Allowing identifying the requirements for an ODF
application.
An open-source test suite should be available on OASIS level.

3.7 No Feature Loss
Currently during document import the full state of the document is
imported to the run-time model. Any state that does not fit into the
model is lost during import.

With the import of operations the features not applicable can be
moved out of the import list into a branch, remembered and later
during export mapped back to the queue with priority. By doing
this, it is possible to have a large gap of feature support among
collaborating applications. For instance a text editor (as Vi) could
emulate a paragraph with a line and only show character. The Vi
could collaborate with an application such feature rich as MS
Office on the same full-featured document.

The other option is to read (and sent) only the operations of
features known by the other client.

The only difficulty that needs to be addressed is that whenever a
client inserts a component at a position adjacent of an unknown
component, it is uncertain if the new component is before or
behind the unknown component.

If a certain known component, such as a replacement character
(character sequence or image), replaces the unknown component,
the insertion is determined again.

3.8 Multiple Versions Change
A change like the correction of a typo can be applied to multiple
or all branches (versions) of the document, where it applies. A
typical use case is the maintenance of specifications and contracts.

3.9 Replace Semantic
The application could have the ability to track the semantic of
global changes. For instance, if a company was renamed the
system could give a warning if the old naming will be added in
the future again.

3.10 Operations as Lingua Franca
Operations can be used not only to abstract from the run-time
models of different applications using the same file format, but as
well between similar file formats, like ODF, OOXML, DocBook
and HTML.

The available list of operations has to be able to map the feature
set of the file format. The browser office OX Documents uses the
same operations for ODF and OOXML files. The standardization
of ODF changes will certainly be even more successful if there is
interoperability to OOXML although the changes were specified
in relation of an ODF XML change.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we have sketched a novel approach for change
tracking within ODF documents. It is based on the Operational
Transformation approach and allows for efficient collaboration on
structured documents. Our approach, called merge enabled
change-tracking (MCT) has been selected as basis for the
upcoming ODF standard.

Future work will focus on the detailed specification of MCT,
especially on the reliable addressing of changes.
First early adopters have already committed themselves to MCT,
which will allow us to gain real-life experiences with this
approach in order to enable ODF as collaborative document
format.

5. REFERENCES
[1] H. Dohrn and D. Riehle. Fine-grained Change Detection in

Structured Text Documents. In Proceedings of the 14th ACM
symposium on Document engineering, pages 87-96, 2014.

[2] S. Rönnau, G. Philipp, U. Borghoff. Efficient change control
of XML documents. In Proceedings of the 9th ACM
symposium on Document engineering, pages 3-12, 2009.

[3] Ellis, C. A. and Gibbs, S. J. (1989). Concurrency control in
groupware systems. SIGMOD Records, 18(2): 399–407.

Figure 2. Decouple Transformation Complexity.

.

